JPS6313268A - Battery active material - Google Patents

Battery active material

Info

Publication number
JPS6313268A
JPS6313268A JP61158549A JP15854986A JPS6313268A JP S6313268 A JPS6313268 A JP S6313268A JP 61158549 A JP61158549 A JP 61158549A JP 15854986 A JP15854986 A JP 15854986A JP S6313268 A JPS6313268 A JP S6313268A
Authority
JP
Japan
Prior art keywords
active material
decomposition temperature
battery active
heat decomposition
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61158549A
Other languages
Japanese (ja)
Inventor
Satoru Koyama
哲 小山
Tadayuki Maeda
前田 忠行
Kazuo Okamura
和夫 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP61158549A priority Critical patent/JPS6313268A/en
Publication of JPS6313268A publication Critical patent/JPS6313268A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a battery active material having high discharge voltage by specifying heat decomposition temperature in an atmosphere of nitrogen of a product obtaied by fluorinating carbon material. CONSTITUTION:Graphite fluoride obtained by fluorinating carbon material is decomposed by heat in an atmosphere of nitrogen. Heat decomposition temperature of graphite fluoride as a battery active material is specified to 595 deg.C or less. Graphite fluoride having a heat decomposition temperature exceeding 595 deg.C shows low discharge voltage and is not practical as battery active material. The lower limit of heat decomposition temperature is about 530 deg.C. The heat decomposition temperature of graphite fluoride depends on carbon materials and production conditions, and can adequately be selected. However, regardless of carbon materials and production conditions, graphite fluoride whose heat decomposition temperature is 595 deg.C shows high discharge voltage.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明はある特定のフッ化黒鉛よりなる放電特性の改良
された電池活物質に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a battery active material with improved discharge characteristics, which is made of a specific fluorinated graphite.

[従来の技術] 黒鉛をフッ素化してえられるフッ化黒鉛として、今まで
式(CP)nで表されるものおよび式(C2F)11で
表されるものが確認されており、またそれらは両者を含
む組成物の形態で存在することも知られている。しかし
、その実態は今だ不明な点が多い。このフッ素黒鉛が電
池活物質としてすぐれた特性を有することはつぎに述べ
るようによく知られている。
[Prior Art] As fluorinated graphite obtained by fluorinating graphite, those represented by formula (CP)n and that represented by formula (C2F)11 have been confirmed so far, and both of them are It is also known to exist in the form of compositions containing. However, there are still many aspects of the situation that are unclear. It is well known that this fluorine graphite has excellent properties as a battery active material, as described below.

たとえば特公昭48−25585公報には、電池の正極
活物質として固体状のフッ化黒鉛(CFx)n (ただ
し0.5≦X≦1)、とくにXが1または1に近いフッ
化黒鉛を用いることにより、活物質としての利用率が高
く、電圧の平坦性にすぐれ、かつ保存寿命の良好な高エ
ネルギー密度の一次電池を与えることが記載されている
For example, Japanese Patent Publication No. 48-25585 states that solid fluorinated graphite (CFx) n (however, 0.5≦X≦1), especially fluorinated graphite with X of 1 or close to 1, is used as the positive electrode active material of a battery. It is described that this provides a high energy density primary battery that has a high utilization rate as an active material, excellent voltage flatness, and a good shelf life.

また特開昭53−102893号公報には、前記式(C
: F)nで表される新規フッ化黒鉛(以下、単に(C
2F)nという)およびその製法が記載されており、こ
の(C2F)nは600℃のフッ素雰囲気下加熱処理を
行なってもフッ素の増加が認められないものであって、
この新規(C2F)nが電池活物質として用いられるこ
とも示唆されている。
Furthermore, in Japanese Patent Application Laid-open No. 53-102893, the formula (C
: F) New fluorinated graphite represented by n (hereinafter simply referred to as (C
2F)n) and its manufacturing method are described, and this (C2F)n shows no increase in fluorine even after heat treatment in a fluorine atmosphere at 600°C.
It has also been suggested that this new (C2F)n can be used as a battery active material.

また特開昭55−28248号公報において、該(C2
P)nが前記式(CF) nで表されるフッ素黒鉛(以
下、単に(CF)nという)よりも高い放電電位を示す
ことが記載されている。
Furthermore, in Japanese Patent Application Laid-open No. 55-28248, the (C2
It is described that P)n exhibits a higher discharge potential than fluorine graphite (hereinafter simply referred to as (CF)n) represented by the formula (CF)n.

