JPS63132794A - Weld metal for high tensile steel products - Google Patents

Weld metal for high tensile steel products

Info

Publication number
JPS63132794A
JPS63132794A JP27914986A JP27914986A JPS63132794A JP S63132794 A JPS63132794 A JP S63132794A JP 27914986 A JP27914986 A JP 27914986A JP 27914986 A JP27914986 A JP 27914986A JP S63132794 A JPS63132794 A JP S63132794A
Authority
JP
Japan
Prior art keywords
weld metal
welding
steel
hardness
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27914986A
Other languages
Japanese (ja)
Inventor
Atsushi Shiga
志賀 厚
Suetomi Inoue
井上 末富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP27914986A priority Critical patent/JPS63132794A/en
Publication of JPS63132794A publication Critical patent/JPS63132794A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/001Interlayers, transition pieces for metallurgical bonding of workpieces
    • B23K35/004Interlayers, transition pieces for metallurgical bonding of workpieces at least one of the workpieces being of a metal of the iron group

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)

Abstract

PURPOSE:To prevent SR embrittlement, increase in the hardness of a heat affected zone and impairment of sea water corrosion and fatigue resistance, etc., by specifying the compsn. of a weld metal and providing specific tensile strength thereto. CONSTITUTION:The weld metal having the following compsn. is preliminarily formed as a buttering layer 2 to the front end of a forged steel of about 80kgf/ mm<2> in the case of assembling a structure using said forged steel. The weld metal is thereafter subjected to an SR treatment and is butted with the other member 3 to form a groove, then the weld metal is formed. The weld metal to be used is the weld metal having the compsn. contg. 0.01-0.05% C, <=0.15% Si, 1.2-1.9% Mn, <=0.015% P, <=0.010% S, 1.0-3.0% Ni, 0.4-1.0% Cr, 0.2-0.8% Mo, and <=0.015% O, and substantially consisting of the balance Fe. This weld metal has at least 80kgf/mm<2> tensile strength.

Description

【発明の詳細な説明】 〈発明の目的〉 産業上の利用分野 本発明は高張力鋼材の接合に供せられ、しかも、少なく
とも80kll’mm2程度の引張り強さを持つ高張力
鋼材用溶接金属に係り、詳しくは、例えば、構造物のΦ
m軽減のために使用される80kQf/llI2級の如
き高張力鋼材を溶接するときに形成され、引張り強度が
80kgf/s’以上の溶接金属であって、溶接後に硬
度軽減のために応力除去焼鈍処理c以下、単にSR処理
という。)を行なったときにほとんどSRぜい化の生じ
ることのない靭性に優れる高張力鋼材用溶接金属に係る
[Detailed Description of the Invention] <Object of the Invention> Industrial Field of Application The present invention is applicable to welding of high-tensile steel materials and has a tensile strength of at least about 80 kll'mm2. In detail, for example, the structure's Φ
It is a weld metal formed when welding high tensile strength steel materials such as 80kQf/llI2 class used for reducing the hardness, and has a tensile strength of 80kgf/s' or more, and is subjected to stress relief annealing to reduce the hardness after welding. Process c will hereinafter be simply referred to as SR processing. ) The present invention relates to a weld metal for high-strength steel that has excellent toughness and hardly causes SR embrittlement when subjected to the following steps.

なお、以下において、バタリング請を溶接金属で形成す
る場合を中心にして説明するが、本発明はこの例に限ら
れるものでなく、溶接接合一般に用いられるものを全て
含む。
Note that although the following description will focus on the case where the buttering joint is formed of welded metal, the present invention is not limited to this example, and includes all welding joints that are generally used.

従来の技術 従来から、80kgf/s2程度鍜鋼の如き高張力鋼材
を一部の構造部材として用いると、圧力容器や海洋構造
物等の重量が大巾に軽減されるため、高張力鋼材を溶接
し、てこれら構造物は構築されている。また、溶接部に
形成される溶接金属は80kl/■2級鍛鋼の母材と同
等の性質を持つことが必要であり、換言すると、80k
gf/w+2級溶接金属になることが要求される。
Conventional technology Conventionally, when high-tensile steel materials such as 80 kgf/s2 steel are used as some structural members, the weight of pressure vessels, offshore structures, etc. is greatly reduced, so high-tensile steel materials have been welded. However, these structures are being constructed. In addition, the weld metal formed in the welded part needs to have properties equivalent to the base metal of 80kl/■2 grade forged steel, in other words, 80kl/■
It is required to be gf/w+2 class weld metal.

