JPS63132199A - Method of processing waste liquor containing fission product - Google Patents

Method of processing waste liquor containing fission product

Info

Publication number
JPS63132199A
JPS63132199A JP27660586A JP27660586A JPS63132199A JP S63132199 A JPS63132199 A JP S63132199A JP 27660586 A JP27660586 A JP 27660586A JP 27660586 A JP27660586 A JP 27660586A JP S63132199 A JPS63132199 A JP S63132199A
Authority
JP
Japan
Prior art keywords
waste liquid
radioactive cesium
waste liquor
processing waste
fission product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27660586A
Other languages
Japanese (ja)
Inventor
清美 船橋
河村 文雄
将省 松田
小森 至
三浦 英一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Ltd
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Plant Technologies Ltd filed Critical Hitachi Ltd
Priority to JP27660586A priority Critical patent/JPS63132199A/en
Publication of JPS63132199A publication Critical patent/JPS63132199A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fertilizers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、核分裂生成物を含有する廃液の処理システム
に係り、特に、再処理プラント廃液の同化前処理に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a treatment system for waste fluids containing nuclear fission products, and in particular to assimilation pretreatment of reprocessing plant waste fluids.

〔従来の技術〕[Conventional technology]

再処理プラントでは、使用済核燃料の再処理に伴い、多
量の核分裂生成物を含む廃液が発生する。
In reprocessing plants, waste fluid containing a large amount of fission products is generated as spent nuclear fuel is reprocessed.

これらの廃液は放射能レベルに応じて、約三つに別けら
れて処理される。すなわち、最もレベルの高いものは、
プラント内に一定期間貯蔵された後、ガラスなど密封性
の高い同化材によって固化される。また、中間のレベル
のものは、濃縮などの操作によって減容された後、セメ
ントやアスファルトによって200Qドラム缶程度の規
模で固化される。また、低レベルのものは、中間レベル
の濃縮時に生成する凝縮水や、作業衣の洗濯廃水などか
らなり、これらは、処理を必要としない程度のレベルで
あるが、念のため凝集沈殿法などにより処理される。こ
の後、海洋に放出される。従って、再処理によって発生
する固体の廃棄物は高レベルと中レベルの同化体である
。このうち、高レベルの同化体は発生量が少ないため、
特殊な放射能のしゃへい容器を必要とするが問題とはな
らない。
These waste liquids are divided into three types and treated depending on their radioactivity levels. That is, the highest level is
After being stored in the plant for a certain period of time, it is solidified using a highly hermetic assimilative material such as glass. In addition, those of intermediate level are reduced in volume through operations such as concentration, and then solidified with cement or asphalt on a scale similar to that of a 200Q drum. In addition, low-level water consists of condensed water generated during intermediate-level concentration and waste water from washing work clothes, etc. These are at a level that does not require treatment, but just in case, coagulation-sedimentation method etc. Processed by It is then released into the ocean. Therefore, the solid waste produced by reprocessing has high and medium levels of assimilate. Among these, high-level assimilates are produced in small amounts, so
A special radioactivity shielding container is required, but this is not a problem.

一方、中レベル固化体は、放射能レベルは低いが。On the other hand, medium-level solidified material has a low radioactivity level.

発生量が多く特殊なしゃへい容器もないため、輸送規準
の表面線量率を満足するように作成されなければならな
い。
Because the amount generated is large and there are no special shielding containers, it must be constructed to meet the surface dose rate of transportation standards.

従って、中レベル廃液中から、表面線量率を増加させる
主要な放射性核種を除去することは、同化体のハンドリ
ング上有効である。
Therefore, removing major radionuclides that increase the surface dose rate from medium-level waste liquid is effective in handling assimilates.

主要な放射性核種のみを選択的に除去する方法には、種
々の方法があるが、核分裂生成物除去の代表的なものと
して特開昭56−79999号公報に記載されているよ
うにフェロシアン化金属化合物添着ゼオライトによる放
射性セシウムの除去方法がある。
There are various methods for selectively removing only major radionuclides, but a typical method for removing fission products is ferrocyanization, as described in Japanese Patent Application Laid-open No. 79999/1983. There is a method for removing radioactive cesium using zeolite impregnated with metal compounds.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術では、単に放射性セシウムなどを特定の吸
着材で除去する方法を示しているにすぎ化するという問
題もあった。また、前段にPHを調整する装置を設置し
、除去性能を安定化させることは従来技術の範囲である
が、装置の設置に伴うコスト高、設置スプースの増大を
伴う。
The above-mentioned conventional technology has the problem that it merely describes a method for removing radioactive cesium and the like using a specific adsorbent. Furthermore, it is within the scope of the prior art to install a device for adjusting the PH in the front stage to stabilize the removal performance, but this involves high costs and an increase in installation space due to the installation of the device.

