JPS63132514A - Surface acoustic wave element using high polymer piezoelectric body - Google Patents
Surface acoustic wave element using high polymer piezoelectric bodyInfo
- Publication number
- JPS63132514A JPS63132514A JP61279481A JP27948186A JPS63132514A JP S63132514 A JPS63132514 A JP S63132514A JP 61279481 A JP61279481 A JP 61279481A JP 27948186 A JP27948186 A JP 27948186A JP S63132514 A JPS63132514 A JP S63132514A
- Authority
- JP
- Japan
- Prior art keywords
- electrodes
- surface acoustic
- acoustic wave
- film
- vinylidene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010897 surface acoustic wave method Methods 0.000 title claims abstract description 20
- 229920000642 polymer Polymers 0.000 title abstract description 8
- 229920001577 copolymer Polymers 0.000 claims abstract description 7
- 239000000463 material Substances 0.000 claims description 4
- 238000000465 moulding Methods 0.000 abstract description 6
- -1 vinylidene silicate Chemical compound 0.000 abstract description 4
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 abstract description 3
- 230000005540 biological transmission Effects 0.000 abstract 1
- 239000010408 film Substances 0.000 description 15
- FCYVWWWTHPPJII-UHFFFAOYSA-N 2-methylidenepropanedinitrile Chemical compound N#CC(=C)C#N FCYVWWWTHPPJII-UHFFFAOYSA-N 0.000 description 10
- 238000000034 method Methods 0.000 description 8
- 229920005603 alternating copolymer Polymers 0.000 description 5
- 239000010409 thin film Substances 0.000 description 4
- 150000001993 dienes Chemical class 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 238000012648 alternating copolymerization Methods 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- XJELOQYISYPGDX-UHFFFAOYSA-N ethenyl 2-chloroacetate Chemical compound ClCC(=O)OC=C XJELOQYISYPGDX-UHFFFAOYSA-N 0.000 description 2
- GFJVXXWOPWLRNU-UHFFFAOYSA-N ethenyl formate Chemical compound C=COC=O GFJVXXWOPWLRNU-UHFFFAOYSA-N 0.000 description 2
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- MIZLGWKEZAPEFJ-UHFFFAOYSA-N 1,1,2-trifluoroethene Chemical group FC=C(F)F MIZLGWKEZAPEFJ-UHFFFAOYSA-N 0.000 description 1
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 1
- CISIJYCKDJSTMX-UHFFFAOYSA-N 2,2-dichloroethenylbenzene Chemical compound ClC(Cl)=CC1=CC=CC=C1 CISIJYCKDJSTMX-UHFFFAOYSA-N 0.000 description 1
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- ZBGRMWIREQJHPK-UHFFFAOYSA-N ethenyl 2,2,2-trifluoroacetate Chemical compound FC(F)(F)C(=O)OC=C ZBGRMWIREQJHPK-UHFFFAOYSA-N 0.000 description 1
- ONSHBCMUUXTPOJ-UHFFFAOYSA-N ethenyl 2,2-difluoroacetate Chemical compound FC(F)C(=O)OC=C ONSHBCMUUXTPOJ-UHFFFAOYSA-N 0.000 description 1
- XNOJDQOUSSPETL-UHFFFAOYSA-N ethenyl 2-fluoroacetate Chemical compound FCC(=O)OC=C XNOJDQOUSSPETL-UHFFFAOYSA-N 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical compound FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000007870 radical polymerization initiator Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000000807 solvent casting Methods 0.000 description 1
- KOZCZZVUFDCZGG-UHFFFAOYSA-N vinyl benzoate Chemical compound C=COC(=O)C1=CC=CC=C1 KOZCZZVUFDCZGG-UHFFFAOYSA-N 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、シアン化ビニリデン共重合体を熱エレクトレ
ット化により圧電性を賦与した圧電フィルムの一面に対
を形成する電極を設けた、熱的に安定な高分子圧電体を
用いた弾性表面波素子に関するものである。Detailed Description of the Invention [Industrial Application Field] The present invention is a thermal electret film having a pair of electrodes provided on one surface of a piezoelectric film, which is made by converting vinylidene cyanide copolymer into piezoelectricity. The present invention relates to a surface acoustic wave device using a stable polymer piezoelectric material.
