JP2022164323A - Radioactive waste liquid treatment method - Google Patents
Radioactive waste liquid treatment method Download PDFInfo
- Publication number
- JP2022164323A JP2022164323A JP2021069743A JP2021069743A JP2022164323A JP 2022164323 A JP2022164323 A JP 2022164323A JP 2021069743 A JP2021069743 A JP 2021069743A JP 2021069743 A JP2021069743 A JP 2021069743A JP 2022164323 A JP2022164323 A JP 2022164323A
- Authority
- JP
- Japan
- Prior art keywords
- water
- concentration
- component
- treated
- coexisting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 83
- 239000002901 radioactive waste Substances 0.000 title claims abstract description 73
- 238000000034 method Methods 0.000 title claims abstract description 69
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 293
- 239000003463 adsorbent Substances 0.000 claims abstract description 143
- 238000001179 sorption measurement Methods 0.000 claims abstract description 58
- 230000002285 radioactive effect Effects 0.000 claims description 30
- 239000010808 liquid waste Substances 0.000 claims description 26
- 239000011734 sodium Substances 0.000 claims description 8
- 229910052712 strontium Inorganic materials 0.000 claims description 8
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 8
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 7
- 229910052708 sodium Inorganic materials 0.000 claims description 7
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 6
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 6
- 229910052791 calcium Inorganic materials 0.000 claims description 6
- 239000011575 calcium Substances 0.000 claims description 6
- 239000000460 chlorine Substances 0.000 claims description 6
- 229910052801 chlorine Inorganic materials 0.000 claims description 6
- 229910052792 caesium Inorganic materials 0.000 claims description 5
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 claims description 5
- 150000001875 compounds Chemical class 0.000 claims description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 4
- 239000012621 metal-organic framework Substances 0.000 claims description 4
- 238000003672 processing method Methods 0.000 claims description 3
- 239000002699 waste material Substances 0.000 claims description 3
- 229910052695 Americium Inorganic materials 0.000 claims description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052685 Curium Inorganic materials 0.000 claims description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 2
- 229910052781 Neptunium Inorganic materials 0.000 claims description 2
- 229910052778 Plutonium Inorganic materials 0.000 claims description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 2
- 229910052770 Uranium Inorganic materials 0.000 claims description 2
- LXQXZNRPTYVCNG-UHFFFAOYSA-N americium atom Chemical compound [Am] LXQXZNRPTYVCNG-UHFFFAOYSA-N 0.000 claims description 2
- 229910052787 antimony Inorganic materials 0.000 claims description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 2
- 229910052788 barium Inorganic materials 0.000 claims description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052794 bromium Inorganic materials 0.000 claims description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 claims description 2
- 229910017052 cobalt Inorganic materials 0.000 claims description 2
- 239000010941 cobalt Substances 0.000 claims description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 2
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 claims description 2
- 239000003456 ion exchange resin Substances 0.000 claims description 2
- 229920003303 ion-exchange polymer Polymers 0.000 claims description 2
- 229910052749 magnesium Inorganic materials 0.000 claims description 2
- 239000011777 magnesium Substances 0.000 claims description 2
- LFNLGNPSGWYGGD-UHFFFAOYSA-N neptunium atom Chemical compound [Np] LFNLGNPSGWYGGD-UHFFFAOYSA-N 0.000 claims description 2
- OYEHPCDNVJXUIW-UHFFFAOYSA-N plutonium atom Chemical compound [Pu] OYEHPCDNVJXUIW-UHFFFAOYSA-N 0.000 claims description 2
- 239000011591 potassium Substances 0.000 claims description 2
- 229910052700 potassium Inorganic materials 0.000 claims description 2
- 229910052707 ruthenium Inorganic materials 0.000 claims description 2
- 229910052713 technetium Inorganic materials 0.000 claims description 2
- GKLVYJBZJHMRIY-UHFFFAOYSA-N technetium atom Chemical compound [Tc] GKLVYJBZJHMRIY-UHFFFAOYSA-N 0.000 claims description 2
- DNYWZCXLKNTFFI-UHFFFAOYSA-N uranium Chemical compound [U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U] DNYWZCXLKNTFFI-UHFFFAOYSA-N 0.000 claims description 2
- 239000010457 zeolite Substances 0.000 claims description 2
- -1 titanate compound Chemical class 0.000 claims 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims 1
- 229910021536 Zeolite Inorganic materials 0.000 claims 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims 1
- 239000000463 material Substances 0.000 description 37
- 238000012546 transfer Methods 0.000 description 23
- 238000012545 processing Methods 0.000 description 17
- 239000000126 substance Substances 0.000 description 14
- 238000010790 dilution Methods 0.000 description 11
- 239000012895 dilution Substances 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000003673 groundwater Substances 0.000 description 5
- 239000000941 radioactive substance Substances 0.000 description 5
- 239000013535 sea water Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical class [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910001423 beryllium ion Inorganic materials 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- UETZVSHORCDDTH-UHFFFAOYSA-N iron(2+);hexacyanide Chemical class [Fe+2].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] UETZVSHORCDDTH-UHFFFAOYSA-N 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 125000005624 silicic acid group Chemical group 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
本発明は、放射性廃液処理方法に係り、更に詳しくは、放射性物質を含む廃液、地下水、海水、雨水などから放射性物質を除去する放射性廃液処理方法に関する。 TECHNICAL FIELD The present invention relates to a radioactive waste liquid treatment method, and more particularly to a radioactive waste liquid treatment method for removing radioactive substances from waste liquid containing radioactive substances, groundwater, seawater, rainwater, and the like.
原子力施設から発生する放射性廃液には、セシウム、ストロンチウムなど様々な放射性核種が含まれている。その放射性核種を除去する方法の一つとして、例えば、放射性核種を吸着除去可能な吸着材に、処理対象となる放射性廃液(以下「処理対象水」という。)を通水する方法がある。この吸着処理で発生した使用済吸着材は、安定であるが放射性廃棄物となるため、使用済吸着材の発生量の低減が望まれている。 Radioactive liquid waste generated from nuclear facilities contains various radionuclides such as cesium and strontium. As one method for removing the radionuclides, for example, there is a method of passing radioactive waste liquid to be treated (hereinafter referred to as "water to be treated") through an adsorbent capable of adsorbing and removing radionuclides. The used adsorbent generated in this adsorption treatment is stable but becomes radioactive waste, and therefore it is desired to reduce the amount of used adsorbent generated.
また、処理対象水には、海水や地下水などに由来する塩分が含まれ、この他にも河川からの淡水、地下水、建造物に用いられるコンクリートに接した水等が含まれる。このため、処理対象水には、除去対象となる放射性物質の他にも、吸着材の吸着性能に影響を及ぼす共存成分が存在する。例えば、ナトリウムイオンやカルシウムイオンなどの共存成分は、吸着材の放射性核種の吸着を妨害して吸着性能を低下させることが知られている。このような吸着性能が十分に得られない条件では、吸着材の吸着除去寿命が短くなり、吸着材の使用量や放射性廃棄物を含む使用済吸着材の増加が懸念される。
また、使用済吸着材の発生量を低減する方法として、処理対象水を処理して発生した使用済吸着材を、別の処理対象水の処理に再利用する方法が提案されている(例えば、特許文献1参照)。
The water to be treated includes salt derived from seawater, groundwater, etc. In addition, freshwater from rivers, groundwater, water in contact with concrete used in buildings, and the like are included. Therefore, in addition to the radioactive substances to be removed, coexisting components that affect the adsorption performance of the adsorbent are present in the water to be treated. For example, coexisting components such as sodium ions and calcium ions are known to interfere with the adsorption of radionuclides by the adsorbent and reduce the adsorption performance. Under such conditions where sufficient adsorption performance cannot be obtained, the adsorption removal life of the adsorbent is shortened, and there is concern about an increase in the amount of adsorbent used and the amount of used adsorbent including radioactive waste.
In addition, as a method of reducing the amount of used adsorbent generated, a method of reusing the used adsorbent generated by treating the water to be treated for treatment of another water to be treated has been proposed (for example, See Patent Document 1).
しかしながら、使用済吸着材を別の処理対象水の処理に再利用する方法では、使用済吸着材の吸着サイトのうち一部には既に物質が吸着しているため、新品の吸着材と比べて物質を吸着できる量が少ない。このため、使用済吸着材は新品吸着材に比べて吸着除去寿命が短くなる。この結果、使用済吸着材の使用量が増加し、放射性廃棄物の発生量が増加してしまう。 However, in the method of reusing the used adsorbent for treatment of another water to be treated, some of the adsorption sites of the used adsorbent already adsorb substances, so compared to a new adsorbent, The amount of substances that can be adsorbed is small. Therefore, the used adsorbent has a shorter adsorption removal life than the new adsorbent. As a result, the amount of used adsorbent used increases, and the amount of radioactive waste generated increases.
上述した問題の解決のため、本発明においては、使用済吸着材の発生量の増加を抑制することが可能な放射性廃液処理方法を提供する。 In order to solve the above-mentioned problems, the present invention provides a radioactive waste liquid treatment method capable of suppressing an increase in the amount of used adsorbent generated.
本発明の放射性廃液処理方法は、第一処理対象水中に含まれる除去対象成分を吸着材に吸着させて使用済吸着材を作製する第一吸着ステップと、第一処理対象水の共存成分濃度よりも高い範囲に、共存成分濃度範囲を設定する濃度範囲設定ステップとを含む。さらに、第二処理対象水の共存成分濃度が共存成分濃度範囲内にあるかどうかを判定する判定ステップと、共存成分濃度が共存成分濃度範囲内の第二処理対象水中に含まれる除去対象成分を、使用済吸着材に吸着させる第二吸着ステップとを含む。 The radioactive waste liquid treatment method of the present invention comprises a first adsorption step of adsorbing a component to be removed contained in the first water to be treated to an adsorbent to prepare a used adsorbent, and a coexisting component concentration of the first water to be treated and a concentration range setting step of setting the coexisting component concentration range to a range as high as possible. Furthermore, a determination step of determining whether the coexisting component concentration of the second treatment target water is within the coexisting component concentration range; and a second adsorption step of adsorbing onto the spent adsorbent.