さらに特開昭57−84570号公報には(CF)nと
(C! F)nを混合して電池の正極活物質として用い
ることにより、(CP)nの問題点である放電初期にお
ける電圧の一時的な低下が改善されることが提案されて
おり、また特開昭58−18468号公報は人造黒鉛を
フッ素と反応させてえられる(C2P)nを主成分とす
る電池活物質に関するもので、そこには好ましい態様と
して原料として人造黒鉛を生成物の重量増加がなくなる
までフッ素と反応させてえられる(C2P)nを主成分
とする電池活物質が記載されており、それが高い放電電
位を示すことが明らかにされている。
Furthermore, Japanese Patent Application Laid-Open No. 57-84570 discloses that by mixing (CF)n and (C! It has been proposed that temporary deterioration can be improved, and Japanese Patent Application Laid-Open No. 18468/1983 relates to a battery active material whose main component is (C2P)n, which is obtained by reacting artificial graphite with fluorine. , which describes a preferred embodiment of a battery active material whose main component is (C2P)n, which is obtained by reacting artificial graphite as a raw material with fluorine until there is no increase in the weight of the product, and which has a high discharge potential. It has been revealed that this shows that

[発明が解決しようとする問題点] 本発明者らは、より高い放電電位をもつ電池活物質をう
るべく、これらフッ化黒鉛の生成反応について各種の研
究を行なったところ、炭素原料のフッ素化反応の生成物
の窒素雰囲気下における熱分解温度が低いほど高い放電
電位を示すという意外な事実を見出し、本発明を完成す
るに至った。
[Problems to be Solved by the Invention] In order to obtain a battery active material with a higher discharge potential, the present inventors conducted various studies on the formation reactions of these fluorinated graphites, and found that the fluorination of carbon raw materials The inventors have discovered the surprising fact that the lower the thermal decomposition temperature of the reaction product in a nitrogen atmosphere, the higher the discharge potential, leading to the completion of the present invention.

[問題点を解決するための手段] 本発明は、炭素材料をフッ素化してえられるフッ化黒鉛
であって、窒素雰囲気下での熱分解温度が595°C以
下の範囲にあることを特徴とする電池活物質に関する。
[Means for Solving the Problems] The present invention is a fluorinated graphite obtained by fluorinating a carbon material, which is characterized by having a thermal decomposition temperature in a range of 595°C or less in a nitrogen atmosphere. This invention relates to battery active materials.

[作用および好ましい実施態様] フッ化黒鉛は窒素中での熱により熱分解(熱分解温度は
通常600℃以上)する。その反応はつぎの反応式(1
)、(2に従う。
[Function and preferred embodiments] Fluorinated graphite is thermally decomposed by heat in nitrogen (thermal decomposition temperature is usually 600° C. or higher). The reaction is expressed by the following reaction formula (1
), (follows 2.

%式%(1) これらの式から明らかなように、フッ化黒鉛の熱分解時
には低分子量のフルオロカーボンガスが揮散するため重
量減少を呈す。実際の測定には熱重責分析法(TG法)
が用いられる。TG法でえられる結果(TG曲線)は昇
温速度および周囲雰囲気により微妙に変化する。
% formula % (1) As is clear from these formulas, when fluorinated graphite is thermally decomposed, low molecular weight fluorocarbon gas is volatilized, resulting in weight loss. Thermal stress analysis method (TG method) is used for actual measurement.
is used. The results obtained by the TG method (TG curve) vary slightly depending on the temperature increase rate and the surrounding atmosphere.

本発明でいう熱分解温度は、窒素雰囲気下に昇温温度1
0℃/winの条件で測定したときの値である。TG法
における熱分解温度は、70曲線の傾きが極小(負に最
大)となるときの温度であり、換言すればTG曲線の一
次微分曲線のピーク位置(下に凸)の温度である。
The thermal decomposition temperature in the present invention is a heating temperature of 1
This is the value when measured under the condition of 0°C/win. The thermal decomposition temperature in the TG method is the temperature at which the slope of the 70 curve becomes minimum (maximum negative), in other words, it is the temperature at the peak position (convex downward) of the first-order differential curve of the TG curve.

