JPS63133111A - Condenser - Google Patents

Condenser

Info

Publication number
JPS63133111A
JPS63133111A JP28131286A JP28131286A JPS63133111A JP S63133111 A JPS63133111 A JP S63133111A JP 28131286 A JP28131286 A JP 28131286A JP 28131286 A JP28131286 A JP 28131286A JP S63133111 A JPS63133111 A JP S63133111A
Authority
JP
Japan
Prior art keywords
light
edge
resin plate
edge part
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28131286A
Other languages
Japanese (ja)
Inventor
Shuji Maeda
修二 前田
Munehiko Ito
宗彦 伊藤
Takahiro Heiuchi
隆博 塀内
Takayoshi Koseki
高好 小関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP28131286A priority Critical patent/JPS63133111A/en
Publication of JPS63133111A publication Critical patent/JPS63133111A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To efficiently radiate the light condensed in the edge part to the outside by inclining the edge part in the direction perpendicular to the total reflection face of a light-transmissive medium. CONSTITUTION:With respect to a condenser where total reflection in the light- transmissive medium is used to condense the light in the edge part of the light- transmissive medium, the edge part is inclined in the direction perpendicular to the rotal reflection face of the light-transmissive medium. For example, if the sunbeam is projected to a resin plate 1 in which a fluorescent dye is dissolved and dispersed, fluorescence is radiated from the fluorescent dye and is condensed toward an edge part 1b of the resin plate 1 by rotal reflection in the resin plate, and a part of this fluorescence is transmitted through the edge part 1b and is used to generate electricity by the sunbeam. Though a part of the condensed light is not transmitted through the edge part 1b and is gradually attenuated in the resin plate 1, all of the condensed light is transmitted from the edge part 1b and from near this part because the edge part 1b is inclined, and the generated electric energy is increased.

Description

【発明の詳細な説明】 (技術分野) 本発明は、透光性媒質内の全反射を利用した集光器に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a light concentrator that utilizes total internal reflection within a transparent medium.

(背景技術) 近年、動力源として太陽エネルギーを利用した装置が増
加しつつあるが、太陽エネルギーを利用する装置は他の
エネルギーを用いる装置に比べるとコスト的に高価とな
る欠点がある。これは、太陽電池及び追尾式太陽エネル
ギー集光器等のコスト高が主な原因である。そこで、従
来、太陽電池の面積を減少させることによるコストダウ
ンを狙ったルミネッセント・ソーラー・コンセントレー
タ(L uninescent  S olar  C
oncentrater)を応用した研究が行なわれて
いる。
(Background Art) In recent years, the number of devices that use solar energy as a power source has been increasing, but devices that use solar energy have the disadvantage of being more expensive than devices that use other forms of energy. This is mainly due to the high cost of solar cells, tracking solar energy concentrators, etc. Therefore, conventionally, luminescent solar concentrators (luminescent solar concentrators), which aim to reduce costs by reducing the area of solar cells, have been developed.
Research is being conducted using the ``oncentrater''.

例えば、蛍光染料を溶解分散させた透明樹脂板に、太陽
光線を当てると、光エネルギーを吸収した蛍光染料から
蛍光が放射される。この放射光は、樹脂板内部の全反射
により捕捉され、樹脂板の縁端部に集められる。したが
って、縁端部に太陽電池を取り付けることによって、太
陽光発電を効率的に行うことができる。このようにして
樹脂板に捕捉された光の濃縮(コンセントレージョン)
の効率は縁端部に対する表面積の割合に比例すると共に
、縁端部から放射される割合にも依存する。すなわち、
内部全反射で集められた光のうぢ全てが縁端部より放射
されず、内部に再反射される光が存在する。このことは
、太陽電池の取り付は方法によらず、発電量が縁端部か
らの放射効率によって制限を受けることを意味している
。縁端部において反射が生じる原因は、内部全反射光の
一部が縁端部と空気との境界面に入射するときに、臨界
角よりも大きい入射角を持つ場自があり、その光は縁端
部で再び樹脂板内へ反射されるためである。
For example, when a transparent resin plate containing a fluorescent dye dissolved and dispersed therein is exposed to sunlight, the fluorescent dye absorbs light energy and emits fluorescence. This emitted light is captured by total internal reflection inside the resin plate and collected at the edge of the resin plate. Therefore, solar power generation can be efficiently performed by attaching a solar cell to the edge. Concentration of the light captured on the resin plate in this way
The efficiency of is proportional to the ratio of surface area to edge and also depends on the proportion radiated from the edge. That is,
Not all of the light collected by total internal reflection is emitted from the edges, and some light is re-reflected inside. This means that regardless of the method of mounting the solar cells, the amount of power generated is limited by the radiation efficiency from the edges. The reason why reflection occurs at the edge is that when a part of the total internally reflected light is incident on the interface between the edge and the air, the incident angle is larger than the critical angle, and the light is This is because the light is reflected back into the resin plate at the edge.