従来、弾性表面波素子としては、LiNbO5、水晶な
どの単結晶、PZTなどの圧電セラミックス、ZnO,
ZnSなどの圧電薄膜を用いたものがある。これらの素
子を用いて、既にTV、FMチューナー、通信機用のフ
ィルタが実用化され、その他遅延線、表面波コンボルバ
、表面波メモリーなど種々のデバイスが検討されている
。Conventionally, surface acoustic wave elements include single crystals such as LiNbO5 and quartz, piezoelectric ceramics such as PZT, ZnO,
Some use piezoelectric thin films such as ZnS. Using these elements, filters for TVs, FM tuners, and communication devices have already been put into practical use, and various other devices such as delay lines, surface wave convolvers, and surface wave memories are being studied.
しかし、これらの無機材料のうち、LiNbO5は圧電
性が高く、信顧性も高いが加工が困難で高価であり、P
AT系圧電セラミンクスは圧電性が高く、安価であるが
、信幀性が低く、加工性が悪い。また圧電薄膜は比較的
安価だが、量産性、信鎖性が劣るなど、各材料に一長一
短がある。However, among these inorganic materials, LiNbO5 has high piezoelectricity and high reliability, but it is difficult to process and expensive, and P
AT-based piezoelectric ceramics have high piezoelectricity and are inexpensive, but have low reliability and poor workability. Piezoelectric thin films are relatively inexpensive, but each material has its advantages and disadvantages, such as poor mass production and reliability.
本発明はかかる既存の無機材料の問題点を解決し、薄膜
化が容易で成形加工性に優れ、透明性が高く柔軟性があ
り、かつ高い圧電性を有する高分子弾性表面波素子を提
供するものである。本材料の応用分野としては、150
℃においても安定な特性を生かした弾性表面波センサー
(温度センサー、圧力センサー等)、医療用超音波トラ
ンスジューサーあるいは、高い透明性を生かした光導波
型弾性表面波デバイス(音響光学素子)などが考えられ
る。The present invention solves the problems of existing inorganic materials and provides a polymeric surface acoustic wave element that can be easily made into a thin film, has excellent moldability, is highly transparent and flexible, and has high piezoelectricity. It is something. There are 150 application fields for this material.
Surface acoustic wave sensors (temperature sensors, pressure sensors, etc.) that take advantage of stable characteristics even at ℃ temperatures, medical ultrasonic transducers, and optical waveguide type surface acoustic wave devices (acousto-optic devices) that take advantage of their high transparency. Conceivable.
すなわち、本発明は、次式で示されるシアン化ビニリデ
ンと、他のビニル化合物、ビニリデン化合物又はジエン
類との共重合体から構成され、N
CH,=C
N
シアン化ビニリデン共重合体の未延伸、または延伸した
フィルム、シートをエレクトレット化して圧電性を賦与
し、圧電フィルムの一面にスパッタリング、蒸着、フォ
トリソ法により電極を形成した、高分子弾性表面波素子
に関する。That is, the present invention is composed of a copolymer of vinylidene cyanide represented by the following formula and another vinyl compound, a vinylidene compound, or a diene; The present invention relates to a polymeric surface acoustic wave element in which a stretched film or sheet is made into an electret to impart piezoelectricity, and an electrode is formed on one surface of the piezoelectric film by sputtering, vapor deposition, or photolithography.
次に本発明について詳細に説明する。本発明において弾
性表面波素子として用いられる高分子化合物はシアン化
ビニリデンと、他のビニル化合物、ビニリデン化合物又
はジエン類との共重合あるいは交互共重合により得られ
るものである。Next, the present invention will be explained in detail. The polymer compound used as the surface acoustic wave device in the present invention is obtained by copolymerization or alternating copolymerization of vinylidene cyanide and other vinyl compounds, vinylidene compounds, or dienes.