また、例えば、サブマージアーク溶接(以下、SJVと
いう。)等のアーク溶接により形成される溶接金属のう
ちで、80kgL′m1級の溶接金属の主組成は重量%
でC0,05〜0.12%、Si 0120〜0.50
%、Mn 1,2〜1.9%、P 00015%以下、
So、oio%以下、Ni 1.0〜3.0%、Cr 
0.4〜1.0%、Mo 0.2〜0.8%ならびにO
0125〜0.0(3%を含んで、残余が実質的にFe
から成っている。すなわち、溶接金属中に、C,cr、
 MO等の強化元素を所定範囲含まれていると、例えば
80kgf/w2程度の引張り強度が保持できる。
For example, among weld metals formed by arc welding such as submerged arc welding (hereinafter referred to as SJV), the main composition of 80 kg L'm1 class weld metal is % by weight.
C0.05~0.12%, Si 0.120~0.50
%, Mn 1.2-1.9%, P 00015% or less,
So, oio% or less, Ni 1.0-3.0%, Cr
0.4-1.0%, Mo 0.2-0.8% and O
0125~0.0 (including 3%, the remainder is substantially Fe)
It consists of That is, in the weld metal, C, cr,
When a reinforcing element such as MO is contained in a predetermined range, a tensile strength of about 80 kgf/w2 can be maintained, for example.

しかし、この組成の溶接金属であると、溶接後にSR処
理を行なうと、38割れや、SRぜい化が発生して好ま
しくない。このため、特開昭60−68176号公報に
示される如く、^張力鋳鋼や鍛鋼等の鋼材の溶接には、
それに先立って、鋼材の先端に38割れ感受性の低い材
料Cバタリング1を形成し、その侵、このバタリング層
に5Rffi理を行なわずに、そのまま突合せて開先を
形成し、この開先を本溶接する方法や、高張力鋼材を上
記組成の溶接金属を形成して突合せ溶接し、溶接したま
まで使用することが行なわれている。
However, when a weld metal with this composition is subjected to SR treatment after welding, 38 cracks and SR embrittlement occur, which is not preferable. For this reason, as shown in Japanese Patent Application Laid-Open No. 60-68176, when welding steel materials such as tension cast steel and forged steel,
Prior to that, a material C buttering 1 with low susceptibility to 38 cracking is formed on the tip of the steel material, and a groove is formed by butting the buttering layer as it is without performing 5Rffi processing, and this groove is welded for the main welding. Another method is to form a weld metal of the above-mentioned composition from high-strength steel, butt weld it, and then use the welded material as it is.

ところが、80kgr/nlc級の高張力鋼、なかでも
、w4鋼等のときは、溶接時に生成する熱影響部が顕著
に硬化し、海洋構造物では、耐海水腐食疲労性を高める
ためには溶接部の硬さを制限する必要があり、溶接後に
はどうしてもSR処理が必要である。
However, in the case of 80kgr/NLC class high-strength steel, especially W4 steel, the heat affected zone generated during welding becomes noticeably hardened, and in offshore structures, welding is required to improve seawater corrosion fatigue resistance. It is necessary to limit the hardness of the part, and SR treatment is absolutely necessary after welding.

t ’l f) も、第3図は80k(ilz’1lt
l12級のwItJ4を溶接しl;ときに、この溶接に
より生成する熱影響部の最高硬さと溶接入熱量との関係
を示すグラフであり、X印は溶接したまま、O印は溶接
後にSR処理したものを示す。この第3図から明らかな
如く、50X103 ジュール/cm以下の入熱のとき
は、溶接のままでは硬さII Rc37〜40を示すが
、590℃×5時間程度のSR処理によって硬さはII
 、C≦32に低下し、硬度を制限するためにはSR処
理がどうしても必要になることがわかる。
t'l f) is also 80k(ilz'1lt) in Figure 3.
This is a graph showing the relationship between the maximum hardness of the heat affected zone generated by this welding and the welding heat input when welding l12 class WItJ4. Show what you did. As is clear from Fig. 3, when the heat input is 50 x 103 Joules/cm or less, the hardness as welded is II Rc37-40, but the hardness increases to II after SR treatment at 590°C for about 5 hours.
, C≦32, indicating that SR treatment is absolutely necessary to limit the hardness.