本発明によれば、使用済吸着材の発生量の増加を抑制することが可能な放射性廃液処理方法を提供することができる。
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
ADVANTAGE OF THE INVENTION According to this invention, the radioactive waste-liquid processing method which can suppress the increase in the generation amount of a used adsorbent can be provided.
Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
以下、本発明に係る実施の形態および実施例について、文章または図面を用いて説明する。ただし、以下の説明において示す構造、材料、その他具体的な各種の構成等は、ここで取り上げた実施の形態や実施例に限定されることはなく、要旨を変更しない範囲で適宜組み合わせや改良が可能である。また、本発明に直接関係のない要素は図示を省略する。 Hereinafter, embodiments and examples according to the present invention will be described with reference to sentences and drawings. However, the structures, materials, and other specific configurations shown in the following description are not limited to the embodiments and examples taken up here, and can be appropriately combined and improved within the scope of not changing the gist. It is possible. Elements that are not directly related to the present invention are omitted from the drawing.
〈放射性廃液処理方法の第1実施形態〉
本実施形態の放射性物質を含む放射性廃液処理方法の第1実施形態について説明する。
図1に、本実施形態に係わる放射性廃液処理方法を表すフローチャートを示す。また、図2に、図1の放射性廃液処理方法に用いる放射性廃液処理システムの概略構成を示す。本実施形態の放射性廃液処理方法は、除去対象成分と共存成分とを含む放射性廃液である第一処理対象水を、吸着材を用いて除去対象成分を除去する処理を行う。さらに、第一処理対象水の放射性廃液処理に用いた使用済吸着材を用いて、除去対象成分と共存成分とを含む放射性廃液である第二処理対象水から、除去対象成分を除去する処理を行う。なお、以下の説明では、第一処理対象水と第二処理対象水とを区別して説明する必要がない場合には、単に処理対象水と表記する。
<First embodiment of radioactive waste liquid treatment method>
A first embodiment of a method for treating radioactive waste liquid containing radioactive substances according to the present embodiment will be described.
FIG. 1 shows a flow chart representing the radioactive waste liquid treatment method according to the present embodiment. 2 shows a schematic configuration of a radioactive waste liquid treatment system used in the radioactive waste liquid treatment method of FIG. In the radioactive waste liquid treatment method of the present embodiment, the first treatment target water, which is a radioactive waste liquid containing the removal target component and the coexisting component, is processed to remove the removal target component using an adsorbent. Furthermore, using the used adsorbent used in the radioactive waste liquid treatment of the first target water, a treatment to remove the components to be removed from the second target water, which is a radioactive waste liquid containing the components to be removed and the coexisting components, is performed. conduct. In addition, in the following description, when it is not necessary to distinguish between the first water to be treated and the second water to be treated, they are simply referred to as water to be treated.
[放射性廃液処理方法の概要]
図1に示すように、放射性廃液処理方法は、まず、吸着材を用いて第一処理対象水を処理し、第一処理対象水中に含まれる除去対象成分を吸着材に吸着させて使用済吸着材を作製する(ステップS1)。次に、第一処理対象水の成分濃度よりも高い範囲に、成分濃度範囲を設定する(ステップS2)。次に、第二処理対象水の成分濃度が設定された成分濃度範囲内にあるかどうかを判定する(ステップS3)。
[Overview of radioactive waste liquid treatment method]
As shown in FIG. 1, the radioactive waste liquid treatment method first treats the first treatment target water using an adsorbent, adsorbs the components to be removed contained in the first treatment target water to the adsorbent, and adsorbs the used adsorption A material is prepared (step S1). Next, the component concentration range is set to a range higher than the component concentration of the first water to be treated (step S2). Next, it is determined whether or not the component concentration of the second water to be treated is within the set component concentration range (step S3).
そして、第二処理対象水の成分濃度が成分濃度範囲内ではない場合(ステップS3のNO)、第二処理対象水の成分濃度を成分濃度範囲内に調整する(ステップS4)。ステップS4での第二処理対象水の調整処理後、ステップS3に戻り、第二処理対象水の除去対象成分および共存成分の濃度を測定し、設定された濃度範囲内かどうかを判定する。
第二処理対象水の成分濃度が成分濃度範囲内の場合(ステップS3のYES)、吸着材を用いて第二処理対象水を処理し、第二処理対象水中に含まれる除去対象成分を使用済吸着材に吸着させる(ステップS5)。
なお、本実施形態において、濃度は、イオン濃度、重量濃度、体積濃度、および、モル濃度のいずれでもよい。
If the component concentration of the second target water is not within the component concentration range (NO in step S3), the component concentration of the second target water is adjusted within the component concentration range (step S4). After adjusting the second water to be treated in step S4, the process returns to step S3 to measure the concentrations of the removal target component and the coexisting component in the second water to be treated and determine whether they are within the set concentration range.
If the component concentration of the second treatment target water is within the component concentration range (YES in step S3), the second treatment target water is treated using the adsorbent, and the removal target component contained in the second treatment target water has been used. It is made to adsorb to the adsorbent (step S5).
In this embodiment, the concentration may be ion concentration, weight concentration, volume concentration, or molar concentration.
[放射性廃液処理システムの概略]
また、図2に示す放射性廃液処理システムは、第一放射性廃液処理設備1と、第二放射性廃液処理設備2とを備える。
第一放射性廃液処理設備1は、処理前の第一処理対象水が調整される第一調整設備10と、第一処理対象水の除去対象成分を処理するための第一処理設備12とを備える。第一処理設備12内には、吸着材が収容される第一吸着材容器13が設けられている。さらに、第一放射性廃液処理設備1は、第一処理設備12での第一処理対象水の処理によって発生する第一処理済水が収容される第一保管容器15を備える。
第一調整設備10と第一処理設備12の第一吸着材容器13とは、第一処理対象水を第一調整設備10から第一吸着材容器13に移送するための第一液送設備11によって接続されている。また、第一吸着材容器13と第一保管容器15とは、第一処理済水を移送する第一送水設備14によって接続されている。このように、第一放射性廃液処理設備1は、第一処理対象水を第一調整設備10と第一処理設備12と第一保管容器15とのそれぞれに通水できるように通水系統が構成されている。
[Overview of radioactive waste liquid treatment system]
The radioactive liquid waste treatment system shown in FIG. 2 also includes a first radioactive liquid
The first radioactive liquid
The
第二放射性廃液処理設備2は、処理前の第二処理対象水が調整される第二調整設備20と、第二処理対象水の除去対象成分を処理するための第二処理設備22とを備える。第二処理設備22内には、吸着材が収容される第二吸着材容器23が設けられている。さらに、第二放射性廃液処理設備2は、第二処理設備22での第二処理対象水の処理によって発生する第二処理済水が収容される第二保管容器25を備える。
第二調整設備20と第二処理設備22の第二吸着材容器23とは、第二処理対象水を第二調整設備20から第二吸着材容器23に移送するための第二液送設備21によって接続されている。また、第二吸着材容器23と第二保管容器25とは、第二処理済水を移送する第二送水設備24によって接続されている。このように、第二放射性廃液処理設備2は、第二処理対象水を第二調整設備20と第二処理設備22と第二保管容器25とのそれぞれに通水できるように通水系統が構成されている。
The second radioactive liquid
The second adjusting
また、図2に示す放射性廃液処理システムは、第一吸着材容器13から第二吸着材容器23に使用済吸着材を移送するための移送設備3を備える。すなわち、放射性廃液処理システムは、移送設備3を通じて、第一処理対象水の処理によって第一吸着材容器13で発生した使用済吸着材を、第二吸着材容器23に移送することができる。これにより、使用済吸着材を第二処理対象水の処理に再度使用することができる。
The radioactive waste liquid treatment system shown in FIG. 2 also includes
なお、図2では、第一処理設備12および第二処理設備22内に1つの第一吸着材容器13および第二吸着材容器23設けられている構成を示しているが、第一処理設備12および第二処理設備22内に設けられる吸着材容器の数は特に限定されず、複数設けられていてもよい。
また、第一液送設備11、第一送水設備14、第二液送設備21、第二送水設備24、および、移送設備3には、図示しないポンプやポンプの制御部が設けられ、制御部によってポンプの駆動を制御することにより廃液や吸着材の移送が可能となる。
Although FIG. 2 shows a configuration in which one first
In addition, the first
第一吸着材容器13には、第一処理対象水に含まれる除去対象成分と共存成分を吸着可能な吸着材が充填されている。よって、第一処理対象水を第一調整設備10から第一吸着材容器13に通水することで、吸着材に除去対象成分を吸着させて除去することができる。
また、第二吸着材容器23には、第一吸着材容器13で使用された使用済吸着材が充填されている。使用済吸着材は、第二処理対象水の共存成分の濃度に依存して、含まれる除去対象成分と共存成分との吸着が可能となる。第二処理対象水の共存成分の濃度が所定値以上であれば、第二処理対象水を第二調整設備20から第二吸着材容器23に通水することで、吸着材に除去対象成分を吸着させて除去することができる。
なお、ここでいう除去対象成分の除去とは処理対象水に含まれる除去対象成分の濃度を一定値まで下げることである。
The
The
It should be noted that the removal of the components to be removed here means lowering the concentration of the components to be removed contained in the water to be treated to a certain value.
[放射性廃液処理の詳細]
次に、上述の図1に示す放射性廃液処理方法、および、図2に示す放射性廃液処理システムを適用する放射性廃液処理の実施形態の詳細について説明する。以下の説明では、上述の図1に示す処理方法のフローチャートに沿って、適宜、図2に示す構成の符号を使用して説明する。
[Details of radioactive liquid waste treatment]
Next, details of an embodiment of radioactive waste liquid treatment to which the radioactive waste liquid treatment method shown in FIG. 1 and the radioactive waste liquid treatment system shown in FIG. 2 are applied will be described. In the following description, along with the flowchart of the processing method shown in FIG. 1, the reference numerals for the configuration shown in FIG. 2 are used as appropriate.