本発明の目的は、再処理プラントにおける主要な放射性
核種の除去方法、除去装置の設置場所を設置することに
より、表面線量率の低い同化体を作成することにある。
An object of the present invention is to create an assimilate with a low surface dose rate by providing a method for removing major radionuclides in a reprocessing plant and an installation location for a removal device.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、再処理プラントにおいて、表面線量率への
寄与の大きい放射性核種が放射性セシウムであることを
見い出し、この放射性セシウムを、濃縮器の後段に設置
した吸着材により除去し、この後、廃液を固化すること
により達成される。
The above purpose was to discover that radioactive cesium is the radionuclide that makes a large contribution to the surface dose rate in a reprocessing plant, and to remove this radioactive cesium using an adsorbent installed after the concentrator. This is achieved by solidifying.

〔作用〕[Effect]

放射性セシウムの除去用の吸着材を濃縮器の後段に設置
することによって濃縮器の防蝕用のPH調整槽が利用で
きるので、放射性セシウム除去用の吸着材のためのpH
調整槽が不要となる。また、濃縮後の廃液を対象とする
ため、取り扱う廃液量が少なくなり、システムが簡単に
なる。
By installing an adsorbent for removing radioactive cesium after the concentrator, a pH adjustment tank for corrosion protection of the concentrator can be used.
No adjustment tank is required. In addition, since the waste liquid after concentration is targeted, the amount of waste liquid to be handled is reduced and the system becomes simpler.

濃縮後の廃液中から、放射性セシウムが除去可能である
のは、以下の二点の実験事実による。
The fact that radioactive cesium can be removed from the concentrated waste liquid is based on the following two experimental facts.

(1)放射性セシウムが濃縮によって、化学形態が変化
することがないため、吸着材によって効率よく除去でき
る。
(1) The chemical form of radioactive cesium does not change due to concentration, so it can be efficiently removed using an adsorbent.

(2)濃縮廃液中の高濃度の電解質、この場合、硝酸ナ
トリウムの共存下でも、放射性セシウ・ムが除去できる
(2) Radioactive cesium can be removed even in the presence of a highly concentrated electrolyte, in this case sodium nitrate, in the concentrated waste liquid.

[実施例〕 以下5本発明の実施例を図面を用いて具体的に説明する
[Example] Below, five examples of the present invention will be specifically described using the drawings.

図は本発明の廃液の処理システムのフローを示す。図中
で、1は硝酸タンク、2は水酸ナトリウム溶液タンク、
3はPH;111!IIタンク、4は濃縮器。
The figure shows the flow of the waste liquid treatment system of the present invention. In the figure, 1 is a nitric acid tank, 2 is a sodium hydroxide solution tank,
3 is PH; 111! II tank, 4 is concentrator.