しかしながら、このように溶接後にSR処理すると、溶
接部の溶接金属が上記組成であるため、5RtFい化が
発生し、健全な継手が得られない。
However, when SR treatment is performed after welding in this manner, since the weld metal in the welded portion has the above composition, 5RtF corrosion occurs and a sound joint cannot be obtained.

発明が解決しようとする問題点 本発明は上記欠点の解決を目的とし、具体的には、例え
ば%80kgft’r1m2級鍛鋼の如き高張力鋼材を
一部の構造部材として組込んで構造物等を溶接により構
築するときに、この溶接に先立って高張力鋼材側の開先
に80klJlz’1lDI2級溶接金属から成るバタ
リング層を形成してから5R9a理すると、このバタリ
ング■にSRぜい性が生じるCと、これに対し、バタリ
ング調形成後にSR処理を省略すると、このときに高強
度鋼材側に生成する熱影響部の硬度が80k(if/■
2級鍜鋼であ鍛鋼、必要以上に高くなり、靭性も損なわ
れること等の問題点を解決することを目的とする。
Problems to be Solved by the Invention The purpose of the present invention is to solve the above-mentioned drawbacks. Specifically, the present invention aims to solve the above-mentioned drawbacks. When constructing by welding, if a battering layer made of 80klJlz'1lDI 2nd grade weld metal is formed on the groove on the high-tensile steel side prior to welding and then treated with 5R9a, SR brittleness will occur in the battering. On the other hand, if the SR treatment is omitted after the battering-like formation, the hardness of the heat affected zone generated on the high-strength steel side will be 80k (if/■
The purpose is to solve the problems of second-grade cold steel and forged steel, which are unnecessarily expensive and suffer from loss of toughness.

〈発明の構成〉 問題点を解決するための 手段ならびにその作用 すなわち、本発明に係る溶接金属は、重量%でC0.0
1〜0.05%、Si 0.15%以下、Mn 1.2
〜1.9%、P 0.015%以下、S 0.010%
以下、Ni1.0〜3.0%、Or 0.4〜1.0%
、Mo 0.2〜0.8%ムらびにO0.015%以下
を含んで、残部が実質的にFeから成ることを特徴とす
る。
<Structure of the Invention> Means for solving the problem and its operation, that is, the weld metal according to the present invention has a C0.0 by weight%.
1 to 0.05%, Si 0.15% or less, Mn 1.2
~1.9%, P 0.015% or less, S 0.010%
Below, Ni 1.0-3.0%, Or 0.4-1.0%
, 0.2 to 0.8% of Mo, and 0.015% or less of O, with the remainder essentially consisting of Fe.

そこで、これら手段たる構成ならひにその作用につい−
C興体的に説明すると、次の通りである。
Therefore, if we consider the configuration of these means, let us explain their effects.
To explain it in a simple way, it is as follows.

まず、本発明者等は、80klJfz’ai2程度の鍛
鋼を被溶接材として、この開先に種々の組成のワイヤを
用いてサブマージアーク溶接によって種々の組成の溶接
金属を形成し、その上で、80klJfz’w12程度
の引張り強度を示す溶接金属について、その化学組成と
Sl′Iぜい化との関係を求めたところ、ケイ素(Si
)ならびに酸素(01がSi 0.15%以下、O0.
015%以下の関係にあると、他の1ヒ学組成が上記の
如< 、G 0.05〜0.12%、Mn1.2〜1.
9%、P 0.015%以下、Mn 1.2〜1.9%
、So、oio%以下、Ni 1.0〜3.0%、Cr
 0.4〜1.0%、Mo0.2〜0.8%の範囲であ
っても、SRぜい化しないことがわかった。更に、この
場合、溶接法は上記の如くサブマージアーク溶接法のほ
かにSMAW%GMAWの如く何れのアーク溶接であっ
ても溶接金属が上記範囲内にあると、SRぜい化しない
ことがわかった。
First, the present inventors used forged steel of about 80klJfz'ai2 as a material to be welded, and formed weld metals of various compositions by submerged arc welding using wires of various compositions on the groove, and then, When we investigated the relationship between the chemical composition and Sl'I embrittlement for weld metals exhibiting a tensile strength of approximately 80klJfz'w12, we found that silicon (Si)
) and oxygen (01 is Si 0.15% or less, O0.
0.015% or less, the other chemical compositions are as above, G 0.05-0.12%, Mn 1.2-1.
9%, P 0.015% or less, Mn 1.2-1.9%
, So, oio% or less, Ni 1.0-3.0%, Cr
It was found that SR embrittlement does not occur even in the ranges of 0.4 to 1.0% and Mo of 0.2 to 0.8%. Furthermore, in this case, it was found that SR embrittlement does not occur if the weld metal is within the above range, regardless of whether the welding method is submerged arc welding as described above or arc welding such as SMAW% GMAW. .