(ステップS1)
まず、図1に示す放射性廃液処理のフローチャートにおいて、ステップS1では、第一処理対象水を吸着材で処理する。
図2の第一放射性廃液処理設備1において、第一処理対象水が第一調整設備10から第一液送設備11を通じて第一処理設備12の第一吸着材容器13に送られる。第一吸着材容器13に送られた第一処理対象水は、第一吸着材容器13内に収納された吸着材と接触する。これにより、第一処理対象水に含まれる除去対象成分が吸着材に吸着される。また、第一処理対象水に含まれる共存成分も吸着材に吸着される。これにより、第一処理対象水から除去対象成分と共存成分とが除去される。
また、この第一処理対象水の吸着処理により、吸着材が除去対象成分と共存成分とを吸着して使用済吸着材となる。除去対象成分と共存成分とが除去された第一処理対象水は、第一送水設備14を通じて第一処理済水の第一保管容器15に送られる。
(Step S1)
First, in the flowchart of the radioactive waste liquid treatment shown in FIG. 1, in step S1, the first water to be treated is treated with an adsorbent.
In the first radioactive waste
Further, by the adsorption treatment of the first water to be treated, the adsorbent adsorbs the components to be removed and the coexisting components to become the used adsorbent. The first water to be treated from which the components to be removed and the coexisting components have been removed is sent to the
処理対象水に含まれる除去対象成分としては、例えば、ストロンチウム、セシウム、コバルト、ヨウ素、アンチモン、ルテニウム、テクネチウム、ウラン、プルトニウム、アメリシウム、キュリウム、および、ネプツニウムなどの放射性物質が挙げられる。 Components to be removed contained in the water to be treated include, for example, radioactive substances such as strontium, cesium, cobalt, iodine, antimony, ruthenium, technetium, uranium, plutonium, americium, curium, and neptunium.
また、共存成分は、上記の除去対象成分とともに第一処理対象水および第二処理対象水に共存する物質であり、例えば、ナトリウム、カリウム、マグネシウム、カルシウム、バリウム、塩素、臭素、硫酸、および、炭酸などが挙げられる。
また、第一処理対象水および第二処理対象水は、除去対象成分および共存成分として同じ元素を含む場合がある。この場合の元素は、放射性同位体を除去対象成分とし、安定同位体を共存成分とする。例えば、ストロンチウムやセシウムの放射性同位体が上述の除去対象成分に含まれ、ストロンチウムやセシウムの安定同位体を共存成分に含まれる。このように、上記除去対象成分として挙げた元素と同じ元素の安定同位体も共存成分に含まれる。
In addition, coexisting components are substances that coexist in the first water to be treated and the second water to be treated together with the above-mentioned components to be removed, such as sodium, potassium, magnesium, calcium, barium, chlorine, bromine, sulfuric acid, and Carbonic acid etc. are mentioned.
Moreover, the first water to be treated and the second water to be treated may contain the same element as the component to be removed and the coexisting component. In this case, the element is a radioactive isotope as a component to be removed and a stable isotope as a coexisting component. For example, radioactive isotopes of strontium and cesium are included in the aforementioned components to be removed, and stable isotopes of strontium and cesium are included in the coexisting components. In this way, the coexisting components include stable isotopes of the same elements as those listed as the components to be removed.
また、吸着材としては、例えば、ケイチタン酸化合物、チタン酸化合物、ゼオライト、フェロシアン酸化合物、金属有機構造体(MOF)化合物、および、イオン交換樹脂など、無機系や有機系の吸着材がある。放射性廃液処理では、除去対象成分にあわせて、適切な吸着材を選択して使用する。例えば、除去対象成分がストロンチウムの場合、ストロンチウムを選択的に吸着するケイチタン酸化合物などの吸着材を用いることが好ましい。 Examples of adsorbents include inorganic and organic adsorbents such as silicotitanate compounds, titanate compounds, zeolites, ferrocyanate compounds, metal organic framework (MOF) compounds, and ion exchange resins. . In the treatment of radioactive liquid waste, an appropriate adsorbent is selected and used according to the component to be removed. For example, when the component to be removed is strontium, it is preferable to use an adsorbent such as a silicotitanate compound that selectively adsorbs strontium.
(ステップS2)
図1の第一処理対象水処理ステップS1の後、ステップS2において使用済吸着材を再利用する際の濃度範囲の設定を行う。ステップS2では、上述のステップS1で処理した第一処理対象水の成分濃度を基に、使用済吸着材を再利用する際の濃度範囲を設定する。
(Step S2)
After the first target water treatment step S1 in FIG. 1, the concentration range for reusing the used adsorbent is set in step S2. In step S2, based on the component concentrations of the first water to be treated treated in step S1, the concentration range for reusing the used adsorbent is set.
ステップS2で設定する濃度範囲は、第一処理対象水の共存成分濃度を基準にして、使用済吸着材を再利用する際の第二処理対象水の共存成分濃度の濃度範囲を設定する。
また、共存成分の濃度範囲を設定するとともに上述のステップS1で処理した第一処理対象水の除去対象成分の濃度を基準にして、使用済吸着材を再利用する際の除去対象成分濃度範囲を設定してもよい。
なお、本実施形態では、共存成分濃度と除去対象成分濃度とを区別して説明する必要がない場合には、単に成分濃度と表記している。例えば、共存成分濃度と除去対象成分濃度とのいずれを用いてもよい場合や、共存成分濃度と除去対象成分濃度との両方を用いる場合に、単に成分濃度と表記している。
The concentration range set in step S2 is based on the coexisting component concentration of the first water to be treated, and sets the concentration range of the coexisting component concentration of the second water to be treated when the used adsorbent is reused.
In addition, the concentration range of the coexisting component is set, and the concentration range of the component to be removed when the used adsorbent is reused is set based on the concentration of the component to be removed in the first water to be treated, which is treated in step S1 described above. May be set.
In the present embodiment, when there is no need to distinguish between coexisting component concentrations and removal target component concentrations, they are simply referred to as component concentrations. For example, when either the coexisting component concentration or the removal target component concentration may be used, or when both the coexisting component concentration and the removal target component concentration are used, the component concentration is simply indicated.
第一処理対象水の除去対象成分および共存成分の濃度は、図2の第一放射性廃液処理設備1に第一処理対象水が輸送される前に第一処理対象水を分析することで求めてもよい。また、第一放射性廃液処理設備1に第一処理対象水が輸送された後、例えば、第一調整設備10に保管されている第一処理対象水をサンプリングし分析することで求めてもよい。
The concentrations of the components to be removed and the coexisting components in the first water to be treated are obtained by analyzing the first water to be treated before the first water to be treated is transported to the first radioactive waste
使用済吸着材を再利用する際の共存成分および除去対象成分の濃度範囲の設定は、次のように行う。
使用済吸着材を再利用する際の共存成分の濃度範囲は、第一処理対象水の共存成分の濃度よりも高い範囲に設定する。また、使用済吸着材を再利用する際の除去対象成分の濃度範囲は、第一処理対象水の除去対象成分の濃度よりも高い範囲に設定する。これにより使用済吸着材は、除去対象成分を吸着していない吸着サイトを活用して、さらに第二処理対象水の除去対象成分を吸着することができる。
The concentration ranges of the coexisting components and the components to be removed when reusing the used adsorbent are set as follows.
The concentration range of the coexisting component when reusing the used adsorbent is set to a range higher than the concentration of the coexisting component in the first water to be treated. Further, the concentration range of the components to be removed when the used adsorbent is reused is set to a range higher than the concentration of the components to be removed in the first water to be treated. As a result, the used adsorbent can further adsorb the components to be removed of the second water to be treated by utilizing the adsorption sites that do not adsorb the components to be removed.
濃度範囲を上記の設定とする理由について、図3を用いて説明する。
図3は、新品の吸着材(以下、新品材とも称する)および使用済の吸着材(以下、使用済材とも称する)の寿命に対する共存成分濃度の影響を示すグラフ(両対数グラフ)の一例である。縦軸は吸着材寿命であり、横軸が処理対象水に含まれる共存成分濃度である。図3に示すグラフでは、処理対象水に含まれる除去対象物をストロンチウム(Sr)、共存成分をナトリウム(Na)、吸着材をケイチタン酸として、除去対象成分濃度が一定の条件で共存成分濃度を変化させた場合の吸着材寿命の評価である。
また、図3では、第一処理対象水を処理する際の吸着材が新品材の場合のグラブを破線で示し、第二処理対象水を処理する際の吸着材が使用済材の場合のグラフを実線で示している。
The reason for setting the density range as described above will be described with reference to FIG.
FIG. 3 is an example of a graph (double logarithmic graph) showing the effect of coexisting component concentration on the service life of a new adsorbent (hereinafter also referred to as a new material) and a used adsorbent (hereinafter also referred to as a used material). be. The vertical axis is the life of the adsorbent, and the horizontal axis is the concentration of coexisting components contained in the water to be treated. In the graph shown in FIG. 3, the substance to be removed contained in the water to be treated is strontium (Sr), the coexisting component is sodium (Na), and the adsorbent is silicic acid. It is an evaluation of the adsorbent life when it is changed.
In addition, in FIG. 3, the graph when the adsorbent when treating the first water to be treated is a new material is shown by a broken line, and the graph when the adsorbent when treating the second water to be treated is a used material is indicated by a solid line.
図3では、第一処理対象水の共存成分濃度が1のときの新品材の寿命を1とする相対値で、吸着材寿命と共存成分濃度とを共に示している。このため、第二処理対象水の共存成分濃度を第一処理対象水の共存成分濃度と等しい条件で運用する場合に、使用済材のグラフの共存成分濃度(横軸)が1となる。
図3の領域Aに示すように、共存成分濃度(横軸)が1に近い場合、すなわち第一処理対象水と第二処理対象水との共存成分濃度が同程度の場合には、使用済材の寿命は新品材の6割程度である。このように、第一処理対象水と第二処理対象水との共存成分濃度が同程度の場合には、使用済材の寿命が新品材に比べて明らかに低下する。
In FIG. 3, both the life of the adsorbent and the concentration of the coexisting component are shown as relative values where the life of the new material is 1 when the concentration of the coexisting component is 1 in the first water to be treated. Therefore, when operating under conditions where the coexisting component concentration of the second water to be treated is equal to the coexisting component concentration of the first water to be treated, the coexisting component concentration (horizontal axis) of the graph for the used wood is 1.