熱分解温度が低いほど放電電圧が高くなる理由について
は明らかではないが、熱分解温度が低いことはフッ化黒
鉛の結晶構造がより不安定であることを示し、その不安
定さがより高い放電電圧を与えているものと考えられる
It is not clear why the lower the pyrolysis temperature, the higher the discharge voltage. However, a lower pyrolysis temperature indicates that the crystal structure of fluorinated graphite is more unstable, and the instability leads to a higher discharge voltage. It is thought that voltage is being applied.

本発明の電池活物質の熱分解温度は595℃以下でなけ
ればならない。それ以上の熱分解温度を有するフッ化黒
鉛は放電電圧が低く実用的でない。一方、下限は特に限
定されないが、概ね530℃程度である。
The thermal decomposition temperature of the battery active material of the present invention must be 595°C or lower. Fluorinated graphite having a thermal decomposition temperature higher than this has a low discharge voltage and is not practical. On the other hand, the lower limit is not particularly limited, but is approximately 530°C.

フッ化黒鉛の熱分解温度は炭素材料、製造条件により大
きく異なり、各炭素材料により適宜それらを選定するこ
とが好ましい。しかしながら、どのような炭素材料や製
造条件を採用したとしても、熱分解温度が595℃以下
であれば高い放電電圧を示す。
The thermal decomposition temperature of fluorinated graphite varies greatly depending on the carbon material and manufacturing conditions, and it is preferable to select it appropriately depending on each carbon material. However, no matter what carbon material or manufacturing conditions are used, if the thermal decomposition temperature is 595° C. or lower, a high discharge voltage will be exhibited.

本発明の電池活物質は、(CF)nまたは(C2P)n
のいずれであってもよい。また(C2P)nの生成時に
は(CF)nの副生がみられるが、このような(CP)
nと(C2F)nの混合物も本発明の電池活物質に含ま
れる。
The battery active material of the present invention is (CF)n or (C2P)n
It may be either. Also, when (C2P)n is produced, (CF)n is a by-product, but such (CP)
A mixture of n and (C2F)n is also included in the battery active material of the present invention.

フッ素の含を量としては40〜64%(重量%、以下同
様)が好ましい。フッ素含有量が少なくなると通常放電
容量が小さくなり、好ましくない。そのようなものは、
たとえばフッ素化反応の初期にえられるフッ化黒鉛にみ
られる。40%という下限は放電電圧との関係では重要
な限界ではないが、一般に前記のごとく放電容量が小さ
くなったり、未反応の炭素材料が残存したりしているた
め好ましくない。
The content of fluorine is preferably 40 to 64% (by weight, hereinafter the same). When the fluorine content decreases, the discharge capacity usually decreases, which is not preferable. Such things are
For example, it can be seen in fluorinated graphite obtained at the beginning of a fluorination reaction. Although the lower limit of 40% is not an important limit in relation to the discharge voltage, it is generally not preferable because the discharge capacity becomes small and unreacted carbon material remains as described above.

上限の64%は炭素材料とフッ素の反応における限界の
フッ素含有量であり、通常これ以上のフッ素含有ff1
(CP)nはえられない。(CP)nの組威武から算出
されるフッ素含有量は61.27%であるが、それ以上
の値かえられるのは(CP)n粒子表面にCF3やCF
2などが存在するためであると考えられている。
The upper limit of 64% is the limit fluorine content in the reaction between carbon materials and fluorine, and normally fluorine containing ff1 is higher than this.
(CP)n cannot be obtained. The fluorine content calculated from the group weight of (CP)n is 61.27%, but the values higher than that are CF3 and CF on the surface of (CP)n particles.
It is thought that this is due to the existence of 2 etc.

原料として用いる炭素材料は特に限定されず、たとえば
黒鉛、石油コークスなどがあげられる。
The carbon material used as a raw material is not particularly limited, and examples include graphite and petroleum coke.

本発明の電池活物質は通常、原料炭素をフッ素ガス(必
要に応じてフッ素ガスは希釈ガスと混合して用いられる
)によりフッ素化して製造されるが、とくにこれに制限
されない。
The battery active material of the present invention is usually produced by fluorinating raw material carbon with fluorine gas (fluorine gas is mixed with diluent gas if necessary), but is not particularly limited thereto.

フッ素ガスまたはフッ素ガスと希釈ガスとの混合ガスは
、フッ素ガスの分圧が0.1〜1 atllとなるよう
に反応器に室温で導入され、温度を室温から徐々に上昇
し、目的とする反応温度すなわち300〜500℃、好
ましくは300〜450℃に維持する。または予め原料
炭素を反応温度にまで昇温しでおき、フッ素ガスを導入
してもよく、炭素材料の性質に応じて適宜決定される。
Fluorine gas or a mixed gas of fluorine gas and diluent gas is introduced into the reactor at room temperature so that the partial pressure of fluorine gas is 0.1 to 1 atll, and the temperature is gradually raised from room temperature until the desired temperature is reached. The reaction temperature is maintained at 300-500°C, preferably 300-450°C. Alternatively, the raw material carbon may be heated to the reaction temperature in advance and fluorine gas may be introduced, which is determined as appropriate depending on the properties of the carbon material.

原料炭素は通常反応温度で脱気し、水分を除去しておく
ことが好ましい。
The raw material carbon is preferably degassed at a normal reaction temperature to remove moisture.

フッ素ガスと混合する希釈ガスとしてはフッ素および原
料炭素と反応しないガスを用いる。
As the diluent gas to be mixed with the fluorine gas, a gas that does not react with fluorine or raw carbon is used.

具体例としては、たとえばチッ素ガス、パーフルオロカ
ーボン、希ガスなどがあげられる。
Specific examples include nitrogen gas, perfluorocarbon, rare gas, and the like.

本発明の電池活物質にバインダ、導電材を配合して電極
材かえられる。それらの配合割合は、フッ化黒鉛10部
(重量部、以下同様)、バインダ1〜4部、導電材0.
5〜2部であるのが好ましい。
The electrode material can be changed by adding a binder and a conductive material to the battery active material of the present invention. Their compounding ratio is 10 parts of fluorinated graphite (by weight, the same applies hereinafter), 1 to 4 parts of binder, and 0.5 parts of conductive material.
Preferably it is 5 to 2 parts.

バインダとしては、たとえばポリテトラフルオロエチレ
ン(PTFE)などがあげられ、導電材としてはたとえ
ばアセチレンブラック、ケッチェンブラックなどの高電
気伝導性のカーボンブラックあるいは天然黒鉛などがあ
げられる。
Examples of the binder include polytetrafluoroethylene (PTFE), and examples of the conductive material include highly electrically conductive carbon black such as acetylene black and Ketjen black, or natural graphite.

本発明の電池活物質に用い°るばあい、本発明の電池活
物質を正極とし、負極にたとえばリチウム、マグネシウ
ム、アルミニウムを単独またはこれらを主成分とする合
金の形で用いることが好ましい。電解質としては用いる
負極の種類にもよるが、通常非水系を用いる。
When used in the battery active material of the present invention, it is preferable to use the battery active material of the present invention as a positive electrode and, for example, as a negative electrode, using lithium, magnesium, or aluminum alone or in the form of an alloy containing these as main components. Although it depends on the type of negative electrode used as the electrolyte, a non-aqueous electrolyte is usually used.

つぎに実施例をあげて本発明の電池活物質を説明するが
、本発明はかかる実施例のみに限定されるものではない
Next, the battery active material of the present invention will be explained with reference to Examples, but the present invention is not limited to these Examples.

実施例1 人造黒鉛を反応器に入れ反応温度で30分間脱気して水
分を除去したのち、室温に冷却した。
Example 1 Artificial graphite was placed in a reactor and degassed at reaction temperature for 30 minutes to remove moisture, and then cooled to room temperature.

ついでフッ素ガスを1aUで反応器に導入し、380℃
まで昇温しで18時間反応せしめた。生成物は黒褐色の
粉末状であり、そのフッ素含有量は52.9%であった
。このものを粉末X線回折法によって分析したところ、
(001)面の回折角2θ(以下、単に2θという)に
おいて10.54度にピークが現れた。フッ素含有量と
20から、生成物は(C2P)nと(CF)nとの混合
物と考えられる。このものの熱分解温度は590℃であ
った。
Fluorine gas was then introduced into the reactor at 1 aU and heated to 380°C.
The temperature was raised to 100°C, and the reaction was continued for 18 hours. The product was a dark brown powder with a fluorine content of 52.9%. When this material was analyzed by powder X-ray diffraction method,
A peak appeared at a diffraction angle of 2θ (hereinafter simply referred to as 2θ) of the (001) plane at 10.54 degrees. Based on the fluorine content and 20, the product is considered to be a mixture of (C2P)n and (CF)n. The thermal decomposition temperature of this product was 590°C.