他のビニル化合物、ビニリデン化合物又はジエン類とし
ては酢酸ビニル、ギ酸ビニル、クロル酢酸ビニル、モノ
フルオロ酢酸ビニル、ジフルオロ酢酸ビニル、トリフル
オロ酢酸ビニル、スチレン、ジクロロスチレン、アクリ
ル酸及びそのエステル、メタアクリル酸及びそのエステ
ル、ビニルアルコール及びそのエステル、塩化ビニル、
塩化ビニリデン、弗化ビニル、弗化ビニリデン、トリフ
ルオロエチレン、ブタジェンなどが例としてあげられる
。エステル化合物については重合後その一部あるいは全
部について加水分解等の化学変性を行うことも可能であ
る。Other vinyl compounds, vinylidene compounds, or dienes include vinyl acetate, vinyl formate, vinyl chloroacetate, vinyl monofluoroacetate, vinyl difluoroacetate, vinyl trifluoroacetate, styrene, dichlorostyrene, acrylic acid and its esters, and methacrylic acid. and its esters, vinyl alcohol and its esters, vinyl chloride,
Examples include vinylidene chloride, vinyl fluoride, vinylidene fluoride, trifluoroethylene, and butadiene. For ester compounds, it is also possible to chemically modify part or all of them after polymerization, such as hydrolysis.
シアン化ビニリデンと他の七ツマ−の共重合体中におけ
る組成比はモルで0.5:1〜1.5:1、好ましくは
O,a:t〜1.2:1の範囲が用いられ、特に好まし
くは1:1の交互共重合が用いられる。The composition ratio in the copolymer of vinylidene cyanide and other heptamers is from 0.5:1 to 1.5:1 in molar terms, preferably from O, a:t to 1.2:1. , particularly preferably a 1:1 alternating copolymerization is used.
上記単量体の重合は、この種の単重体の重合方法として
知られた方法を用いて行うことができ、ラジカル重合開
始剤例えばα、α′−アゾビスイソブチロニトリルの共
存下又は非共存下に熱を加えることにより重合すること
ができる。The above monomer can be polymerized using a known method for polymerizing this type of monomer, and can be carried out in the presence or absence of a radical polymerization initiator, such as α,α'-azobisisobutyronitrile. Polymerization can be carried out by applying heat in the coexistence of these substances.
これらシアン化ビニリデン共重合体の成形法としてはプ
レス成形法、カレンダー成形法、溶媒キャスト法等が使
用できる。いずれの方法によって得られた成形物も配向
性を高めるために延伸するのが好ましく、この場合の延
伸方法としてはロールやカレンダーによる圧延、延伸装
置を用いて機械的な一軸または二輪方向への延伸を行う
。またインフレーション成形等により成形と同時に延伸
を行って、延伸フィルムを製造することもできる。As a molding method for these vinylidene cyanide copolymers, a press molding method, a calendar molding method, a solvent casting method, etc. can be used. It is preferable to stretch the molded product obtained by either method to improve orientation. In this case, stretching methods include rolling with rolls or calendars, and mechanical stretching in uniaxial or biaxial directions using a stretching device. I do. Further, a stretched film can also be produced by simultaneously stretching the film by inflation molding or the like.
上記成形物に圧電性を賦与するために成形物を所定の温
度に加熱し、そのままの状態で成形物に直流電界もしく
は直流と交流電界を一定時間印加し、しかる後、徐冷ま
たは急冷することによってエレクトレット化を行う。エ
レクトレット化の最適条件は重合体によって異なるが、
結晶性重合体では結晶緩和温度よりも高温で、非品性重
合体では、ガラス転移温度近傍でエレクトレット化する
ことが望ましく、一般的には室温〜250℃、好ましく
は80℃〜180℃の範囲の温度が用いられる。In order to impart piezoelectricity to the molded product, the molded product is heated to a predetermined temperature, a DC electric field or a DC and AC electric field is applied to the molded product for a certain period of time, and then slowly or rapidly cooled. electretization is performed. The optimal conditions for electretization vary depending on the polymer, but
For crystalline polymers, it is desirable to form electrets at a temperature higher than the crystal relaxation temperature, and for non-grade polymers, it is desirable to form electrets near the glass transition temperature, generally in the range of room temperature to 250°C, preferably 80°C to 180°C. temperature is used.
また、電圧印加は、通常の成形物の両面に密着された金
属箔、金属板、導電ペースト、導電性高分子、導電性ゴ
ムあるいは真空蒸着または化学メッキした金属薄膜を電
極として行い、印加電圧は一般的に10kV/cm以上
絶縁破壊を生じない程度の電界強度、好ましくは100
kV/ cs 〜1000kV/ cmであり、処理
時間は特に限定されないが、30分以上処理することが
好適である。In addition, the voltage is applied by using metal foil, metal plate, conductive paste, conductive polymer, conductive rubber, or vacuum-deposited or chemically plated metal thin film as electrodes, which are closely adhered to both sides of the molded product. In general, electric field strength of 10 kV/cm or more does not cause dielectric breakdown, preferably 100 kV/cm or more.
kV/cs to 1000 kV/cm, and the treatment time is not particularly limited, but it is preferable to conduct the treatment for 30 minutes or more.