5は吸着材充填塔、6はサージタンク、7は固化剤タン
ク、8は混合タンク、9は凝縮器、10゜11はポンプ
、12.13は撹拌器、14〜18はバルブ、20はド
ラム缶である。以下、手順に従って説明する0発生した
廃液は、pH,i1M整タンク3に集められ、撹拌器1
2によって撹拌されながらp H?14!!1が行なわ
れる。pH調整時には、必要に応じ硝酸タンク1からバ
ルブ14を介して硝酸が、または、水酸化ナトリウム溶
液タンクからバルブ15を介して、水酸化ナトリウ11
が供給される。ここで、後段の濃縮器4の防蝕の点から
p H7〜9に調整される。この後、廃液は濃縮器4に
送られ、廃液中の溶解成分(主成分:硝酸す°トリウム
)が20〜30wt%どなるまで約1゜〜10.0倍濃
縮される。この際に発生する水蒸気は、凝縮器9により
水にもどされ、低レベル系へ送られる。濃縮された廃液
は、pH7〜1oとなり、これは、ポンプ11によって
吸着塔5に送られ、放射性セシウムが除去される。ここ
に用いられる吸着材は、モルデナイトおよび、フェロシ
アン化金属化合物添着ゼオライトがある。それぞれの有
効pH範囲は1〜12.2〜1oである。硝酸ナトリウ
ム中からの放射性セシウムの除動効率は、いずれの吸着
材も、99%以上であった。しかしながら、フェロシア
ン化金属化合物添着化合物では6.8 mg−Cs/g
であるのに対して、モルデナイトは、その約1/100
である。以上の点から、モルデナイトは有効pH範囲が
広いため、万一、廃液pHが10以上となった場合でも
放射性セシウムの除去が可能であるが、吸着容量が小さ
いため使用済の吸着材量が増加する。反面、フェロシア
ン化金属化合物添着ゼオライトではpH範囲が狭いが、
使用済の吸着材量は少ない。
5 is an adsorbent packed tower, 6 is a surge tank, 7 is a solidifying agent tank, 8 is a mixing tank, 9 is a condenser, 10゜11 is a pump, 12.13 is an agitator, 14 to 18 are valves, 20 is a drum It is. The generated waste liquid, which will be explained below according to the procedure, is collected in a pH, i1M adjustment tank 3, and a stirrer 1.
pH ? while being stirred by 2. 14! ! 1 is performed. During pH adjustment, nitric acid is supplied from the nitric acid tank 1 via the valve 14, or sodium hydroxide 11 is supplied from the sodium hydroxide solution tank via the valve 15 as necessary.
is supplied. Here, the pH is adjusted to 7 to 9 in order to prevent corrosion of the subsequent concentrator 4. Thereafter, the waste liquid is sent to the concentrator 4, where it is concentrated by about 1° to 10.0 times until the dissolved component (main component: thorium nitrate) in the waste liquid is 20 to 30 wt%. The water vapor generated at this time is returned to water by the condenser 9 and sent to the low level system. The concentrated waste liquid has a pH of 7 to 1o, and is sent to the adsorption tower 5 by the pump 11 to remove radioactive cesium. Adsorbents used here include mordenite and zeolite impregnated with metal ferrocyanide compounds. The effective pH range of each is 1-12.2-1o. The removal efficiency of radioactive cesium from sodium nitrate was 99% or more for all adsorbents. However, 6.8 mg-Cs/g for the metal ferrocyanide compound impregnated compound.
On the other hand, mordenite is about 1/100 of that.
It is. From the above points, mordenite has a wide effective pH range, so it is possible to remove radioactive cesium even if the pH of the waste liquid reaches 10 or higher, but its small adsorption capacity increases the amount of used adsorbent. do. On the other hand, zeolite impregnated with metal ferrocyanide compounds has a narrow pH range;
The amount of used adsorbent is small.

放射性セシウムを除去した廃液は、サージタンりへ送ら
れる。この後、廃液は、バルブ16を介して、混合タン
ク8へ、またセメントなどの固化剤を固化剤タンク7か
ら、バルブ17を介して、同様に混合タンク8へ送る。
The waste liquid from which radioactive cesium has been removed is sent to a surge tank. After this, the waste liquid is sent to the mixing tank 8 via the valve 16, and the solidifying agent, such as cement, is sent from the solidifying agent tank 7 to the mixing tank 8 via the valve 17 as well.

ここで、撹拌器13によって撹拌混合される。混合後、
バルブ18を通し、ドラム缶20に充填されて固化され
る。
Here, the mixture is stirred and mixed by the stirrer 13. After mixing,
It passes through a valve 18, is filled into a drum 20, and is solidified.

使用済の吸着材は、よりレベルの高い廃棄物ともに処理
される。この吸着材の使用量は、濃縮後の廃液水の全セ
シウム濃度は約0 、1 ppmと予想されるので、廃
液100rri’を処理した場合には10gのセシウム
があり、これの除去に必要な吸着材料は、フェロシアン
化金属化合物で約1.5kg、モルデナイトの場合は1
50kgとなり、処理する廃液の量に比べて充分に小さ
い。
The used adsorbent is disposed of along with higher level waste. The total cesium concentration in the waste water after concentration is expected to be approximately 0.1 ppm, so if 100 r. The adsorption material is approximately 1.5 kg of metal ferrocyanide compound, and 1 kg of mordenite.
The weight is 50 kg, which is sufficiently small compared to the amount of waste liquid to be treated.

従って、本実施例によれば、簡単なシステムで。Therefore, according to this embodiment, the system is simple.