ついでこの生成物10部、PTFE3部およびアセチレ
ンブラック1部を充分混練してニッケル網上にプレスし
、表面! 1.57 cjの正極を作製した。負極とし
てはリチウムブロックから切り出してニッケル網で保持
したものを用い、電解質には1モル/gのホウフッ化リ
チウムのγ−ブチロラクトン溶液を用いた。放電電圧の
測定は25℃にてIOKΩの定抵抗放電で行なった。え
られた端子電圧の経時変化を第1図に示す。放電には電
池活物質50mgを用いた。
Next, 10 parts of this product, 3 parts of PTFE, and 1 part of acetylene black were thoroughly kneaded and pressed onto a nickel screen, and the surface! A positive electrode of 1.57 cj was produced. The negative electrode was cut from a lithium block and held in a nickel net, and the electrolyte was a 1 mol/g γ-butyrolactone solution of lithium fluoroborate. The discharge voltage was measured at 25° C. by constant resistance discharge of IOKΩ. Figure 1 shows the change in terminal voltage obtained over time. 50 mg of battery active material was used for discharging.

比較例1 反応を90時間続けたほかは実施例1と同様にして人造
黒鉛をフッ素化した。生成物は灰褐色の粉末状であり、
フッ素含有量は54.5%であった。2θは0.89で
あり、(C2F)nと(CF) nの混合物であった。
Comparative Example 1 Artificial graphite was fluorinated in the same manner as in Example 1, except that the reaction was continued for 90 hours. The product is a gray-brown powder;
The fluorine content was 54.5%. The 2θ was 0.89, and it was a mixture of (C2F)n and (CF)n.

このものの熱分解温度は600℃であった。The thermal decomposition temperature of this product was 600°C.

ついでこの生成物を用い実施例1と同様にして電池を作
製し、端子電圧の経時変化を測定した。結果を第1表に
示す。
A battery was then produced using this product in the same manner as in Example 1, and the change in terminal voltage over time was measured. The results are shown in Table 1.

実施例2〜4および比較例2〜4 第1表に示す炭素材料および反応条件を採用したほかは
実施例1と同様にしてフッ素化反応を行なった。各生成
物の性質を第1表に示す(実施例1および比較例1の結
果も示しである)。
Examples 2 to 4 and Comparative Examples 2 to 4 Fluorination reactions were carried out in the same manner as in Example 1, except that the carbon materials and reaction conditions shown in Table 1 were used. The properties of each product are shown in Table 1 (the results of Example 1 and Comparative Example 1 are also shown).

さらにえられた生成物を用い実施例1と同様にして電池
を作製し、端子電圧の経時変化を測定した。結果を第2
図に示す。
Furthermore, a battery was produced using the obtained product in the same manner as in Example 1, and the change in terminal voltage over time was measured. Second result
As shown in the figure.

[以下余白コ [発明の効果] 本発明の電池活物質を用いるときは、放電電圧のより高
い電池を提供することができる。
[See below for margins] [Effects of the Invention] When the battery active material of the present invention is used, a battery with higher discharge voltage can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1および比較例1でそれぞれえられた電
池活物質を用いた電池の端子電圧の経時変化を示すグラ
フ、第2図は実施例2〜4および比較例2〜4でそれぞ
れえられた電池活物質を用いた電池の端子電圧の経時変
化を示すグラフである。 ボデデデ(〉) (”)         (’J         C
IJボデデ三(〉) 手続補正書印発) 昭和61年9月1日
FIG. 1 is a graph showing changes over time in terminal voltage of batteries using the battery active materials obtained in Example 1 and Comparative Example 1, respectively. 3 is a graph showing changes over time in terminal voltage of a battery using the obtained battery active material. Bodedede (〉) (”) ('J C
IJ Bodede 3 (〉) Procedural amendment signed) September 1, 1986

Claims (1)

【特許請求の範囲】 1 炭素材料をフッ素でフッ素化してえられるフッ化黒
鉛であって、窒素雰囲気下での熱分解温度が595℃以
下の範囲にあることを特徴とする電池活物質。 2 フッ素含有量が40〜64重量%である特許請求の
範囲第1項記載の電池活物質。
[Scope of Claims] 1. A battery active material which is fluorinated graphite obtained by fluorinating a carbon material with fluorine, and which has a thermal decomposition temperature in a range of 595° C. or lower in a nitrogen atmosphere. 2. The battery active material according to claim 1, which has a fluorine content of 40 to 64% by weight.
JP61158549A 1986-07-04 1986-07-04 Battery active material Pending JPS6313268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61158549A JPS6313268A (en) 1986-07-04 1986-07-04 Battery active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61158549A JPS6313268A (en) 1986-07-04 1986-07-04 Battery active material

Publications (1)

Publication Number Publication Date
JPS6313268A true JPS6313268A (en) 1988-01-20

Family

ID=15674133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61158549A Pending JPS6313268A (en) 1986-07-04 1986-07-04 Battery active material

Country Status (1)

Country Link
JP (1) JPS6313268A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009512133A (en) * 2005-10-05 2009-03-19 カリフォルニア インスティテュート オブ テクノロジー Partially fluorinated graphite as an electrode material
WO2011010416A1 (en) * 2009-07-21 2011-01-27 パナソニック株式会社 Lithium primary battery
US20120077090A1 (en) * 2010-09-28 2012-03-29 Daikin Industries, Ltd. Positive electrode active material for lithium primary cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5887766A (en) * 1981-11-17 1983-05-25 Matsushita Electric Ind Co Ltd Manufacture of organic electrolyte battery
JPS61116759A (en) * 1984-11-12 1986-06-04 Nobuatsu Watanabe Active material for battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5887766A (en) * 1981-11-17 1983-05-25 Matsushita Electric Ind Co Ltd Manufacture of organic electrolyte battery
JPS61116759A (en) * 1984-11-12 1986-06-04 Nobuatsu Watanabe Active material for battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009512133A (en) * 2005-10-05 2009-03-19 カリフォルニア インスティテュート オブ テクノロジー Partially fluorinated graphite as an electrode material
WO2011010416A1 (en) * 2009-07-21 2011-01-27 パナソニック株式会社 Lithium primary battery
JP2011044420A (en) * 2009-07-21 2011-03-03 Panasonic Corp Lithium primary battery
US20120077090A1 (en) * 2010-09-28 2012-03-29 Daikin Industries, Ltd. Positive electrode active material for lithium primary cell

Similar Documents

Publication Publication Date Title
EP0184679B1 (en) Process for producing a graphite fluoride for use in an electrochemical cell
US20100288970A1 (en) Negative electrode material for nonaqueous electrolyte secondary battery, making method and lithium ion secondary battery
US20100243951A1 (en) Negative electrode material for nonaqueous electrolyte secondary battery, making method and lithium ion secondary battery
US4681823A (en) Lithium/fluorinated carbon battery with no voltage delay
JP5212241B2 (en) Non-aqueous electrolyte and lithium secondary battery
EP1873847A1 (en) Cathode active material and process for producing the same
JP5768629B2 (en) Cathode active material for lithium primary battery
US4684591A (en) Active materials for batteries
US4737423A (en) Cathode active material for metal of CFX battery
JPS6313268A (en) Battery active material
US4686161A (en) Method of inhibiting voltage suppression lithium/fluorinated carbon batteries
US4765968A (en) Fluorinated carbon composition for use in fabricating a Li/CFx battery cathode
US5871864A (en) Lithium secondary cells and methods for preparing active materials for negative electrodes
JPH0221099B2 (en)
KR101690562B1 (en) Pitch controled molecular weight for Battery anode material and method of thereof
JPH0251220B2 (en)
EP0142113A2 (en) Active material for batteries
JPS5861562A (en) Production method of anode active material for cell
JPS6127064A (en) Active material for battery
JP2000012020A (en) Carbon material for lithium secondary battery negative electrode
JPS60101869A (en) Active material for battery
JP2000012021A (en) Carbon material for lithium secondary battery negative electrode
JPS6127065A (en) Active material for battery
JPS6028169A (en) Active material of battery
JPS5861563A (en) Production method of anode active material for cell