次に弾性表面波素子を作製するために、圧電成形物の一
面に電極を形成する。Next, in order to produce a surface acoustic wave element, an electrode is formed on one surface of the piezoelectric molding.
素子lは、第1図に示すように、圧電フィルム2の一面
に、一方の電極3.3を所定間隔をおいて列設し、それ
等を発信器5の一方へ接続すると共に、電極3.3の間
隙に他方の電極4,4を列設し、電極3,4が交互に配
設され、電極4.4は接地される。As shown in FIG. 1, the element 1 has one electrode 3.3 arranged in a row at a predetermined interval on one surface of the piezoelectric film 2, and connects them to one side of the transmitter 5. The other electrodes 4, 4 are arranged in a row with a gap of .3, the electrodes 3, 4 are arranged alternately, and the electrode 4.4 is grounded.
第1図は、左方の一組が発信部として作用し、連続する
圧電フィルム2の右方に形成されたもう一方の電極6,
7系が受信部として作用するもので電極6.6、電極7
.7は受信器8に接続される。In FIG. 1, one set on the left acts as a transmitter, and the other set of electrodes 6, formed on the right side of the continuous piezoelectric film 2,
7 system acts as a receiving section, electrode 6.6, electrode 7
.. 7 is connected to receiver 8.
電極の作成は、マスク蒸着、スパッタリング、フォトリ
ソ法などにより行う。電極の周期を°d、弾性表面波の
速度をVとすると励振・される弾性表面波の中心周波数
fは次式で表される。The electrodes are created by mask evaporation, sputtering, photolithography, or the like. When the period of the electrode is d and the velocity of the surface acoustic wave is V, the center frequency f of the excited surface acoustic wave is expressed by the following equation.
f = v / d
一般にfはI MHz〜I GHz、電極3,4及び電
極6,7間の間隙d/2は、1〜O,001mm程度と
される。f = v / d In general, f is I MHz to I GHz, and the gap d/2 between the electrodes 3 and 4 and the electrodes 6 and 7 is about 1 to 0,001 mm.
電極系3,4で形成される発信部で超音波を発信すると
、圧電フィルム2の表面を伝導して、又は、表面波素子
が水中に存在するときは水中を伝播してその反射波が電
極6.7で形成される受信部に伝導して受信される。When an ultrasonic wave is emitted by the transmitter formed by the electrode systems 3 and 4, the reflected wave is transmitted through the surface of the piezoelectric film 2 or propagated through the water when the surface wave element is underwater, and the reflected wave is transmitted to the electrode. 6.7, and is received by the receiving section formed by 6.7.
その際、温度、湿度、水中の溶解物濃度等環境条件によ
って、その伝播速度が変化する。従って、その時間変化
を測定することによって、温度、湿度、濃度等を検出す
ることができる。At that time, the propagation speed changes depending on environmental conditions such as temperature, humidity, and concentration of dissolved substances in water. Therefore, by measuring the change over time, temperature, humidity, concentration, etc. can be detected.
なお、水中に浸漬して濃度等を検出する場合には、第2
図に示すように試料液9が通過するセル10内に素子1
を浸漬すると共に、素子1に対向して反射板11を設置
した構成とする。In addition, when detecting the concentration etc. by immersing it in water, the second
As shown in the figure, an element 1 is placed in a cell 10 through which a sample liquid 9 passes.
is immersed in the element 1, and a reflector 11 is installed opposite the element 1.
シアン化ビニリデンは圧電性が高く、また成形性に優れ
るため、素子の製造が容易で実用性に優れる。Vinylidene cyanide has high piezoelectricity and excellent moldability, so it is easy to manufacture elements and has excellent practicality.
また、シアン化ビニリデンは透明性が高いため、圧電膜
中に光を透過せしめ、電極に高周波を印加することによ
り、光の透過量、偏光量を制御せしめることが可能で光
素子として用いることができる。In addition, vinylidene cyanide is highly transparent, so by transmitting light into the piezoelectric film and applying high frequency to the electrodes, it is possible to control the amount of light transmitted and polarized light, making it possible to use it as an optical element. can.
以下、シアン化ビニリデンと他のモノマーの交互共重合
体を中心に、本発明を実施例によって説明するが、本発
明はこれによってなんら限定されるものではない。EXAMPLES Hereinafter, the present invention will be explained with reference to Examples, focusing on alternating copolymers of vinylidene cyanide and other monomers, but the present invention is not limited thereto.
〈実施例1〉
シアン化ビニリデンと酢酸ビニルの交互共重合体の膜厚
40μmの圧電フィルム2を作成し、このフィルム2上
に第1図に示した形状のすだれ状電極を2M、マスク蒸
着により設ける。作製した弾性表面波素子1の一組の電
極3,4間に、第3図で示したようなバースト波Siを
入力し、地組のすだれ状電極6.7間より伝搬した弾性
表面波Soを検出した。t、は遅延時間である。すだれ
状電極の周期dを0.4.1 、 2 mと変えた時、
発生する弾性表面波の中心周波数、音速を測定した結果
を表1に示す。<Example 1> A piezoelectric film 2 with a thickness of 40 μm made of an alternating copolymer of vinylidene cyanide and vinyl acetate was prepared, and a 2M interdigital electrode having the shape shown in FIG. 1 was formed on this film 2 by mask vapor deposition. establish. A burst wave Si as shown in FIG. 3 is input between a pair of electrodes 3 and 4 of the fabricated surface acoustic wave element 1, and the surface acoustic wave So propagated from between the interdigital electrodes 6 and 7 of the ground assembly is was detected. t is the delay time. When the period d of the interdigital electrodes was changed to 0.4.1 and 2 m,
Table 1 shows the results of measuring the center frequency and sound speed of the generated surface acoustic waves.
表 1
〈実施例2〉
シアン化ビニリデンとギ酸ビニルの交互共重合体の膜厚
40μmの圧電フィルムに実施例1と同様に2組のすだ
れ状電極を設ける。実施例1と同様にすだれ状電極の周
期dを0.4.1. 2mmと変えた時、発生する弾性
表面波の中心周波数、音速を測定した結果を表2に示す
。Table 1 <Example 2> As in Example 1, two sets of interdigital electrodes were provided on a 40 μm thick piezoelectric film made of an alternating copolymer of vinylidene cyanide and vinyl formate. As in Example 1, the period d of the interdigital electrodes was set to 0.4.1. Table 2 shows the results of measuring the center frequency and sound speed of the generated surface acoustic waves when the distance was changed to 2 mm.
表 2
〈実施例3〉
シアン化ビニリデンとクロル酢酸ビニルの交互共重合体
の膜厚40IIIaの圧電フィルムに実施例1と同様に
すだれ状電極を設ける。実施例1と同様にすだれ状電極
の周期dを0.4,1.2mと変えた時、発生する弾性
表面波の中心周波数、音速を測定した結果を表3に示す
。Table 2 <Example 3> In the same manner as in Example 1, interdigital electrodes were provided on a piezoelectric film having a thickness of 40 IIIa made of an alternating copolymer of vinylidene cyanide and vinyl chloroacetate. Table 3 shows the results of measuring the center frequency and sound speed of the generated surface acoustic waves when the period d of the interdigital electrodes was changed to 0.4 and 1.2 m as in Example 1.
表 3
〈実施例4〉
シアン化ビニリデンと安息香酸ビニルの交互共重合体め
膜厚40μ―の圧電フィルムに実施例1と同様にすだれ
状電極を設ける。実施例1と同様にすだれ状電極の周期
dを0.4.1 、 2 taと変えた時、発生する弾
性表面波の中心周波数、音速を測定した結果を表4に示
す。Table 3 <Example 4> As in Example 1, interdigital electrodes were provided on a piezoelectric film coated with an alternating copolymer of vinylidene cyanide and vinyl benzoate and having a thickness of 40 μm. Table 4 shows the results of measuring the center frequency and sound speed of the generated surface acoustic waves when the period d of the interdigital electrodes was changed to 0.4.1 and 2 ta as in Example 1.