よって、もしも樹脂板厚が一定で、縁端部か樹脂板の表
面に対して垂直であるならば、縁端部における反射光は
樹脂板内を何回も往復することになり、次第に減衰して
いく。
Therefore, if the thickness of the resin plate is constant and the edge is perpendicular to the surface of the resin plate, the reflected light at the edge will travel back and forth within the resin plate many times and will gradually attenuate. To go.

以上のことにより、縁端部方向に集められた光のうち、
できるだけ多くの光を縁端部及びその近傍から放射させ
る集光器を用いて効率的に太陽光発電を行うことが望ま
れる。
As a result of the above, out of the light collected toward the edge,
It is desirable to efficiently generate solar power using a concentrator that emits as much light as possible from the edge and its vicinity.

(発明の目的) 本発明は上述のような点に鑑みてなされたものであり、
その目的とするところは、縁端部に集められた光を効率
良く外部へ放射させる集光器を提供するにある。
(Object of the invention) The present invention has been made in view of the above points, and
The purpose is to provide a concentrator that efficiently radiates the light collected at the edge to the outside.

(発明の開示) 本発明は、透光性媒質内の全反射を利用して前記透光性
媒質の縁端部に光を集光するようにした集光器において
、縁端部を透光性媒質の全反射面と垂直な方向に対して
傾斜させたことを特徴とするものであり、傾斜した縁端
部から光を効率良く外部に放射させるようにしたもので
ある。
(Disclosure of the Invention) The present invention provides a concentrator that uses total reflection within a transparent medium to condense light onto an edge of the transparent medium, the edge of which is transparent. It is characterized by being tilted with respect to the direction perpendicular to the total reflection surface of the reflective medium, and the light is efficiently radiated to the outside from the tilted edge.

例えば蛍光染料を溶解分散させた樹脂板に、太陽光線を
照射すると、蛍光染料から蛍光が放射され、この蛍光は
樹脂板内部の全反射によって樹脂板の縁端部方向に集め
られ、一部が縁端部より透過し、この光を用いて太陽光
発電を行うことができる。集められた光のうちの一部は
、縁端部より透過することなく樹脂板内で次第に減衰し
て行くが、縁端部に傾斜を持たせることによって集めら
れた光を縁端部及びその近傍から全て透過させ、発電量
を増加さぜることがてきる。なお、樹脂板の他にガラス
板あるいはガラスと樹脂との複き材利を用いても同様の
効果が得られる。
For example, when a resin plate containing dissolved and dispersed fluorescent dye is irradiated with sunlight, fluorescence is emitted from the fluorescent dye, and this fluorescence is collected toward the edge of the resin plate by total reflection inside the resin plate. This light is transmitted through the edges and can be used to generate solar power. A part of the collected light does not pass through the edge and gradually attenuates within the resin plate, but by giving the edge an inclination, the collected light is transferred to the edge and its surroundings. It is possible to increase the amount of power generation by allowing all of the light to pass through from the vicinity. Note that the same effect can be obtained by using a glass plate or a composite material of glass and resin instead of the resin plate.

今、第2図に示すように、厚さが一定の樹脂板(1)が
空気中に置かれ、その樹脂板(1)内に蛍光染料が均一
に溶解分散されている場合を想定する。
Now, as shown in FIG. 2, it is assumed that a resin plate (1) with a constant thickness is placed in the air, and a fluorescent dye is uniformly dissolved and dispersed within the resin plate (1).