As shown in area A of FIG. 3, when the coexisting component concentration (horizontal axis) is close to 1, that is, when the coexisting component concentrations of the first water to be treated and the second water to be treated are about the same, the used The life of the material is about 60% of that of new material. As described above, when the coexisting component concentrations of the first water to be treated and the second water to be treated are about the same, the life of the used material is obviously shorter than that of the new material.
一方、図3の領域Bに示すように、共存成分濃度が高くなるほど、新品材と使用済材の吸着材寿命の差が小さくなる。これは、処理対象水の共存成分濃度が低い場合には、吸着材と処理対象水の間の吸着反応が化学平衡によって決まるのに対し、処理対象水中の共存成分濃度が増加すると、吸着反応の化学平衡が処理対象水中の成分比によって支配的に決まるためである。このため、使用済吸着材を再利用する際の第二処理対象水の共存成分の濃度範囲は、第一処理対象水の共存成分濃度よりも高い範囲に設定する。好ましくは、使用済吸着材を再利用する際の第二処理対象水の共存成分の濃度範囲は、第一処理対象水の共存成分濃度の2倍以上に設定する。これにより、使用済吸着材の寿命を延ばし、使用済吸着材による放射性廃棄物の増加を抑制することができる。 On the other hand, as shown in region B of FIG. 3, the higher the concentration of the coexisting component, the smaller the difference in the life of the adsorbent between the new material and the used material. When the concentration of coexisting components in the water to be treated is low, the adsorption reaction between the adsorbent and the water to be treated is determined by the chemical equilibrium. This is because the chemical equilibrium is predominantly determined by the component ratio in the water to be treated. Therefore, the concentration range of the coexisting components in the second water to be treated when the used adsorbent is reused is set to a range higher than the concentration of the coexisting components in the first water to be treated. Preferably, the concentration range of the coexisting component in the second water to be treated when the used adsorbent is reused is set to twice or more the concentration of the coexisting component in the first water to be treated. As a result, the life of the used adsorbent can be extended, and an increase in radioactive waste due to the used adsorbent can be suppressed.
また、図3の領域Cに示すように、共存成分の濃度が高すぎる場合、例えば第一処理対象水の共存成分濃度の100倍の場合、吸着材の寿命が100分の1以下と大きく低下してしまい、実用的な吸着材寿命を確保できない。また、図3の領域Cに示すように、共存成分濃度が100倍程度からグラフのマイナスの傾きが大きくなり、共存成分濃度の増加に対する寿命の低下量の比率が大きくなる傾向が得られている。このため、使用済吸着材を再利用する際の共存成分の濃度範囲の上限は、第一処理対象水の共存成分濃度の100倍以下に設定することが好ましい。 Also, as shown in region C of FIG. 3, when the concentration of the coexisting component is too high, for example, when the concentration of the coexisting component is 100 times the concentration of the coexisting component in the first water to be treated, the life of the adsorbent is greatly reduced to 1/100 or less. As a result, a practical adsorbent life cannot be secured. Further, as shown in region C of FIG. 3, the negative slope of the graph increases when the coexisting component concentration is about 100 times higher, and there is a tendency that the ratio of the decrease in life with respect to the increase in the coexisting component concentration increases. . Therefore, it is preferable to set the upper limit of the concentration range of the coexisting component when reusing the used adsorbent to be 100 times or less the concentration of the coexisting component in the first water to be treated.
また、共存成分濃度範囲の設定では、共存成分の種類毎に濃度範囲を設定してもよい。この場合、種類毎の共存成分濃度範囲は、第一処理対象水の種類毎の共存成分濃度よりも高く、第一処理対象水の共存成分濃度の100倍以下の範囲に設定することが好ましい。例えば、共存成分としてナトリウムを含む場合には、共存成分濃度範囲としてナトリウム濃度を25,000ppm以下に設定することが好ましい。また、共存成分としてカルシウムを含む場合には、共存成分濃度範囲としてカルシウム濃度を100ppm以下に設定することが好ましい。さらに、共存成分として塩素を含む場合には、共存成分濃度範囲として塩素濃度を45,000ppm以下に設定することが好ましい。 In setting the coexisting component concentration range, the concentration range may be set for each type of coexisting component. In this case, the coexisting component concentration range for each type is preferably set to a range that is higher than the coexisting component concentration for each type of the first water to be treated and is 100 times or less than the coexisting component concentration of the first water to be treated. For example, when sodium is included as a coexisting component, it is preferable to set the sodium concentration to 25,000 ppm or less as the coexisting component concentration range. Moreover, when calcium is included as a coexisting component, it is preferable to set the calcium concentration to 100 ppm or less as the coexisting component concentration range. Furthermore, when chlorine is included as a coexisting component, it is preferable to set the chlorine concentration to 45,000 ppm or less as the coexisting component concentration range.
(吸着モデル)
共存成分の濃度の上昇によって、使用済材を再利用する際の性能が新品材に近づく理由について説明する。図4に、除去対象成分濃度および共存成分濃度が低い処理対象水(低濃度水)での吸着材への吸着モデルを示す。また、図5に、除去対象成分濃度および共存成分濃度が高い処理対象水(高濃度水)での吸着材への吸着モデルを示す。
(adsorption model)
The reason why the performance of recycled used materials approaches that of new materials by increasing the concentration of coexisting components will be explained. FIG. 4 shows an adsorption model of water to be treated (low-concentration water) having low concentrations of components to be removed and coexisting components. In addition, FIG. 5 shows an adsorption model of water to be treated (high-concentration water) having high concentrations of components to be removed and coexisting components.
なお、以下に説明する吸着モデルでは、使用済材の再利用は、第一処理対象水よりも除去対象成分濃度が高い第二処理対象水を処理することを想定している。さらに、処理対象水は、共存成分濃度が除去対象成分濃度よりも十分に高い。
図4に示すように、新品材30の場合、処理対象水が導入される前は、新品材30の吸着サイト31に除去対象成分も共存成分も吸着されていない。そして、新品材30に処理対象水を接触させることにより、除去対象成分と共存成分とが吸着サイト31に吸着され、吸着サイト31上で吸着物質となる。このとき、低濃度水の処理における吸着は、除去対象成分と共存成分と処理対象水との吸着反応が化学平衡によって決まる。このため、吸着サイト31には、除去対象成分と共存成分とが、除去対象成分濃度および共存成分濃度と吸着材との化学平衡に基づく所定の割合で吸着される。吸着されなかった除去対象成分と共存成分とは、後段の処理設備や保管容器に排出される。
In addition, in the adsorption model described below, it is assumed that the reuse of the used material is to treat the second water to be treated, which has a higher concentration of the components to be removed than the first water to be treated. Furthermore, the water to be treated has a concentration of coexisting components sufficiently higher than the concentration of components to be removed.
As shown in FIG. 4, in the case of the
また、図4に示すように使用済材40を用いる低濃度水の処理では、新品材30と異なり、処理対象水が導入される以前に、低濃度水を処理した際に吸着された吸着物質が吸着サイト41上に存在する。低濃度水では、上記の新品材30の場合と同様に、処理対象水の除去対象成分および共存成分が、吸着材との化学平衡によって所定の割合で吸着サイト41に吸着される。例えば、吸着サイト41上の一部の共存成分が化学平衡に従って処理対象水中の除去対象成分と入れ替わり、除去対象成分が新たに吸着される。また、吸着物質を吸着していない吸着サイト41に、新たに除去対象成分や共存成分が吸着される。吸着サイト41から離脱した共存成分は、吸着されなかった除去対象成分や共存成分と同様に、後段の処理設備や保管容器に排出される。
Also, in the treatment of low-concentration water using the used
しかし、使用済材40の場合、予め吸着サイト41上に除去対象成分が存在し、吸着サイト41上の除去対象成分が新たな除去対象成分の吸着を阻害する。このため、新品材30に比べて吸着量が低下し、後段の処理設備や保管容器に排出される除去対象成分の量が増加しやすい。この結果、使用済材40の寿命は、図3の領域Aに示すように新品材30の6割程度となる。
However, in the case of the used
また、図5に示すように、新品材30を用いた高濃度水の処理では、上述の低濃度水の場合と同様に、除去対象成分と共存成分と処理対象水との吸着反応が化学平衡によって決まる。しかし、処理対象水の除去対象成分および共存成分の濃度が高いため、除去対象成分および共存成分と吸着材との吸着反応が、処理対象水中の除去対象成分や共存成分濃度による影響を強く受ける。このため、図5に示す高濃度水の処理では、図4に示す低濃度水の処理よりも、処理対象水中の除去対象成分の濃度の高さに依存して吸着サイト31上に吸着される除去対象成分の比率が高くなる。
In addition, as shown in FIG. 5, in the treatment of high-concentration water using the
また、使用済材40を用いた高濃度水の処理では、図5に示すように吸着サイト41上に低濃度水を処理した際の除去対象成分や共存成分が存在する。しかし、高濃度水の処理では、処理対象水中の共存成分濃度の増加により、吸着反応の化学平衡に寄与する処理対象水中の共存成分および除去対象成分の割合が、吸着サイト41上の成分の割合よりも多くなる。このため、処理対象水の成分濃度の増加に伴って、吸着サイト41上の一部の共存成分が処理対象水中の除去対象成分と入れ替わる量が増加し、除去対象成分が吸着サイト41に新たに吸着されやすくなる。この結果、図3の領域Bに示すように、処理対象水中の共存成分濃度が増加するほど、吸着反応の化学平衡が処理対象水中の成分濃度に依存し、新品材30と使用済材40との寿命差が小さくなる。
したがって、使用済材40を再利用する場合には、第二処理対象水の共存成分の濃度範囲は高いほうがよく、第一処理対象水の共存成分濃度よりも高い範囲に設定することがよく、さらに2倍以上の高濃度の範囲に設することが好ましい。
Further, in the treatment of high-concentration water using the used
Therefore, when the used
また、第二処理対象水は、共存成分濃度と共に、除去対象成分濃度が、第一処理対象水の除去対象成分濃度よりも高いことが好ましい。上述のように、共存成分濃度が高い場合には、吸着反応が化学平衡が処理対象水の成分濃度依存となるため、共存成分濃度の増加により、使用済材40による除去対象成分の吸着性能を新品材30に近づけることができる。さらに、除去対象成分濃度を増加させることにより、吸着サイト41での共存成分に対する除去対象成分の吸着比率を高めることができる。このため、第二処理対象水の除去対象成分濃度を、第一処理対象水の除去対象成分濃度よりも高くして、使用済材40の除去対象成分の吸着性能を高めることができる。
好ましくは、使用済材40を再利用する場合、第二処理対象水の除去対象成分の濃度範囲は、第一処理対象水の除去対象成分濃度の2倍以上に設定する。
Moreover, it is preferable that the concentration of the coexisting component and the concentration of the component to be removed in the second water to be treated are higher than the concentration of the component to be removed in the first water to be treated. As described above, when the coexisting component concentration is high, the chemical equilibrium of the adsorption reaction depends on the component concentration of the water to be treated. A
Preferably, when the used
さらに好ましくは、第二処理対象水は、共存成分と除去対象成分との合計濃度が、第一処理対象水の共存成分と除去対象成分との合計濃度よりも高いことが好ましい。共存成分と除去対象成分との合計濃度が高いことにより、上述と同様の理由によって使用済材40の除去対象成分の吸着性能をより高めることができる。
好ましくは、使用済材40を再利用する場合、第二処理対象水の共存成分と除去対象成分との合計の濃度範囲は、第一処理対象水の共存成分と除去対象成分との合計濃度の2倍以上に設定する。
More preferably, in the second water to be treated, the total concentration of the coexisting components and the components to be removed is higher than the total concentration of the coexisting components and the components to be removed in the first water to be treated. Due to the high total concentration of the coexisting component and the component to be removed, the ability of the used
Preferably, when the used
なお、使用済材40を再利用する際の第二処理対象水の除去対象成分の濃度範囲の上限については特に問わない。例えば、放射性廃液処理の運用上での実施可能な範囲として、除去対象成分の濃度範囲の上限を、第一処理対象水の除去対象成分の濃度の10000倍以下、好ましくは1000倍以下に設定できる。
また、第一処理対象水および第二処理対象水の除去対象成分濃度は、共存成分濃度よりも低いことが好ましく、除去対象成分濃度は共存成分濃度の1/100程度の十分に低いことが好ましい。
The upper limit of the concentration range of the component to be removed from the second water to be treated when the used
In addition, the concentration of the component to be removed in the first water to be treated and the second water to be treated is preferably lower than the concentration of the coexisting component, and the concentration of the component to be removed is preferably sufficiently low, about 1/100 of the concentration of the coexisting component. .