また、この組成の溶接金属によってバタリング層を形成
し、このバタリング層を介して例えば80に’Jf/’
m1程度の圧延材に溶接することもできる。このときに
溶接金属が上記組成から成っているとC頂が高いことも
あって、バタリング層に生じる熱影響部が硬化する。そ
こで、この点について本発明者等lf研究したところ、
上記組成の溶接金属中CGのみを0.01〜0.05%
にすると、硬度I+、。≦39になることがわかった。
In addition, a buttering layer is formed with the weld metal having this composition, and 'Jf/'
It is also possible to weld to a rolled material of about m1. At this time, if the weld metal has the above-mentioned composition, the heat-affected zone generated in the battering layer is hardened, partly because the C peak is high. Therefore, the inventors conducted research on this point and found that
Only 0.01 to 0.05% CG in the weld metal with the above composition
The hardness is I+. It was found that ≦39.

従って、溶接時には、この溶接に先立って上記組成の溶
接金属をバタリング層として形成し、例えば、80kg
r/a’程度の鍛鋼なその俊、例えば、80kqL’1
m’級の圧延鋼に溶接するときには、溶接金属と略々同
じ組成のワイヤや、従来例のワイヤ等の溶接材料を使用
して本溶接すると、この溶接により組立てられた構造物
はSR処理することなくそのままで実用に供することが
でき、溶接金属の高靭性は維持される。また、この本溶
接のときにバタリング雪に熱影響部が形成されるが、バ
タリング層の溶接金属ではCが0.01〜0.05%の
範囲に調整されているために、上記の如く硬さはIl、
c≦32に保持できる。
Therefore, at the time of welding, a weld metal having the above composition is formed as a battering layer prior to welding, and for example, 80 kg of weld metal is formed as a buttering layer.
R/A' grade forged steel, for example, 80kqL'1
When welding to m' class rolled steel, if the actual welding is performed using a welding material such as a wire with approximately the same composition as the weld metal or conventional wire, the structure assembled by this welding will be subjected to SR treatment. The weld metal can be put to practical use as is, and the high toughness of the weld metal is maintained. Additionally, a heat-affected zone is formed in the buttering snow during this main welding, but since the C content in the weld metal of the buttering layer is adjusted to a range of 0.01 to 0.05%, it becomes hard as described above. Saha Il,
It can be maintained at c≦32.

すなわち、第1図ならびに第2図に示す如く、80kl
JL’1ll12程度の鍛鋼を使用する構造物を溶接に
よって組立てる場合には、第1図に示す如く、予め鍜!
11の先端に、G 0.01〜0.05%、Si 0.
15%以下、Mn 1.2〜1.9%、P 00015
%以下、So、oio%以下、Ni 1.0〜3.0%
、Or 0.4〜1.0%、Mo 0.2〜0.8%、
00.015%以下を含んで残余が実質的に[eから成
る組成の溶接金属をバタリング層2として形成してから
、所望形状に開先加工を行なって、その俊、SR処理を
する。その後、第2図に示す如く、他の部材3と突合せ
て開先を形成し、溶接を実施し、上記組成の溶接金属又
は先に示した従来例の80kl/lllm2程度の組成
の溶接金属を形成すると、溶接のままで使用ずれば、溶
接部の硬化層はなく、かつ高靭性の溶接金属が得られる
That is, as shown in Figures 1 and 2, 80kl
When assembling a structure using forged steel of approximately JL'1ll12 by welding, as shown in Fig. 1, weld the forged steel in advance.
At the tip of No. 11, G 0.01-0.05%, Si 0.
15% or less, Mn 1.2-1.9%, P 00015
% or less, So, oio% or less, Ni 1.0-3.0%
, Or 0.4-1.0%, Mo 0.2-0.8%,
A weld metal having a composition of 0.015% or less and the remainder substantially consisting of [e] is formed as the buttering layer 2, and then a groove is formed into a desired shape and then subjected to SR treatment. Thereafter, as shown in FIG. 2, a groove is formed by butting with another member 3, and welding is carried out to produce a weld metal with the above composition or a weld metal with a composition of about 80 kl/llm2 in the conventional example shown earlier. Once formed, if used as welded, there is no hardened layer in the welded area and a highly tough weld metal can be obtained.