かつ、二次廃棄物発生量の少ない方法で表面線量率の低
い同化体を作成できる。
Furthermore, it is possible to create an assimilate with a low surface dose rate using a method that generates little secondary waste.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、簡単なシステムで表面線量率の低い同
化体を作成することができ、固化体のハンドリングが容
易となる。
According to the present invention, an assimilated material with a low surface dose rate can be created using a simple system, and the solidified material can be easily handled.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例のシステムの系統図である。 The figure is a system diagram of a system according to an embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1、核分裂生成物を含有する廃液を濃縮した後、前記廃
液中から放射性セシウムを吸着材によつて除去し、除去
後の廃液を固化剤とともに固化することを特徴とする核
分裂生成物を含有する廃液の処理方法。
1. After concentrating the waste liquid containing nuclear fission products, radioactive cesium is removed from the waste liquid using an adsorbent, and the removed waste liquid is solidified together with a solidifying agent. Containing nuclear fission products How to treat waste liquid.
JP27660586A 1986-11-21 1986-11-21 Method of processing waste liquor containing fission product Pending JPS63132199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27660586A JPS63132199A (en) 1986-11-21 1986-11-21 Method of processing waste liquor containing fission product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27660586A JPS63132199A (en) 1986-11-21 1986-11-21 Method of processing waste liquor containing fission product

Publications (1)

Publication Number Publication Date
JPS63132199A true JPS63132199A (en) 1988-06-04

Family

ID=17571771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27660586A Pending JPS63132199A (en) 1986-11-21 1986-11-21 Method of processing waste liquor containing fission product

Country Status (1)

Country Link
JP (1) JPS63132199A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015001447A (en) * 2013-06-14 2015-01-05 株式会社東芝 Processing system of radioactive cesium contaminated fly ash, and processing method therefor
JP2018017565A (en) * 2016-07-27 2018-02-01 日立Geニュークリア・エナジー株式会社 Processing method and processing unit of radioactive effluent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015001447A (en) * 2013-06-14 2015-01-05 株式会社東芝 Processing system of radioactive cesium contaminated fly ash, and processing method therefor
JP2018017565A (en) * 2016-07-27 2018-02-01 日立Geニュークリア・エナジー株式会社 Processing method and processing unit of radioactive effluent

Similar Documents

Publication Publication Date Title
Harjula et al. Industrial scale removal of cesium with hexacyanoferrate exchanger—process development
EP0909447B1 (en) method for producing nickel or cobalt hexacyanoferrates
Harjula et al. Removal of radioactive cesium from nuclear waste solutions with the transition metal hexacyanoferrate ion exchanger CsTreat
US20180350478A1 (en) Apparatus and method for removal of nuclides from high level liquid wastes
JPS63132199A (en) Method of processing waste liquor containing fission product
Sinha et al. Removal of radioiodine from liquid effluents
WO1998045852A1 (en) Regenerative lomi decontamination process
CN101313367B (en) Fast reduction of iodine species to iodide
JPS60214299A (en) Method of removing radioactivity in radioactive waste liquor
Toropov et al. The use of composite ferrocyanide materials for treatment of high salinity liquid radioactive wastes rich in cesium isotopes
RU2164714C2 (en) Method for extracting mercury from primary circuit of water-cooled nuclear reactor
EP0261662A2 (en) Method for removal of iodine in gas
RU2055814C1 (en) Having nitrogen-bearing components and heavy metals minerals-free sewage purification method
JPS62161097A (en) Method of processing waste liquor containing radioactive nuclear specy
JPS62226000A (en) Radioactive nuclide separation method from ion exchange resin
Mercer Jr The removal of cesium and strontium from condensate wastes with clinoptilolite
OSMANLIOGLU et al. On-Site Decontamination System for Liquid Low Level Radioactive Waste–13010
Tusa et al. Use of highly selective ion exchangers for minimization of waste volumes
JPH0926499A (en) Method for treating decontaminated waste liquid
Koster et al. Treatment and conditioning of liquid low and intermediate level wastes
Rhodes et al. Decontamination of radioactive effluent with clinoptilolite
Crowder Evaporation of Pretreated Hanford Tank AW-101 Sample Mixed with Recycle
Eister The Treatment of Radioactive Wastes
JP2022164323A (en) Radioactive waste liquid treatment method
Brooksbank et al. LOW-RADIOACTIVITY-LEVEL WASTE TREATMENT. PART II. PILOT PLANT DEMONSTRATION OF THE REMOVAL OF ACTIVITY FROM LOW-LEVEL PROCESS WASTES BY A SCAVENGING-PRECIPITATION ION-EXCHANGE PROCESS