(ステップS3)
図1の濃度範囲設定ステップS2の後、ステップS3において濃度判定処理を行う。濃度判定処理では、上述のステップS2で設定した共存成分濃度範囲と、第二処理対象水の共存成分の濃度とを比較する。そして、第二処理対象水の共存成分の濃度が、設定した共存成分濃度範囲内かどうかを判定する。
第二処理対象水の共存成分の濃度が共存成分濃度範囲内と判定された場合(ステップS3のYES)、ステップS5に進む。また、第二処理対象水の共存成分の濃度が共存成分濃度範囲外と判定された場合(ステップS3のNO)、ステップS4に進む。
(Step S3)
After the density range setting step S2 in FIG. 1, density determination processing is performed in step S3. In the concentration determination process, the coexisting component concentration range set in step S2 described above is compared with the concentration of the coexisting component in the second water to be treated. Then, it is determined whether or not the concentration of the coexisting component in the second water to be treated is within the set concentration range of the coexisting component.
When it is determined that the concentration of the coexisting component in the second water to be treated is within the coexisting component concentration range (YES in step S3), the process proceeds to step S5. Further, when it is determined that the concentration of the coexisting component in the second water to be treated is outside the coexisting component concentration range (NO in step S3), the process proceeds to step S4.
また、ステップS2で除去対象成分濃度範囲を設定した場合には、上記の共存成分濃度の比較判定と共に、設定した除去対象成分の濃度範囲と、第二処理対象水の除去対象成分の濃度を比較する。そして、第二処理対象水の除去対象成分の濃度が、設定した除去対象成分濃度範囲内かどうかを判定する。
この場合には、第二処理対象水の共存成分濃度および除去対象成分濃度が、いずれも設定した共存成分濃度範囲および除去対象成分濃度範囲内と判定された場合(ステップS3のYES)、ステップS5に進む。また、第二処理対象水の共存成分濃度および除去対象成分濃度において、いずれか一方でも設定された濃度範囲外と判定された場合(ステップS3のNO)、ステップS4に進む。
Further, when the removal target component concentration range is set in step S2, in addition to the comparison determination of the coexisting component concentrations, the set concentration range of the removal target component and the concentration of the removal target component of the second water to be treated are compared. do. Then, it is determined whether or not the concentration of the component to be removed in the second water to be treated is within the set concentration range of the component to be removed.
In this case, if both the coexisting component concentration and the removal target component concentration of the second treatment target water are determined to be within the set coexisting component concentration range and removal target component concentration range (YES in step S3), step S5 proceed to If either one of the coexisting component concentration and the removal target component concentration of the second water to be treated is determined to be outside the set concentration range (NO in step S3), the process proceeds to step S4.
さらに、ステップS2で共存成分と除去対象成分との合計濃度範囲を設定した場合には、上記の共存成分濃度や除去対象成分の比較判定と共に、設定した合計濃度範囲と、第二処理対象水の共存成分と除去対象成分との合計濃度とを比較する。
この場合には、第二処理対象水の共存成分濃度、除去対象成分濃度およびこれらの合計濃度が、設定した除去対象成分濃度範囲、共存成分濃度範囲、および合計濃度範囲内と判定された場合(ステップS3のYES)、ステップS5に進む。また、第二処理対象水のいずれか1以上の上記濃度が、設定された濃度範囲外と判定された場合(ステップS3のNO)、ステップS4に進む。
Furthermore, when the total concentration range of the coexisting component and the removal target component is set in step S2, along with the comparison determination of the coexisting component concentration and the removal target component, the set total concentration range and the second treatment target water The total concentration of the coexisting component and the component to be removed is compared.
In this case, if the coexisting component concentration, the removal target component concentration, and the total concentration of these in the second treatment target water are determined to be within the set removal target component concentration range, coexisting component concentration range, and total concentration range ( YES in step S3), the process proceeds to step S5. Further, when it is determined that the concentration of any one or more of the second water to be treated is out of the set concentration range (NO in step S3), the process proceeds to step S4.
第二処理対象水の除去対象成分および共存成分の濃度は、図2に示す第二放射性廃液処理設備2に第二処理対象水が輸送される前に第二処理対象水を分析することで求めてもよい。また、第二処理対象水の除去対象成分および共存成分の濃度は、第二放射性廃液処理設備2に第二処理対象水が輸送された後、例えば、第二調整設備20に保管されている第二処理対象水をサンプリングし分析することで求めてもよい。
The concentrations of the components to be removed and the coexisting components in the second water to be treated are obtained by analyzing the second water to be treated before the second water to be treated is transported to the second radioactive waste
(ステップS4)
ステップS4では、第二処理対象水の共存成分濃度や除去対象成分濃度が、設定された濃度範囲内になるよう、第二処理対象水を調整する。第二処理対象水の調整では、水質の調整には、水等の混合による希釈や、試薬の添加による濃度調整を行うことができる。第二処理対象水に混合する水としては、例えば、雨水、地下水、および、海水等を用いることができる。また、蒸発や膜分離等の処理を行い、第二処理対象水を濃縮する調整を行うこともできる。
(Step S4)
In step S4, the second water to be treated is adjusted so that the coexisting component concentration and the removal target component concentration of the second water to be treated fall within the set concentration range. In the adjustment of the second water to be treated, the water quality can be adjusted by diluting the water by mixing with water or adjusting the concentration by adding a reagent. As the water to be mixed with the second water to be treated, for example, rainwater, groundwater, and seawater can be used. Further, it is also possible to perform an adjustment of concentrating the second treatment target water by performing a treatment such as evaporation or membrane separation.
ステップS4での第二処理対象水の調整処理後、ステップS3に戻り、第二処理対象水の除去対象成分および共存成分の濃度を測定し、設定された濃度範囲内かどうかを判定する。
調整後の第二処理対象水が設定された濃度範囲内と判定された場合(ステップS3のYES)には、ステップS5に進む。また、調整後の第二処理対象水が設定された濃度範囲外と判定された場合(ステップS3のNO)には、ステップS3で濃度範囲内と判定されるまで、上記ステップS4において第二処理対象水の調整処理を繰り返す。
After adjusting the second water to be treated in step S4, the process returns to step S3 to measure the concentrations of the removal target component and the coexisting component in the second water to be treated and determine whether they are within the set concentration range.
If it is determined that the adjusted second water to be treated is within the set concentration range (YES in step S3), the process proceeds to step S5. Further, when it is determined that the second treatment target water after adjustment is outside the set concentration range (NO in step S3), the second process is performed in step S4 until it is determined that it is within the concentration range in step S3. Repeat the adjustment process for the target water.
(ステップS5)
ステップS5では、設定された濃度範囲内の第二処理対象水を使用済吸着材と接触させ、第二処理対象水に含まれる除去対象成分を使用済吸着材に吸着させる。
(Step S5)
In step S5, the second water to be treated within the set concentration range is brought into contact with the used adsorbent, and the components to be removed contained in the second water to be treated are adsorbed on the used adsorbent.