太陽光線を樹脂板(1)の大面積方向から照射すると、
樹脂板(1)内の染料が太陽光線エネルギーを吸収して
蛍光を発する。そして、その蛍光の放射方向は360°
立体方向に均一であるとする。放射された蛍光のうち、
樹脂板(1)の屈折率n、*と空気の屈折率nAとによ
って決められる臨界角くθc=sin−’(71,A/
7’l、R))よりも大きい入射角て樹脂板(1)と空
気との境界面に入射する光は内部全反射によって、縁端
部(1a)方向に集められる。しかしながら、内部全反
射によって縁端部(1a)に集められながら、縁端部(
1a)て再反射される場合が存在する。
When sunlight is irradiated from the large area direction of the resin plate (1),
The dye inside the resin plate (1) absorbs sunlight energy and emits fluorescence. The emission direction of the fluorescence is 360°
Assume that it is uniform in the three-dimensional direction. Of the emitted fluorescence,
The critical angle determined by the refractive index n,* of the resin plate (1) and the refractive index nA of air is θc=sin-'(71,A/
Light incident on the interface between the resin plate (1) and the air at an incident angle larger than 7'l, R)) is concentrated toward the edge (1a) by total internal reflection. However, while being concentrated at the edge (1a) by total internal reflection,
1a) There are cases where the light is re-reflected.

例えば、樹脂板(1)にポリメチルメタクリレート(以
下、PMMAという)を用いた場合を第3図に示す。P
MMAの屈折率を71.R= 1 、5 、空気の屈折
率を’11.A= 1 、0とすると、θc=426と
なる。樹脂板(1)の下面への入射角が42°以上であ
れば、第3図(、)に示すように、下面で全反射し、縁
端部(1a)へ48°以下で入射する。θc−42°で
あるから、この光は再び縁端部(1a)て全反射されて
、上面へ42°以上で入射するため、再々度全反射とな
る。よって、この繰り返しを行う限り、光は外部へ出る
ことは不可能となり、樹脂板(1)の内部を往復するう
ちに次第に減衰してしまう。
For example, FIG. 3 shows a case where polymethyl methacrylate (hereinafter referred to as PMMA) is used for the resin plate (1). P
The refractive index of MMA is 71. R=1,5, the refractive index of air is '11. When A=1, 0, θc=426. If the angle of incidence on the lower surface of the resin plate (1) is 42° or more, as shown in FIG. Since the angle is θc-42°, this light is totally reflected again at the edge (1a) and enters the upper surface at an angle of 42° or more, so that it is totally reflected again. Therefore, as long as this process is repeated, the light will not be able to exit to the outside, and will gradually attenuate as it travels back and forth inside the resin plate (1).

また、樹脂板(1)の下面への入射角が48°以上であ
れば、第3図(b)に示すように、下面で全反射され、
縁端部(la)’\42°以下で入射する。
Furthermore, if the angle of incidence on the bottom surface of the resin plate (1) is 48° or more, it will be totally reflected on the bottom surface, as shown in Figure 3(b).
It is incident at the edge (la)'\42° or less.

樹脂板(1)の下面への入射角が48°よりも僅かに大
きければ、縁端部(la)’\の入射角は逆に42°よ
りも僅かに小さくなり、この光は透過光となる。さらに
また、樹脂板(1)の下面への入射角が42°未満であ
れば、全て透過光となり、縁端部(1a)へ集光される
ことはない。
If the angle of incidence on the bottom surface of the resin plate (1) is slightly larger than 48°, the angle of incidence on the edge (la)'\ will be slightly smaller than 42°, and this light will be considered as transmitted light. Become. Furthermore, if the angle of incidence on the lower surface of the resin plate (1) is less than 42°, all of the light will be transmitted and will not be focused on the edge (1a).

以上のことをまとめると、次のようになる。The above can be summarized as follows.

(八)入射角が、θ・く42°の光は、縁端部に集光さ
れない。
(8) Light with an incident angle of θ·42° is not focused on the edge.