実  施  例 次に実施例について説明する。Example Next, an example will be described.

まず、80kQ r/MA2級m tJ4 (7) ’
lc Ga ニ第1 表ニ示す組成のバッタリング層を
溶接入熱30X103 ジュールt’crAの条件で形
成し、その後、SR処理(590℃x5時間)をした。
First, 80kQ r/MA2 class m tJ4 (7)'
A battering layer having the composition shown in Table 1 was formed under conditions of welding heat input of 30 x 103 Joules t'crA, and then subjected to SR treatment (590°C x 5 hours).

その侵、相手材の8◇kgL’ml12級の圧延鋼との
間でサブマージ突合せ溶接を実施し、バタリング層の硬
さと衝撃試験を行なったとCろ、第2表に示す通りであ
った。
For this reason, submerged butt welding was carried out with the mating material, 8◇kgL'ml class 12 rolled steel, and the hardness and impact tests of the battering layer were conducted, as shown in Table 2.

第1表ならびに第2表において、&1.2ならびに3は
本発明に係る溶接金属によってバッタリング層が形成さ
れたもので、この場合は、 SR処理を行なっても、吸
収エネルギーは高レベルを保持していた。これに対し、
Ha 41iらびに5で示すバッタリング層は比較例で
あって、これら比較例ではSR処理によって吸収エネル
ギーは低下し、靭性が大rlに低下していることがわか
る。
In Tables 1 and 2, &1.2 and 3 have a battering layer formed by the weld metal according to the present invention, and in this case, even after SR treatment, the absorbed energy remains at a high level. Was. In contrast,
The battering layers designated by Ha 41i and 5 are comparative examples, and it can be seen that in these comparative examples, the absorbed energy is lowered by the SR treatment, and the toughness is significantly lowered.

また、本溶接時にはバタリング層に熱影響部が生じるが
この硬さは本発明の場合にはCが低くなっていることし
あって)IRc≦31であった。
Further, during main welding, a heat-affected zone occurs in the battering layer, but the hardness of this zone was IRc≦31 (due to the low C in the case of the present invention).

第1表バタリング層溶接金属組成(%)第2表 バタリ
ング1の硬さと 衝撃吸収エネルギー バタリング溶接入熱30にJ t’ CIハタIJ ン
’j !1sR590℃x5h〈発明の効果〉 以上詳しく説明した通り、本発明に係る溶接金属によっ
てバタリング層を形成し、バタリング層を介して溶接す
ると、Si含有量が0.15%以下、C含有量が0.0
15%以下の如く少量であるため、SR処理を行なって
もこの処理によってSRぜい化が生じない。また、バタ
リング1を介して溶接したのちに、SR処理することな
く、そのまま使用しても、溶接金属中のC含有量が0.
01〜0.05%の節回にあるため、溶接時にバタリン
グ層に生成する熱影響部の硬度が^くならず、耐海水腐
食疲労性などが損なわれることがない。
Table 1 Buttering layer weld metal composition (%) Table 2 Hardness and shock absorption energy of buttering 1 Buttering welding heat input 30 J t' CI Group IJ N'j! 1sR590°C x 5h <Effects of the Invention> As explained in detail above, when a buttering layer is formed using the weld metal according to the present invention and welding is performed through the buttering layer, the Si content is 0.15% or less and the C content is 0. .0
Since the amount is as small as 15% or less, SR embrittlement does not occur even if SR treatment is performed. Further, even if the weld metal is used as it is without SR treatment after welding through the buttering 1, the C content in the weld metal is 0.
01 to 0.05%, the hardness of the heat-affected zone generated in the battering layer during welding does not decrease, and seawater corrosion fatigue resistance is not impaired.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ならびに第2図は本発明に係る溶接金属をバタリ
ング■として介在させて80kaf/s’級鍜鋼を溶接
する際のバタリング■形成工程と開先形成工程の各説明
図で、第3図は80kuf/Xl1m’級鍜鋼を溶接し
たときの入熱量と溶接熱影響部の硬度との関係を示すグ
ラフである。 符号1・・・・・・80klJf/1111’鍜鋼の如
き母材2・・・・・・バタリング層 3・・・・・・相手材
1 and 2 are explanatory diagrams of the battering ■ forming process and the groove forming process when welding 80 kaf/s' class steel by interposing the weld metal according to the present invention as the battering ■. The figure is a graph showing the relationship between the amount of heat input and the hardness of the weld heat affected zone when welding 80 kuf/Xl1 m' class steel. Code 1...80klJf/1111' Base material such as steel 2...Buttering layer 3...Mating material