上述のステップS1において作製された使用済吸着材は、図2に示す第一放射性廃液処理設備1の第一吸着材容器13から移送設備3を通じて、第二放射性廃液処理設備2の第二吸着材容器23に移送される。
そして、第二放射性廃液処理設備2において、第二調整設備20から第二液送設備21を通じて第二処理対象水が第二処理設備22の第二吸着材容器23に送られる。第二吸着材容器23に送られた第二処理対象水は、第二吸着材容器23内に収納された使用済吸着材と接触する。これにより、第二処理対象水中の除去対象成分が、使用済吸着材によって吸着されて除去される。さらに、使用済吸着材は、除去対象成分を吸着することで二次使用済吸着材となる。除去対象成分が除去された第二処理対象水は、第二送水設備24を通じて第二保管容器25に送られる。
The used adsorbent prepared in step S1 described above is transferred from the
Then, in the second radioactive liquid
上述の第二処理対象水の処理で発生した二次使用済吸着材は、放射性廃棄物としてもよく、さらに他の水処理施設に移送して、より高濃度の除去対象成分を含む処理対象水の処理に再利用してもよい。 The secondary used adsorbent generated in the treatment of the second water to be treated described above may be radioactive waste, and may be transferred to another water treatment facility to treat the water to be treated that contains higher concentrations of components to be removed. may be reused for the processing of
上述の放射性廃液の処理方法によれば、使用済吸着材を再利用して放射性廃液を処理する際に、使用済吸着材の除去対象成分の吸着性能の低下を抑制し、使用済吸着材の寿命の低下を抑制することができる。このため、放射性廃液の処理において、運用コストの低減、および放射性廃棄物の発生量の低減が可能となる。 According to the above-described method for treating radioactive waste liquid, when the used adsorbent is reused to treat the radioactive waste liquid, the deterioration of the adsorption performance of the components to be removed of the used adsorbent is suppressed. A decrease in life can be suppressed. Therefore, in the treatment of radioactive liquid waste, it is possible to reduce operating costs and reduce the amount of radioactive waste generated.
〈放射性廃液処理方法の第2実施形態〉
次に、放射性廃液処理方法の第2実施形態について説明する。なお、以下の第2実施形態の説明において、第1実施形形態と同様の処理および構成については、詳細な説明を省略する。
<Second embodiment of radioactive waste liquid treatment method>
Next, a second embodiment of the radioactive waste liquid treatment method will be described. In addition, in the following description of the second embodiment, detailed description of the same processing and configuration as those of the first embodiment will be omitted.
第2実施形態の放射性廃液処理方法は、上述の第1実施形態の放射性廃液処理方法において、ステップS4の第二処理対象水の調整方法が異なる。第2実施形態の放射性廃液処理方法では、ステップS4の第二処理対象水の調整処理において、第二処理対象水に対して、除去対象成分と共存成分とを含む放射性廃液である第三処理対象水を混合する。これにより、設定された濃度範囲内となるように、第二処理対象水の成分濃度を調整する。このため、第二処理対象水の調整以外の処理および構成については、上述の第1実施形態と同様の処理および構成を適用することができる。 The radioactive liquid waste treatment method of the second embodiment differs from the radioactive liquid waste treatment method of the above-described first embodiment in the method of adjusting the second water to be treated in step S4. In the radioactive waste liquid treatment method of the second embodiment, in the adjustment process of the second water to be treated in step S4, the third water to be treated, which is the radioactive waste liquid containing the component to be removed and the coexisting component, is added to the second water to be treated. Mix water. Thereby, the component concentration of the second water to be treated is adjusted so as to be within the set concentration range. For this reason, the same processing and configuration as those of the above-described first embodiment can be applied to the processing and configuration other than the adjustment of the second water to be treated.
図6に、第2実施形態の放射性廃液処理方法に係わる、放射性廃液処理システムの概略構成を示す。図6に示す放射性廃液処理システムは、上述の図2に示す放射性廃液処理システムに加えて、第二処理対象水が保管されている第二調整容器211と、第三処理対象水が保管されている第三調整容器221とを備える。さらに、第二処理対象水に第三処理対象水を混合し、第二処理対象水の成分濃度を調整する第一調整容器201が第二調整設備20内に設けられている。第二調整容器211と第一調整容器201とは第三液送設備212で接続され、第三液送設備212によって第二処理対象水が第一調整容器201に送られる。また、第三調整容器221と第一調整容器201とは第四液送設備222で接続され、第四液送設備222によって第三処理対象水が第一調整容器201に送られる。
FIG. 6 shows a schematic configuration of a radioactive waste liquid treatment system related to the radioactive waste liquid treatment method of the second embodiment. In addition to the radioactive waste liquid treatment system shown in FIG. 2, the radioactive waste liquid treatment system shown in FIG. and a
例えば、放射性廃液処理システムでは、第二調整容器211中の第二処理対象水の除去対象成分および共存成分の濃度を測定し、上述のステップS3の濃度判定処理を行う。そして、第二処理対象水の成分濃度が設定された濃度範囲外と判定された場合(ステップS3のNO)、第二調整容器211から第二処理対象水を第一調整容器201に送るとともに、第三調整容器221から第三処理対象水を第一調整容器201に送る。これにより、第一調整容器201において第二処理対象水に第三処理対象水を混合し、第二処理対象水の成分濃度を調整する(ステップS4)。
For example, in the radioactive waste liquid treatment system, the concentrations of the components to be removed and the coexisting components in the second water to be treated in the
そして、ステップS4での第二処理対象水の調整処理後、ステップS3に戻り、第一調整容器201内の調整済み第二処理対象水の成分濃度を測定し、設定された濃度範囲内かどうかを判定する。調整後の第二処理対象水が設定された濃度範囲内と判定された場合(ステップS3のYES)には、ステップS5に進む。また、調整済み第二処理対象水が設定された濃度範囲外と判定された場合(ステップS3のNO)には、ステップS3で濃度範囲内と判定されるまで、上記の混合処理を繰り返す。
Then, after the adjustment processing of the second water to be treated in step S4, the process returns to step S3 to measure the component concentration of the adjusted second water to be treated in the
なお、第三処理対象水として用いる放射性廃液は、1種類だけでなくてもよい。例えば、第二処理対象水に混合するための複数の放射性廃液を第三処理対象水として準備しておき、必要に応じて第二処理対象水に混合する放射性廃液の種類を選択したり、複数の放射性廃液を混合して第三処理対象水として用いることができる。 It should be noted that the radioactive liquid waste used as the third water to be treated need not be limited to one type. For example, prepare multiple radioactive waste liquids to be mixed with the second water to be treated as the third water to be treated, and select the type of radioactive waste liquid to be mixed with the second water to be treated as needed. can be mixed and used as the third water to be treated.
本実施形態による放射性廃液の処理方法では、第二処理対象水に除去対象成分を含んでいる第三処理対象水を混合する。このため、第二処理対象水に雨水や地下水、海水を混合する調整方法と比べて、放射性廃液の総量を増加させることなく、除去対象成分および共存成分の濃度を調整することができる。したがって、上述の第1実施形態に比べて、より少ない使用済吸着材で第二処理対象水を処理することができ、放射性廃棄物の発生量の低減が可能となる。 In the radioactive liquid waste treatment method according to the present embodiment, the second water to be treated is mixed with the third water to be treated containing the components to be removed. Therefore, compared to the adjustment method of mixing rainwater, groundwater, or seawater with the second treatment target water, the concentrations of the components to be removed and the coexisting components can be adjusted without increasing the total amount of radioactive waste liquid. Therefore, compared with the first embodiment described above, the second treatment target water can be treated with less used adsorbent, and the amount of radioactive waste generated can be reduced.
〈放射性廃液処理方法の第3実施形態〉
次に、放射性廃液処理方法の第3実施形態について説明する。なお、以下の第3実施形態の説明において、第1実施形形態および第2実施形態と同様の処理および構成については、詳細な説明を省略する。
<Third embodiment of radioactive waste liquid treatment method>
Next, a third embodiment of the radioactive waste liquid treatment method will be described. In addition, in the following description of the third embodiment, detailed description of the same processing and configuration as those of the first and second embodiments will be omitted.
第3実施形態の放射性廃液処理方法は、上述の第1実施形態および第2実施形態の放射性廃液処理方法のステップS2の濃度範囲の設定において、処理対象水の共存成分に対する除去対象成分の濃度比[(除去対象成分/共存成分)比]の範囲を設定する。また、ステップS4において、上記除去対象成分の濃度比範囲内となるように、第二処理対象水を調整する。このため、上述の濃度範囲の設定、および、第二処理対象水の調整以外の処理および構成については、上述の第1実施形態と同様の処理および構成を適用することができる。 In the radioactive waste liquid treatment method of the third embodiment, in setting the concentration range in step S2 of the radioactive waste liquid treatment methods of the first and second embodiments, the concentration ratio of the component to be removed to the coexisting component in the water to be treated is Set the range of [(component to be removed/coexisting component) ratio]. Further, in step S4, the second water to be treated is adjusted so that the concentration ratio range of the components to be removed is within the range. Therefore, the same processing and configuration as in the above-described first embodiment can be applied to the setting of the concentration range described above and the processing and configuration other than the adjustment of the second water to be treated.
第3実施形態の放射性廃液処理方法は、まず、ステップS2の濃度範囲の設定において、上述の第1実施形態および第2実施形態と同様に、第一処理対象水の共存成分濃度よりも高い範囲に共存成分濃度範囲を設定する。さらに、ステップS2の濃度範囲の設定として、第一処理対象水の共存成分濃度に対する除去対象成分の濃度比よりも大きい範囲に、除去対象成分の濃度比範囲を設定する。このとき、共存成分濃度や除去対象成分の濃度比範囲とともに、除去対象成分濃度範囲や、共存成分と除去対象成分との合計濃度範囲を設定してもよい。 In the radioactive waste liquid treatment method of the third embodiment, first, in setting the concentration range in step S2, similarly to the above-described first and second embodiments, the range higher than the coexisting component concentration of the first target water Set the coexisting component concentration range to . Furthermore, as the setting of the concentration range in step S2, the concentration ratio range of the removal target component is set to a range larger than the concentration ratio of the removal target component to the concentration of the coexisting component in the first water to be treated. At this time, along with the coexisting component concentration and the concentration ratio range of the removal target component, the removal target component concentration range and the total concentration range of the coexisting component and the removal target component may be set.