(B)入射角が、42°≦θ≦486の光は、縁端部に
集光されるが、縁端部より透過しない。
(B) Light with an incident angle of 42°≦θ≦486 is focused on the edge, but does not pass through the edge.

(C)入射角が、48°・くθく90°の光は、縁端部
に集光されて、縁端部から透過される。
(C) Light with an incident angle of 48° x 90° is condensed at the edge and transmitted from the edge.

また、このことは樹脂板(1)の上面への入射光や側面
への入射光についても同様に成立する。
Further, this also holds true for the incident light on the top surface and the side surface of the resin plate (1).

蛍光染料の発光は、360°立体方向について均一であ
るとすると、縁端部(1a)における集光効率は入射角
をθとして、cosθて表される。例えば太陽電池を縁
端部(1a)に取り付けたときに、蛍光エネルギーの(
100Xcosθ)%が電気エネルギーへの変換に使わ
れることになる。前例のPMMAの場合には、cos4
8’玉67%となる。
Assuming that the luminescence of the fluorescent dye is uniform in 360° three-dimensional directions, the light collection efficiency at the edge (1a) is expressed as cos θ, where θ is the incident angle. For example, when a solar cell is attached to the edge (1a), fluorescent energy (
100X cos θ)% will be used for conversion into electrical energy. In the case of PMMA in the previous example, cos4
8' ball is 67%.

しかしながら、実際には、cos42°均74%の蛍光
が縁端部(1a)に集められており、その内の7%は外
部へ透過しないために、ロスとなっている。そこで、こ
の7%のロスを減少させるために、第4図に示すように
、傾斜角ψ(0くψくπ/2)を持つ縁端部(11)>
を用いる。すなわち、第4図においては、縁端部(1b
)を樹脂板(1)の表面とは垂直な面に対して傾斜角ψ
だけ傾斜させている。
However, in reality, an average of 74% of the fluorescence of cos 42° is collected at the edge (1a), and 7% of this is lost because it does not pass through to the outside. Therefore, in order to reduce this 7% loss, as shown in FIG.
Use. That is, in FIG. 4, the edge portion (1b
) is the inclination angle ψ with respect to the plane perpendicular to the surface of the resin plate (1).
It is only tilted.

まず、第4図(b)の場合について説明する。樹脂板(
1)の下面へ角度θ(θ≧θC〉で入射した光は全反射
されて、縁端部(lb)に角度ξて入射する。このとき
、ξ〈θCであれば、下面反射光は全て縁端部(1b)
を透過する。ξ−1π/2−ψ−θ1であるから、透過
条件式は次のようになる。
First, the case shown in FIG. 4(b) will be explained. Resin plate (
1) Light incident on the bottom surface at an angle θ (θ≧θC>) is totally reflected and enters the edge (lb) at an angle ξ.At this time, if ξ〈θC, all of the light reflected from the bottom surface is Edge (1b)
Transparent. Since ξ-1π/2-ψ-θ1, the transmission conditional expression is as follows.

1π/2−ψ−θ1くθC・・・■ ここで、 (a)π/2−ψ−θ≧Oのとき、 つまり、θ≦π/2−ψのとき、 ■式は、ψ〉π/2−θ−θC (b)π/2−ψ−θくOのとき、 つまり、θ)・π/2−ψのとき、 ■式は、ψくπ/2−θ−θC となる。下面からの反射光が存在するから、θC≦θ≦
π/′2 したがって、 =8− (a’)O<ψのとき、θC≦θ≦π/2の範囲て前記
(a)の条件ψ〉π/2−θ−θCが常に成り立つには
、ψ〉π/2−2θCとなる。
1π/2−ψ−θ1×θC...■ Here, (a) When π/2−ψ−θ≧O, that is, when θ≦π/2−ψ, ■The formula is ψ>π /2−θ−θC (b) When π/2−ψ−θ×O, that is, when θ)・π/2−θC, the formula (2) becomes ψ×π/2−θ−θC. Since there is reflected light from the bottom surface, θC≦θ≦
π/'2 Therefore, =8- (a') When O<ψ, the condition (a) above always holds within the range θC≦θ≦π/2, as follows: ψ〉π/2−2θC.

(bo)ψくπ/2のとき、θC≦θ≦π/2の範囲て
前記(b)の条件ψくπ/2−θ−θCが常に成り立つ
には、ψく一θCとなる。ここで、θc>0より、ψ〈
Oとなり、これは仮定であるOくψくπ/2に矛盾する
。したがって、(bo)の条件を満足するψは存在しな
い。
(bo) When ψ - π/2, in order for the condition (b) above to always hold within the range θC≦θ≦π/2, ψ must be less than θC. Here, since θc>0, ψ〈
O, which contradicts the assumption O×ψ×π/2. Therefore, there is no ψ that satisfies the condition (bo).

次に、第4図(a)の場合について説明する。樹脂板(
1)の上面へ角度θ(θ≧θC)で入射した光は全反射
されて、縁端部(1b)に角度ξて入射する。ここて、
縁端部(1b)での全反射の臨界条件は、ξ2α+ψ−
π/2+ψ−θ−θC1゛、θ=π/2−θC+ψ=α
IIIIIX+ψとなり、この角度を境界として、 θ≦αll1aX+ψのとき全反射 θ〉aIllaX+ψのとき透過となる。
Next, the case of FIG. 4(a) will be explained. Resin plate (
1) The light incident on the upper surface at an angle θ (θ≧θC) is totally reflected and enters the edge portion (1b) at an angle ξ. Here,
The critical condition for total reflection at the edge (1b) is ξ2α+ψ−
π/2+ψ-θ-θC1゛, θ=π/2-θC+ψ=α
IIIIX+ψ, and with this angle as the boundary, total reflection occurs when θ≦αll1aX+ψ, and transmission occurs when θ>aIllaX+ψ.

縁端部(lb)で全反射した光は、樹脂板(1)の下面
へ角度βて入射する。この入射光の透過条件は、 β−12ψ−θ1・くθCとなる。
The light totally reflected at the edge (lb) is incident on the lower surface of the resin plate (1) at an angle β. The transmission condition for this incident light is β-12ψ-θ1×θC.

ここで、 (c)2ψ−θ≧0   °、θ≦2ψのとき、2ψ−
θくθC つまり、ψく(θ十θc)/2 (d)2ψ−θ(Q   、−、θ〉2ψのとき、2ψ
−θ〉−θC つまり、ψ〉(θ−θc)/2 となる。上面からの反射光が存在するから、θC≦θ≦
π/2 したがって、 (Co)ψ≦π/4のとき、前記(e)の条件ψく(θ
十θc)/2か、θC≦θ≦π/2の範囲て常に成り立
つには、ψくθCてあれば良い。
Here, (c) When 2ψ−θ≧0 °, θ≦2ψ, 2ψ−
θ × θC In other words, ψ × (θ + θc)/2 (d) 2ψ−θ (Q , −, when θ〉2ψ, 2ψ
-θ>-θC In other words, ψ>(θ-θc)/2. Since there is reflected light from the top surface, θC≦θ≦
π/2 Therefore, when (Co)ψ≦π/4, the condition (e) above (θ
In order to always hold within the range of 10 θc)/2 or θC≦θ≦π/2, it is sufficient that ψ is less than θC.

(d′)θc/2≦ψのとき、前記(d)の条件ψ〉(
θ−θc)/2が、θC≦θ≦π/2の範囲て常に成り
立つには、ψ〉(π/2−θc)/2てあれば良い。
(d') When θc/2≦ψ, the condition ψ〉(
In order for θ-θc)/2 to always hold within the range θC≦θ≦π/2, it is sufficient that ψ>(π/2-θc)/2.

以上をまとめると、 θC≦θ≦π/2の範囲で、樹脂板(1)の下面から縁
端部(1b)への入射光と、樹脂板(1)の上面から縁
端部(1b)への入射光及び下面への入射光が全て透過
するための条件は、 (a’)O<ψ〈π/2のとき、 ψ〉π/2−2θC (c’)0<ψ≦π/4のとき、ψくθC(do)θc
/2≦ψくπ/2のとき、ψ〉(π/2−θC)/2 のうち、以下の組み合わせを満足することが必要である
To summarize the above, in the range of θC≦θ≦π/2, the incident light from the bottom surface of the resin plate (1) to the edge (1b) and the incident light from the top surface of the resin plate (1) to the edge (1b) The conditions for all incident light to pass through and to the bottom surface are: (a') When O<ψ<π/2, ψ>π/2-2θC (c') 0<ψ≦π/ When 4, ψ θC (do) θc
When /2≦ψ<π/2, it is necessary to satisfy the following combination of ψ>(π/2−θC)/2.

(i)条件(a゛)と条件(Co)の組み合わせ0くψ
≦π/4のとき、 π/2−2θC〈ψくθC π/4〈ψ〈π/2のとき、 π/2−2θcくψ (ii)条件(a゛)と条件(do)の組み合わせθc
/2≦ψ〈π/2のとき、 θC≦π/6ならば、 ψく(π/2−θc)/2 π/6くθcくπ/2ならば、 ψくπ/2−2θC Oくψくθc/2のとき、 π/2−2 θe< ψ 前記条件(i)または(ii)のいずれかを満たせば、
縁端部(1b)の方向へ集光される光は、縁端部(1b
)及びその近傍(樹脂板(1)の下面部分)から全て出
射される。よって、第4図中の縁端部(1b〉と、下面
の長さX = (X l+ X 2 )の部分に太陽電
池を配置すれば、集光された光を全て発電に使うことが
できる。下面の光出射部の長さXの最大値X maxは
、 Xmax= X + (max) + X 2ここで、
X 、 (max)はX、の最大値であり、樹脂板(1
)の板厚をd、角度βの最大値をβIll a Xとす
ると、 X 1 (max) = d “tanβ1naXであ
るから、 Xmax=d(tanβmax+tanψ)となる。
(i) Combination of condition (a゛) and condition (Co) 0kuψ
When ≦π/4, π/2−2θC〈ψ×θC π/4〈ψ〈π/2, π/2−2θc×ψ (ii) Combination of condition (a゛) and condition (do) θc
When /2≦ψ〈π/2, if θC≦π/6, then ψ(π/2−θc)/2 If π/6×θc×π/2, then ψ×π/2−2θC O When ψ θc/2, π/2-2 θe< ψ If either of the above conditions (i) or (ii) is satisfied,
The light focused in the direction of the edge (1b) is
) and its vicinity (lower surface portion of the resin plate (1)). Therefore, if solar cells are placed at the edge (1b) and the length of the bottom surface X = (X l + X 2 ) in Figure 4, all of the concentrated light can be used for power generation. The maximum value Xmax of the length X of the light emitting part on the bottom surface is: Xmax=X+(max)+X2Here,
X, (max) is the maximum value of X, and the resin plate (1
) is the plate thickness d, and the maximum value of the angle β is βIll a X. Since X 1 (max) = d “tanβ1naX,

次に、実施例と比較例を示す。Next, examples and comparative examples will be shown.

K1燵Y 寸法が縦20 OrIls+、横200mm、厚さ10
m+nのPMMAよりなる樹脂板(1)の縁端部(1b
)を第1図に示すように傾斜角ψで傾斜させた。このP
MMA内には、蛍光染料として”0RANGE240“
(商品名、BASF社製)の0.002重量%相当量が
含まれている。PMMAの屈折率na=1.5と空気の
屈折率7′l、A−1,0より臨界角はθCξ42°と
なる。傾斜角ψは条件(i)の0くψ≦π/4のとき、 π/2−2θCくψくθC 6@くψく42@ より、ψ−10°とした。
K1 燵Y Dimensions: Height 20 OrIls+, Width 200mm, Thickness 10
The edge (1b) of the resin plate (1) made of m+n PMMA
) was tilted at an angle of inclination ψ as shown in FIG. This P
MMA contains “0RANGE240” as a fluorescent dye.
(trade name, manufactured by BASF) in an amount equivalent to 0.002% by weight. The critical angle is θCξ42° from the refractive index na=1.5 of PMMA and the refractive index 7′l, A−1,0 of air. The inclination angle ψ was set to ψ-10° from the condition (i), when 0 ψ≦π/4, π/2-2θC ψ θC 6 @ ψ 42 .

縁端部(1b)で反射して下面へ入射する光の最大角は
、 βmax= lξmin+ψ−π/2+=IoC+ψ−
π/21 一142°+10°−9061 =386 一12= であるから、下面の光出射部の最大長さX+++ax=
d(tanβmax+ tanψ)−10(jan38
’ +janlO’ )−9、6(mm) となる。よって、第1図に示すように、樹脂板(1)の
縁端部(1b)に長さL+”” 10.0IOmの太陽
電池(S、)を、下面の光出射部に長さL2= 10.
0mmの太陽電池(S2)をそれぞれ取り付けて、太陽
光の下で発電量p(w)を測り、その結果を第1表に示
した。
The maximum angle of the light reflected at the edge (1b) and incident on the lower surface is βmax= lξmin+ψ-π/2+=IoC+ψ-
π/21 - 142° + 10° - 9061 = 386 - 12 = Therefore, the maximum length of the light emitting part on the bottom surface X+++ax =
d(tanβmax+tanψ)−10(jan38
'+janlO')-9,6 (mm). Therefore, as shown in FIG. 1, a solar cell (S,) with a length of L + "" 10.0 IOm is placed on the edge (1b) of the resin plate (1), and a solar cell (S,) with a length of L2 = 10.0 IOm is placed on the light emitting part of the lower surface. 10.
A 0 mm solar cell (S2) was attached to each, and the power generation amount p(w) was measured under sunlight, and the results are shown in Table 1.

K1鮭λ 実施例1において、下面取り付けの太陽電池(S2)を
長さLz=6.0ml11とした以外は、実施例1と同
じ条件で太陽電池(Sl)、(S2)を取り付け、太陽
光の下で発電量P(W)を測り、その結果を第1表に示
した。
K1 Salmon λ In Example 1, solar cells (Sl) and (S2) were installed under the same conditions as in Example 1, except that the length of the bottom-mounted solar cell (S2) was changed to Lz = 6.0 ml11, and sunlight The power generation amount P (W) was measured under the following conditions, and the results are shown in Table 1.

L1九り 実施例1において、傾斜角ψをOoとした以外は、実施
例1と同じ条件で太陽電池(s+)、(S2)を取り付
け、太陽光の下で発電量p(w)を測り、その結果を第
1表に示しな。
In Example 1, the solar cells (s+) and (S2) were installed under the same conditions as in Example 1, except that the inclination angle ψ was Oo, and the power generation amount p (w) was measured under sunlight. , the results are shown in Table 1.

比1U殊7エ 実施例2において、傾斜角ψをOoとした以外は、実施
例2と同じ条件で太陽電池(Sl)、(82)を取り付
け、太陽光の下で発電量p(w)を測り、その結果を第
1表に示した。
In Example 2, the solar cell (Sl), (82) was installed under the same conditions as Example 2, except that the inclination angle ψ was Oo, and the power generation amount p (w) under sunlight was The results are shown in Table 1.

第1表 第1表から明らかなように、同一面積の太陽電池を取り
付けた場合には、縁端部に傾斜を設けた方が約10%程
度発電量が多くなっており、集光性能がより良好となる
ことが分かる。
Table 1 As is clear from Table 1, when solar cells of the same area are installed, the amount of power generated is approximately 10% higher when the edges are sloped, and the light collecting performance is improved. It can be seen that the results are better.

(発明の効果) 本発明は上述のように、透光性媒質内の全反射を利用し
て前記透光性媒質の縁端部に光を集光するようにした集
光器において、縁端部を透光性媒質の全反射面と垂直な
方向に対して傾斜させたから、縁端部に集光された光を
効率良く外部へ放射させることができるという効果があ
る。
(Effects of the Invention) As described above, the present invention provides a condenser that uses total reflection within a transparent medium to condense light onto an edge of the transparent medium. Since the portion is inclined with respect to the direction perpendicular to the total reflection surface of the light-transmitting medium, there is an effect that the light collected at the edge portion can be efficiently radiated to the outside.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の断面図、第2図及び第3図
(a)(b)は従来例の動作説明図、第4図(a)(b
)は本発明の動作説明図である。 (1)は樹脂板、〈1b)は縁端部である。
Fig. 1 is a sectional view of an embodiment of the present invention, Figs. 2 and 3 (a) and (b) are explanatory diagrams of the operation of the conventional example, and Figs. 4 (a) and (b).
) is an explanatory diagram of the operation of the present invention. (1) is a resin plate, and <1b) is an edge portion.

Claims (3)

【特許請求の範囲】[Claims] (1)透光性媒質内の全反射を利用して前記透光性媒質
の縁端部に光を集光するようにした集光器において、縁
端部を透光性媒質の全反射面と垂直な方向に対して傾斜
させたことを特徴とする集光器。
(1) In a condenser that uses total reflection within a transparent medium to condense light onto an edge of the transparent medium, the edge is a total reflection surface of the transparent medium. A concentrator characterized by being tilted with respect to a direction perpendicular to the direction.
(2)透光性媒質が樹脂、ガラス及びその複合体のいず
れかであることを特徴とする特許請求の範囲第1項記載
の集光器。
(2) The condenser according to claim 1, wherein the light-transmitting medium is one of resin, glass, and a composite thereof.
(3)蛍光物質を透光性媒質の内部に含むことを特徴と
する特許請求の範囲第1項又は第2項記載の集光器。
(3) The condenser according to claim 1 or 2, characterized in that a fluorescent substance is contained inside the light-transmitting medium.
JP28131286A 1986-11-26 1986-11-26 Condenser Pending JPS63133111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28131286A JPS63133111A (en) 1986-11-26 1986-11-26 Condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28131286A JPS63133111A (en) 1986-11-26 1986-11-26 Condenser

Publications (1)

Publication Number Publication Date
JPS63133111A true JPS63133111A (en) 1988-06-04

Family

ID=17637335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28131286A Pending JPS63133111A (en) 1986-11-26 1986-11-26 Condenser

Country Status (1)

Country Link
JP (1) JPS63133111A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6038407A (en) * 1997-03-07 2000-03-14 Seiko Epson Corporation Data recording device for a disposable camera
WO2014030546A1 (en) * 2012-08-23 2014-02-27 シャープ株式会社 Solar cell module and photovoltaic power generating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6038407A (en) * 1997-03-07 2000-03-14 Seiko Epson Corporation Data recording device for a disposable camera
WO2014030546A1 (en) * 2012-08-23 2014-02-27 シャープ株式会社 Solar cell module and photovoltaic power generating device

Similar Documents

Publication Publication Date Title
US4357486A (en) Luminescent solar collector
US4149902A (en) Fluorescent solar energy concentrator
US4127425A (en) Luminescent solar collector
US4199376A (en) Luminescent solar collector
KR20100027728A (en) Building intergrated photovoltaic modules
KR100933213B1 (en) Concentration lens for solar power generation
JPS61284972A (en) Built-up fluorescent solar collector
JP5929578B2 (en) Solar cell module and solar cell module assembly
US20130087183A1 (en) Solar cell module, and solar energy generator device comprising the solar cell module
CN114400265B (en) Photoelectric conversion device for solar photovoltaic power generation
US4541414A (en) Apparatus for collecting sunlight
JP2007073774A (en) Solar battery
JPS63133111A (en) Condenser
JP2000022194A (en) Solar cell power supply
WO2012128339A1 (en) Solar cell module, solar photovoltaic power generation device, and method for installing solar cell module
CN102709376A (en) Back plate integrated with fluorescent planar optical waveguide structure for solar battery module and application
CN112187166B (en) High-efficiency concentrating solar cell panel
EP4070386A2 (en) Photovoltaic solar power plant assembly comprising an optical structure for redirecting light
JP2018060978A (en) Light-condensing solar power generator
JPS61105511A (en) Condenser
JP2024023065A (en) Photoelectric conversion device for solar power generation
US20160172521A1 (en) Solar concentrator with microreflectors
JPS61150282A (en) Solar power generator
JPH0543082B2 (en)
JP3594805B2 (en) Solar cell module