Claims (1)

【特許請求の範囲】[Claims] 重量%でC0.01〜0.05%、Si0.15%以下
、Mn1.2〜1.9%、P0.015%以下、S0.
010%以下、Ni1.0〜3.0%、Cr0.4〜1
.0%、Mo0.2〜0.8%ならびにO0.015%
以下を含んで、残部が実質的にFeから成ることを特徴
とする高張力鋼材の接合に供せられ、しかも、少なくと
も80kgf/mm^2程度の引張り強さを持つ高張力
鋼材用溶接金属。
In weight%, C0.01 to 0.05%, Si 0.15% or less, Mn 1.2 to 1.9%, P 0.015% or less, S0.
010% or less, Ni1.0-3.0%, Cr0.4-1
.. 0%, Mo0.2-0.8% and O0.015%
A welding metal for high-strength steel materials, which is used for joining high-strength steel materials, and has a tensile strength of at least about 80 kgf/mm^2, comprising:
JP27914986A 1986-11-21 1986-11-21 Weld metal for high tensile steel products Pending JPS63132794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27914986A JPS63132794A (en) 1986-11-21 1986-11-21 Weld metal for high tensile steel products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27914986A JPS63132794A (en) 1986-11-21 1986-11-21 Weld metal for high tensile steel products

Publications (1)

Publication Number Publication Date
JPS63132794A true JPS63132794A (en) 1988-06-04

Family

ID=17607128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27914986A Pending JPS63132794A (en) 1986-11-21 1986-11-21 Weld metal for high tensile steel products

Country Status (1)

Country Link
JP (1) JPS63132794A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008137042A (en) * 2006-12-04 2008-06-19 Hitachi Ltd Turbine rotor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008137042A (en) * 2006-12-04 2008-06-19 Hitachi Ltd Turbine rotor

Similar Documents

Publication Publication Date Title
JP2002115032A (en) Ultrahigh strength steel pipe having seam weld zone with excellent cold-crack resistance, and its manufacturing method
JPH11320097A (en) Weld joint structure of high cr ferrite steel
EP0812646B1 (en) Method of manufacturing large diameter welded steel pipe having high strength and toughness
EP3140074A1 (en) Metal cored welding electrode
JPH10324950A (en) High-strength welded steel structure, and its manufacture
JPH05261568A (en) Production of clad steel pipe
JPH11104865A (en) Welding and welding structure
JP2002226947A (en) Martensitic stainless steel welded joint having excellent strain aging resistance
JPS63132794A (en) Weld metal for high tensile steel products
JP6829111B2 (en) Filling material for TIG welding
JPS63157795A (en) Wire for high tensile steel
JP2002263883A (en) Coated electrode for low alloy heat resistance steel
JP2000288728A (en) High fatigue strength welded joint
JP4127993B2 (en) Submerged arc welded joint
JPH07246481A (en) Production of high strength clad steel sheet
JPH07290245A (en) Production of large-diameter clad steel pipe
JP3541778B2 (en) Welded steel pipe with excellent carbon dioxide corrosion resistance and hydrogen sulfide cracking resistance
JPH0195895A (en) Stainless steel wire for gas shielded arc welding
JP3165902B2 (en) High Cr steel welding method
JPH0890239A (en) Seam welding method of clad steel tube
JPS63140776A (en) Welding method for structure with high tensile steel as one part of structure member
KR102043520B1 (en) Welded joint having excellent ctod properties
JPH02200394A (en) Welding method for stainless steel or nickel-based alloy and carbon steel
JP2002248569A (en) Manufacturing method for steel welding joint for welding structure excellent in fatigue strength
JPH06262388A (en) Coated electrode for heat-resisting steel of high cr ferrite