次に、ステップS3において、上述のステップS2で設定した共存成分濃度範囲および除去対象成分の濃度比範囲と、第二処理対象水の共存成分濃度および除去対象成分の濃度比とを比較する。このとき、共存成分濃度や除去対象成分の濃度比範囲とともに、除去対象成分濃度範囲や共存成分と除去対象成分との合計濃度範囲を設定している場合には、第二処理対象水のこれらの濃度について比較判定してもよい。
そして、第二処理対象水の成分濃度が全て設定範囲内と判定された場合(ステップS3のYES)、ステップS5に進む。また、第二処理対象水の成分濃度がいずれかの設定範囲外と判定された場合(ステップS3のNO)、ステップS4に進む。
Next, in step S3, the coexisting component concentration range and the concentration ratio range of the removal target component set in step S2 are compared with the coexisting component concentration and the concentration ratio of the removal target component of the second water to be treated. At this time, in addition to the coexisting component concentration and the concentration ratio range of the components to be removed, if the concentration range of the components to be removed and the total concentration range of the coexisting components and the components to be removed are set, these Concentration may be compared and determined.
Then, when it is determined that all the component concentrations of the second water to be treated are within the set range (YES in step S3), the process proceeds to step S5. If it is determined that the component concentration of the second water to be treated is out of any set range (NO in step S3), the process proceeds to step S4.
そして、ステップS4では、第二処理対象水の共存成分濃度と、共存成分に対する除去対象成分の濃度比を調整する。具体的には、第二処理対象水よりも共存成分の濃度が高く、さらに、除去対象成分の濃度比の高い希釈液(例えば、第三処理対象水)を混合することにより、第二処理対象水の共存成分濃度と除去対象成分の濃度比を高くする。 Then, in step S4, the coexisting component concentration of the second water to be treated and the concentration ratio of the removal target component to the coexisting component are adjusted. Specifically, the concentration of the coexisting component is higher than that of the second treatment target water, and furthermore, by mixing a diluted solution (for example, the third treatment target water) with a high concentration ratio of the removal target component, the second treatment target water Increase the concentration ratio of coexisting components in water and components to be removed.
(除去対象成分の濃度比)
第3実施形態において、処理対象水の除去対象成分の濃度比を高くする理由について説明する。
図7に、処理対象水の除去対象成分の濃度比[(除去対象成分/共存成分)比]と、吸着材寿命との関係のグラフを示す。図7は、縦軸が使用済吸着材の寿命を示し、横軸が処理対象水の(除去対象成分/共存成分)比を示している。
図7のグラフに示すように、(除去対象成分/共存成分)比が高くなると、使用済吸着材の寿命が延びる。これは、処理対象水中の除去対象成分の吸着を阻害する共存成分の比率が減るため、吸着材に除去対象成分が吸着されやすくなるためと考えられる。
(Concentration ratio of components to be removed)
The reason for increasing the concentration ratio of the components to be removed in the water to be treated in the third embodiment will be described.
FIG. 7 shows a graph of the relationship between the concentration ratio of the components to be removed in the water to be treated [(component to be removed/coexisting component) ratio] and the lifetime of the adsorbent. In FIG. 7, the vertical axis indicates the life of the used adsorbent, and the horizontal axis indicates the (removal target component/coexisting component) ratio of the water to be treated.
As shown in the graph of FIG. 7, the higher the (component to be removed/coexisting component) ratio, the longer the life of the spent adsorbent. It is considered that this is because the ratio of coexisting components that inhibit the adsorption of the components to be removed in the water to be treated decreases, so that the components to be removed are more likely to be adsorbed by the adsorbent.
次に、図8に、処理対象水の希釈倍率と処理量倍率との関係のグラフを示す。図8は、横軸に調整済み処理対象水の希釈率(倍率)を示し、縦軸に調整済み処理対象水を処理する際に吸着材が吸着する除去対象成分の量(処理量)の倍率を示している。
また、図8において、破線は、希釈率と処理量倍率とが1対1で変化すると仮定した場合のグラフである。例えば、破線で示すグラフは、希釈率を5倍にした際の処理量倍率が5倍となり、希釈率を10倍にした際の処理量倍率が10倍となる場合を想定したグラフである。処理対象水は、(除去対象成分/共存成分)比が高くなるように第三処理対象水で希釈する。このため、この破線で示す直線は、希釈率に比例して増加する(除去対象成分/共存成分)比との関係にも対応する。
Next, FIG. 8 shows a graph of the relationship between the dilution ratio of the water to be treated and the treatment amount ratio. In FIG. 8, the horizontal axis indicates the dilution rate (magnification) of the adjusted water to be treated, and the vertical axis indicates the magnification of the amount (treatment amount) of the component to be removed adsorbed by the adsorbent when treating the adjusted water to be treated. is shown.
Also, in FIG. 8, the dashed line is a graph when it is assumed that the dilution ratio and the throughput magnification change in a one-to-one ratio. For example, the graph indicated by the dashed line is a graph assuming that the processing amount magnification is 5 times when the dilution rate is 5 times, and the processing amount magnification is 10 times when the dilution rate is 10 times. The water to be treated is diluted with the third water to be treated so that the (component to be removed/coexisting component) ratio becomes high. Therefore, the dashed straight line also corresponds to the relationship with the (component to be removed/coexisting component) ratio that increases in proportion to the dilution rate.
さらに、図8では、実際に処理対象水の(除去対象成分/共存成分)比を調整して吸着材が吸着する除去対象成分の量(処理量)の結果を実験結果として示している。図8では、希釈率が1倍、すなわち(除去対象成分/共存成分)比を調整していない処理対象水では、実験結果と破線のグラフとが一致している。 Furthermore, FIG. 8 shows experimental results of the amount of the component to be removed (treatment amount) adsorbed by the adsorbent by actually adjusting the (component to be removed/coexisting component) ratio of the water to be treated. In FIG. 8, the experimental results and the dashed line graph match with the water to be treated in which the dilution ratio is 1, that is, the (component to be removed/coexisting component) ratio is not adjusted.
これに対し、希釈率が2倍、すなわち(除去対象成分/共存成分)比が2倍に調整された処理対象水の実験結果では、吸着材の処理量倍率が破線のグラフの3倍程度となった。また、希釈率が4倍に調整された処理対象水の実験結果では、吸着材の処理量倍率が破線のグラフの7.5倍程度となった。さらに、希釈率が8倍に調整された処理対象水の実験結果では、吸着材の処理量倍率が破線のグラフの16.5倍程度となった。 On the other hand, in the experimental results of the water to be treated, in which the dilution rate was doubled, that is, the ratio of (components to be removed/coexisting components) was adjusted to be doubled, the processing amount of the adsorbent was about 3 times as indicated by the dashed line in the graph. became. In addition, in the experimental result of the water to be treated with the dilution rate adjusted to 4 times, the processing amount magnification of the adsorbent was about 7.5 times as indicated by the dashed line in the graph. Furthermore, in the experimental result of the water to be treated in which the dilution rate was adjusted to 8 times, the processing amount magnification of the adsorbent was about 16.5 times as indicated by the dashed line in the graph.
このように、処理対象水中の(除去対象成分/共存成分)比を高くすることにより、濃度比調整によって処理対象水中に増加する除去対象成分の倍率よりも、吸着材によって吸着される除去対象成分の倍率が増加する。したがって、第二処理対象水の除去対象成分の濃度比を第一処理対象水よりも高い範囲に設定し、この範囲内の第二処理対象水を使用済吸着材で処理することにより、効率的に処理対象水から除去対象成分を除去することができる。 In this way, by increasing the ratio (components to be removed/coexisting components) in the water to be treated, the components to be removed that are adsorbed by the adsorbent are more than the ratio of the components to be removed that increase in the water to be treated by adjusting the concentration ratio. increase the multiplier. Therefore, by setting the concentration ratio of the components to be removed in the second treatment target water to a range higher than that in the first treatment target water and treating the second treatment target water within this range with the used adsorbent, efficient In addition, the components to be removed can be removed from the water to be treated.
本実施形態による放射性廃液の処理方法では、上述のように、共存成分に対する除去対象成分の濃度比の範囲を設定し、この濃度比の範囲となるように第二処理対象水を調整する。これにより、上述の第1実施形態や第2実施形態に比べて、より少ない使用済吸着材で第二処理対象水を処理することができ、放射性廃棄物の発生量の低減が可能となる。 In the radioactive waste liquid treatment method according to the present embodiment, as described above, the range of the concentration ratio of the component to be removed to the coexisting component is set, and the second water to be treated is adjusted so that the concentration ratio falls within this range. As a result, compared to the above-described first and second embodiments, the second treatment target water can be treated with less used adsorbent, and the amount of radioactive waste generated can be reduced.
以上、本発明について説明したが、本発明は、上述実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変化が可能である。
例えば、第1実施形態、第2実施形態、および、第3実施形態の各要素を組み合わせて放射性廃液処理を実施することができる。
Although the present invention has been described above, the present invention is not limited to the above-described embodiments, and various changes are possible without departing from the gist of the present invention.
For example, radioactive waste liquid treatment can be implemented by combining each element of the first embodiment, the second embodiment, and the third embodiment.
1 第一放射性廃液処理設備、2 第二放射性廃液処理設備、3 移送設備、10 第一調整設備、11 第一液送設備、12 第一処理設備、13 第一吸着材容器、14 第一送水設備、15 第一保管容器、20 第二調整設備、21 第二液送設備、22 第二処理設備、23 第二吸着材容器、24 第二送水設備、25 第二保管容器、30 新品材、31,41 吸着サイト、40 使用済材、201 第一調整容器、211 第二調整容器、212 第三液送設備、221 第三調整容器、222 第四液送設備 1 first radioactive liquid waste treatment equipment, 2 second radioactive liquid waste treatment equipment, 3 transfer equipment, 10 first adjustment equipment, 11 first liquid transfer equipment, 12 first treatment equipment, 13 first adsorbent container, 14 first water supply Equipment, 15 first storage container, 20 second adjustment equipment, 21 second liquid transfer equipment, 22 second treatment equipment, 23 second adsorbent container, 24 second water supply equipment, 25 second storage container, 30 new material, 31, 41 adsorption site, 40 used material, 201 first adjustment vessel, 211 second adjustment vessel, 212 third liquid transfer equipment, 221 third adjustment vessel, 222 fourth liquid transfer equipment
Claims (14)
前記第一処理対象水の共存成分濃度よりも高い範囲に、共存成分濃度範囲を設定する濃度範囲設定ステップと、
第二処理対象水の前記共存成分濃度が前記共存成分濃度範囲内にあるかどうかを判定する判定ステップと、
前記共存成分濃度が前記共存成分濃度範囲内の前記第二処理対象水中に含まれる前記除去対象成分を、前記使用済吸着材に吸着させる第二吸着ステップと、を含む
放射性廃液処理方法。 a first adsorption step of adsorbing the component to be removed contained in the first water to be treated to the adsorbent to prepare the used adsorbent;
a concentration range setting step of setting a coexisting component concentration range to a range higher than the coexisting component concentration of the first water to be treated;
a determination step of determining whether the coexisting component concentration of the second water to be treated is within the coexisting component concentration range;
a second adsorption step of causing the used adsorbent to adsorb the component to be removed contained in the second water to be treated whose concentration of the coexisting component is within the concentration range of the coexisting component.