表 4Table 4
第1図は本発明素子の一実施例の構成説明図、第2図は
本発明素子により濃度検出を行う場合の検出器断面図、
第3図は送受信信号の波形図である。
l・・・・・・弾性表面波素子、3.4・・・・・・1
組の電極、5・・・・・・発信器、6,7・・・・・・
信組の電極、8・・・・・・受信器。
箋10
算2劇
ノlFIG. 1 is a configuration explanatory diagram of an embodiment of the device of the present invention, and FIG. 2 is a cross-sectional view of a detector when concentration detection is performed by the device of the present invention.
FIG. 3 is a waveform diagram of transmitted and received signals. l...Surface acoustic wave element, 3.4...1
Set of electrodes, 5... Transmitter, 6, 7...
Shingle's electrode, 8...Receiver. Note 10 Arithmetic 2 Drama No.1
Claims (1)
面に対を形成する電極を交互に設けた高分子圧電体を用
いた弾性表面波素子。A surface acoustic wave element using a polymeric piezoelectric material in which electrodes forming pairs are alternately provided on one surface of a piezoelectric film made of vinylidene cyanide copolymer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61279481A JPS63132514A (en) | 1986-11-21 | 1986-11-21 | Surface acoustic wave element using high polymer piezoelectric body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61279481A JPS63132514A (en) | 1986-11-21 | 1986-11-21 | Surface acoustic wave element using high polymer piezoelectric body |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63132514A true JPS63132514A (en) | 1988-06-04 |
Family
ID=17611646
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61279481A Pending JPS63132514A (en) | 1986-11-21 | 1986-11-21 | Surface acoustic wave element using high polymer piezoelectric body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63132514A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5580912A (en) * | 1978-12-14 | 1980-06-18 | Toshiba Corp | Surface wave device |
JPS5669818A (en) * | 1979-11-09 | 1981-06-11 | Mitsubishi Petrochemical Co | High molecular electret element |
-
1986
- 1986-11-21 JP JP61279481A patent/JPS63132514A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5580912A (en) * | 1978-12-14 | 1980-06-18 | Toshiba Corp | Surface wave device |
JPS5669818A (en) * | 1979-11-09 | 1981-06-11 | Mitsubishi Petrochemical Co | High molecular electret element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sessler | Piezoelectricity in polyvinylidenefluoride | |
JP2681032B2 (en) | Ferroelectric polymer single crystal, manufacturing method thereof, and piezoelectric element, pyroelectric element and nonlinear optical element using the same | |
Sussner et al. | Piezoelectric effect in polyvinylidene fluoride at high frequencies | |
JPH0335878B2 (en) | ||
US4591465A (en) | Method of producing polymeric electret element | |
GB2090700A (en) | Piezoelectric flexure element and method of manufacture | |
US8564177B2 (en) | Piezopolymer transducer with matching layer | |
GB1430827A (en) | Electrostatic transducers | |
WO1999017929A1 (en) | Polymeric electrostrictive systems | |
JPS58122790A (en) | Method of producing block of piezoelectric molecular material and block obtained by same method | |
JP2782528B2 (en) | Method of forming organic piezoelectric pyroelectric film | |
KR930009597B1 (en) | Piezoelectric transducer sound generating device and mechanical-electrical transducer | |
US5973438A (en) | Ultrasonic switching device | |
JPS63132514A (en) | Surface acoustic wave element using high polymer piezoelectric body | |
JP3360371B2 (en) | Shear wave vibration element, surface wave piezoelectric element, and ultrasonic transducer | |
JP2537891B2 (en) | Light operation method | |
Seymour et al. | Piezoelectric polymers: direct converters of work to electricity | |
JP2010165770A (en) | Organic piezoelectric element, organic piezoelectric material, ultrasonic vibrator and ultrasonic probe | |
Woodward et al. | Underwater acoustic measurements on polyvinylidene fluoride transducers | |
Omote et al. | Shear piezoelectric properties of vinylidene fluoride trifluoroethylene copolymer, and its application to transverse ultrasonic transducers | |
KR20110128968A (en) | Transparent and directivity-allowed speaker made with cellulose piezo-paper | |
JPS57193199A (en) | Ultrasonic transducer | |
JPS6226240B2 (en) | ||
JPS55151893A (en) | Ultrasonic transducer using high molecular piezoelectric film | |
JP2508274B2 (en) | Piezoelectric converter |