請求項1に記載の放射性廃液処理方法。 A concentration adjustment step of adjusting the concentration of the coexisting component in the second water to be treated to fall within the concentration range of the coexisting component when the concentration of the coexisting component in the second water to be treated is not within the concentration range of the coexisting component. Item 1. The radioactive waste liquid treatment method according to item 1.
前記判定ステップにおいて、第二処理対象水の前記除去対象成分濃度が前記除去対象成分濃度範囲内にあるかどうかを判定し、
前記第二吸着ステップにおいて、前記共存成分濃度が前記共存成分濃度範囲内であり、前記除去対象成分濃度が前記除去対象成分濃度範囲内の前記第二処理対象水中に含まれる前記除去対象成分を、前記使用済吸着材に吸着させる
請求項1又は2に記載の放射性廃液処理方法。 In the concentration range setting step, setting the removal target component concentration range to a range higher than the removal target component concentration of the first water to be treated,
In the determination step, determining whether the concentration of the component to be removed in the second water to be treated is within the concentration range of the component to be removed;
In the second adsorption step, the concentration of the coexisting component is within the concentration range of the coexisting component, and the concentration of the component to be removed is within the concentration range of the component to be removed. The radioactive waste liquid treatment method according to claim 1 or 2, wherein the used adsorbent is adsorbed.
請求項3に記載の放射性廃液処理方法。 Concentration adjustment for adjusting the concentration of the component to be removed in the second water to be treated to fall within the concentration range of the component to be removed when the concentration of the component to be removed in the second water to be treated is not within the concentration range of the component to be removed 4. The radioactive liquid waste treatment method according to claim 3, comprising a step.
請求項1に記載の放射性廃液処理方法。 2. The radioactive waste liquid treatment method according to claim 1, wherein the components to be removed include at least one of strontium, cesium, cobalt, iodine, antimony, ruthenium, technetium, uranium, plutonium, americium, curium, and neptunium.
請求項5に記載の放射性廃液処理方法。 6. The radioactive liquid waste treatment method according to claim 5, wherein at least one of sodium, potassium, magnesium, calcium, barium, chlorine, bromine, sulfuric acid, and carbonic acid is included as the coexisting component.
請求項5に記載の放射性廃液処理方法。 When the same element is included as the component to be removed and the coexisting component, the component to be removed includes a radioactive isotope of the element, and the coexisting component includes a stable isotope of the element. Radioactive waste liquid treatment method.
前記判定ステップにおいて、前記第二処理対象水における前記共存成分の濃度に対する前記除去対象成分の濃度比が前記濃度比範囲内にあるかどうかを判定し、
前記使用済吸着材に吸着させるステップにおいて、前記除去対象成分の濃度比が前記濃度比範囲内の前記第二処理対象水中に含まれる前記除去対象成分を、前記使用済吸着材に吸着させる
請求項1に記載の放射性廃液処理方法。 In the concentration range setting step, setting the concentration ratio range of the components to be removed so as to be greater than the concentration ratio of the components to be removed with respect to the concentration of the coexisting components in the first water to be treated;
In the determination step, determining whether the concentration ratio of the component to be removed with respect to the concentration of the coexisting component in the second water to be treated is within the concentration ratio range;
3. The step of adsorbing onto the used adsorbent causes the used adsorbent to adsorb the component to be removed contained in the second water to be treated whose concentration ratio of the component to be removed is within the concentration ratio range. 1. The radioactive waste liquid treatment method according to 1.
請求項8に記載の放射性廃液処理方法。 Concentration adjustment for adjusting the concentration of the removal target component in the second treatment target water to fall within the coexisting component concentration range when the concentration ratio of the removal target component in the second treatment target water is not within the concentration ratio range. The radioactive waste liquid treatment method according to claim 8, comprising a step.
請求項2、4、又は9に記載の放射性廃液処理方法。 10. The radioactivity according to claim 2, 4, or 9, wherein in the concentration adjustment step, the concentration is adjusted by mixing the second water to be treated with a third water to be treated containing a component to be removed and a coexisting component. Waste liquid treatment method.
請求項1に記載の放射性廃液処理方法。 The radioactive waste liquid treatment method according to claim 1, wherein the second water to be treated contains sodium as the coexisting component, and the concentration of sodium in the second water to be treated in the second adsorption step is 25,000 ppm or less.
請求項1に記載の放射性廃液処理方法。 The radioactive liquid waste treatment method according to claim 1, wherein said second water to be treated contains calcium as said coexisting component, and in said second adsorption step, the concentration of calcium in said second water to be treated is 100 ppm or less.
請求項1に記載の放射性廃液処理方法。 The radioactive waste liquid treatment method according to claim 1, wherein the second water to be treated contains chlorine as the coexisting component, and the concentration of chlorine in the second water to be treated in the second adsorption step is 45,000 ppm or less.
請求項1に記載の放射性廃液処理方法。 2. The radioactive liquid waste according to claim 1, wherein at least one of a silicotitanate compound, a titanate compound, a zeolite, a ferrocyanate compound, a metal organic framework (MOF) compound, and an ion exchange resin is used as the adsorbent. Processing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021069743A JP7538767B2 (en) | 2021-04-16 | 2021-04-16 | Radioactive waste treatment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021069743A JP7538767B2 (en) | 2021-04-16 | 2021-04-16 | Radioactive waste treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022164323A true JP2022164323A (en) | 2022-10-27 |
JP7538767B2 JP7538767B2 (en) | 2024-08-22 |
Family
ID=83743244
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021069743A Active JP7538767B2 (en) | 2021-04-16 | 2021-04-16 | Radioactive waste treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7538767B2 (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE202012012866U1 (en) | 2012-04-02 | 2014-02-06 | Clariant Produkte (Deutschland) Gmbh | Methyliodidadsorber |
JP2016133502A (en) | 2015-01-20 | 2016-07-25 | 株式会社 環境浄化研究所 | Method for manufacturing radio strontium adsorbent |
JP6656108B2 (en) | 2016-07-27 | 2020-03-04 | 日立Geニュークリア・エナジー株式会社 | Method and apparatus for treating radioactive liquid waste |
JP6723874B2 (en) | 2016-08-26 | 2020-07-15 | 日立Geニュークリア・エナジー株式会社 | Radioactive waste liquid treatment method and radioactive waste liquid treatment apparatus |
JP7128139B2 (en) | 2019-03-18 | 2022-08-30 | 株式会社東芝 | Radioactive waste liquid treatment method and radioactive waste liquid treatment system |
-
2021
- 2021-04-16 JP JP2021069743A patent/JP7538767B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP7538767B2 (en) | 2024-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lampert et al. | Removal of perfluorooctanoic acid and perfluorooctane sulfonate from wastewater by ion exchange | |
Harjula et al. | Industrial scale removal of cesium with hexacyanoferrate exchanger—process development | |
Umadevi et al. | Performance of radio-iodine discharge control methods of nuclear reprocessing plants | |
JP5684102B2 (en) | Method and apparatus for treating radioactive cesium-containing material | |
JP6656108B2 (en) | Method and apparatus for treating radioactive liquid waste | |
Osmanlioglu | Decontamination and solidification of liquid radioactive waste using natural zeolite | |
JP6462491B2 (en) | Radioactive liquid processing apparatus and processing method thereof | |
JP2022164323A (en) | Radioactive waste liquid treatment method | |
CA3007617C (en) | Adsorbent for radioactive antimony, radioactive iodine and radioactive ruthenium, and treatment method of radioactive waste water using the adsorbent | |
JP6723874B2 (en) | Radioactive waste liquid treatment method and radioactive waste liquid treatment apparatus | |
Jubin et al. | Performance of silver-exchanged mordenite for iodine capture under Vessel Off-gas Conditions | |
JP6606438B2 (en) | Quantitative analysis method for iodate and iodide ions | |
US11114211B2 (en) | Helical screw ion exchange and desiccation unit for nuclear water treatment systems | |
Kozlov et al. | Development of a process for cesium recovery from the clarified phase of high-level waste storage tanks of the Mayak Production Association with a ferrocyanide sorbent | |
JP6688157B2 (en) | Apparatus and method for treating radioactive waste liquid | |
JP2011115772A (en) | Method and apparatus for treating waste liquid | |
JPH0522878B2 (en) | ||
Piscureanu et al. | Aspects concerning the selection of ion exchange resin for low level radwaste waters decontamination | |
Al Attar et al. | Sorption of 226Ra from oil effluents onto synthetic cation exchangers | |
Jubin et al. | Advanced fuel cycle initiative coupled end-to-end research, development, and demonstration project: integrated off-gas treatment system design and initial performance-9226 | |
Coppens et al. | Investigating the effect of pore water composition and isosaccharinic acid (ISA) on sorption of Pu to a CEM III/C-based mortar | |
Вучкан et al. | THE TITANIUM SILICATE INFLUENCE ON THE Zn (II) AND Sr (II) MIGRATION IN THE AQUATIC ENVIRONMENT | |
Nzama et al. | Batch studies on adsorptive removal of Co ions by CoTreat® in acidic media | |
Tajiri et al. | Experience of test operation for removal of fission product nuclides in TRU-liquid waste and concentrated nitric acid using inorganic ion-exchangers | |
Ohashi et al. | Ion exchange selectivity for protons by sodium ion-form crystalline silicotitanate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20240126 |
|
TRDD | Decision of grant or rejection written | ||
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20240722 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240730 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240809 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7538767 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |