JPS63131701A - Circular waveguide mode converter with stepwise periodic structure - Google Patents

Circular waveguide mode converter with stepwise periodic structure

Info

Publication number
JPS63131701A
JPS63131701A JP27807986A JP27807986A JPS63131701A JP S63131701 A JPS63131701 A JP S63131701A JP 27807986 A JP27807986 A JP 27807986A JP 27807986 A JP27807986 A JP 27807986A JP S63131701 A JPS63131701 A JP S63131701A
Authority
JP
Japan
Prior art keywords
mode
circular waveguide
periodic structure
mode converter
circular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27807986A
Other languages
Japanese (ja)
Other versions
JPH058881B2 (en
Inventor
Masamitsu Nakajima
中島 将光
Osami Wada
修己 和田
Yuji Taki
瀧 雄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Original Assignee
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University filed Critical Kyoto University
Priority to JP27807986A priority Critical patent/JPS63131701A/en
Publication of JPS63131701A publication Critical patent/JPS63131701A/en
Publication of JPH058881B2 publication Critical patent/JPH058881B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To remarkably facilitate the manufacture by using a circular waveguide interposing discontinuous part whose guide diameter is increased/ decreased repetitively stepwide at a prescribed period over a prescribed range so as to apply the conversion of electromagnetic wave transmission mode between the TEon mode and the TEom mode. CONSTITUTION:Two kinds of circular waveguides having a length (l) whose radius is changed as a single step by + or -DELTAa at the middle of the circular waveguide having a radius (a) acting like an oversize waveguide with respect to a wavelength of an electromagnetic wave to be sent are formed while the plural discontinuous parts are connected in cascade alternately with the center axis coincident with each other. Actually, two kinds of circular waveguides having a length (l) and radii of a+DELTAa and a-DELTAa may be manufactured by fitting them coaxially. Moreover, the inner circumferential face of the cylinder conductor having a thickness whose radius is not in excess of a-DELTAa is processed and manufactured by means of, e.g., a boring lathe. Thus, the structure is simplified and the design/manufacture is facilitated considerably.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、円形導波管による電磁波の伝送モードをTE
onモードとTEo、モードとの間で変換するTEo、
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention describes the transmission mode of electromagnetic waves by a circular waveguide in TE
TEo converting between on mode and TEo mode;
.

−TEonモード変換器に関し、特に、円形導波管の内
周壁面の周期構造を段階状に改良して、その設計および
製作が容易になるようにしたものである。
- Regarding the TEon mode converter, in particular, the periodic structure of the inner circumferential wall surface of the circular waveguide is improved in stages to facilitate its design and manufacture.

(1従来の技術) 従来、該融合プラズマの加熱方法の一種として、大電力
のジャイロトロンの出力による直接加熱がある。しかし
て、ジャイロトロンからの高い周波数帯のマイクロ波出
力は、円形導波管のTEozを中心としたTEonモー
ドで取出されるが、核融合プラズマの加熱、制御、計測
にとっては1]E、モードなどの直線偏波のマイクロ波
を用いるのが蟲かに有利である。したがって、従来から
、ジャイロトロンの円形導波管TEozモード出力を↑
E61モードを介して1lEzモードの直線偏波に変換
することが一般に行なわれていた。
(1. Prior Art) Conventionally, one type of heating method for the fused plasma is direct heating using the output of a high-power gyrotron. Therefore, the high frequency band microwave output from the gyrotron is extracted in the TEon mode centered on the circular waveguide TEoz, but for heating, control, and measurement of fusion plasma, the 1]E mode is It is advantageous to use linearly polarized microwaves such as Therefore, conventionally, the circular waveguide TEoz mode output of the gyrotron is ↑
Generally, the E61 mode is converted into a linearly polarized wave of the 11Ez mode.

また、実験室レベルでの簡易なオーバサイズモード変換
器としてTEazモード−TEc+モード間の円形導波
管モード変換器が従来一般に用いられていた。
Furthermore, a circular waveguide mode converter between TEaz mode and TEc+ mode has been commonly used as a simple oversized mode converter at the laboratory level.

(発明が解決しようとする問題点) しかして、マイクロ波、ミリ波等の高い周波数帯におけ
る大電力用円形導波管TEon1− TEonモード変
換器としては、従来、ツム(M、Thumm)によるI
nt、J、Electron誌、第57巻、1984年
、第1225頁乃至1246頁に記載の正弦波状周期構
造円形導波管TE、。
(Problems to be Solved by the Invention) Conventionally, as a circular waveguide TEon1-TEon mode converter for high power use in high frequency bands such as microwaves and millimeter waves, I
nt, J, Electron Magazine, Vol. 57, 1984, pp. 1225 to 1246, a circular waveguide TE with a sinusoidal periodic structure.

−TEonモード変換器が専ら用いられていた。このモ
ード変換器は、後に詳述するように円形導波管の内周壁
面の半径をTEo、、モードとTEonモードとの間に
おけるヒート波長を周期とする正弦波状に変化させ、円
形導波管のかかる周期構造の不連続部を通過させること
により、TEon −TEon間のモード変換が行なわ
れるようにしたものである。
- TEon mode converters were used exclusively. This mode converter changes the radius of the inner peripheral wall surface of the circular waveguide in a sinusoidal manner with a period equal to the heat wavelength between the TEo mode and the TEon mode, as will be described in detail later. By passing through the discontinuous portion of the periodic structure, mode conversion between TEon and TEon is performed.

しかしながら、円形導波管の内周壁面の半径を設計どお
りに正確に正弦波状に変化させる加工・製作には高度の
技術と設備とが必要であって容易でないばかりでなく、
後述するようにして得られる設計値に基づいて実際に最
高変換効率が得られる最適値の寸法形状を求めるには、
正弦波を極めて多数の微細な段階状に近似して所要電磁
波成分が最大となる条件を決める膨大な量の計算を必要
とし、しかも、その結果とし近似解しか得られない、と
いう問題点があった。
However, processing and manufacturing to accurately change the radius of the inner circumferential wall surface of a circular waveguide into a sinusoidal shape as designed requires advanced technology and equipment, and is not only difficult.
To find the dimensions and shape of the optimum values that will actually yield the highest conversion efficiency based on the design values obtained as described below,
The problem is that it requires an enormous amount of calculation to determine the conditions under which the required electromagnetic wave component is maximized by approximating a sine wave into an extremely large number of minute steps, and as a result, only an approximate solution can be obtained. Ta.

(問題点を解決するための手段) 本発明の目的は、上述した従来の問題点を解決し、設計
・製作が容易であり、設計値を最適化するための計算が
比較的簡単であって厳密片が得られるようにした周期構
造の不連続部からなる円形導波管TEo、 −TEo、
モード変換器を提供することにある。
(Means for Solving the Problems) An object of the present invention is to solve the above-mentioned conventional problems, to be easy to design and manufacture, and to make calculations for optimizing design values relatively simple. Circular waveguide TEo, -TEo, consisting of discontinuous parts of a periodic structure such that a strict piece is obtained
An object of the present invention is to provide a mode converter.

すなわち、本発明階段状周期構造円形導波管モード変換
器は、管径が所定の範囲に亘り所定の周期で少なくとも
1段の段階状に繰返して増減する不連続部を介在させた
円形導波管よりなり、TE、。
That is, the stepped periodic structure circular waveguide mode converter of the present invention is a circular waveguide with a discontinuous portion in which the pipe diameter repeatedly increases and decreases in at least one step at a predetermined period over a predetermined range. Consisting of tubes, TE.

モード−TEo、モード間における電磁波伝送モードの
変換を行なうようにしたことを特徴とするものである。
The present invention is characterized in that the electromagnetic wave transmission mode is converted between the modes TEo and TEo.

(作 用) したがって、本発明によれば、従来に比して構造が簡単
であり、設計・製作が格段に容易であって、しかも、設
計値の最適化を確実・容易に行ない得る周期構造を備え
た円形導波管モード変換器を実現することができる。
(Function) Therefore, according to the present invention, the periodic structure has a simpler structure than the conventional one, is much easier to design and manufacture, and can reliably and easily optimize design values. It is possible to realize a circular waveguide mode converter with

(実施例) 以下に図面を参照して実施例につき本発明の詳細な説明
する。
(Example) The present invention will be described in detail below with reference to the drawings.

まず、本発明階段状周期構造円形導波管モード変換器の
周期構造をなす階段を一段のみとした方形波状周期構造
を備えた最も簡単な構成例を第1図に模式的に示す。図
示の構成例は、伝送すべき電磁波の波長に対しオーバサ
イズ導波管として作用する半径aを有する円形導波管の
中間に、半径を±Δaだけ単一階段状に変化させた長さ
βの2種類の円形導波管を、中心軸を一致させて複数段
交互に縦続接続した形態の不連続部を介在させて構成し
たものであり、実際に半径a+Δaおよびa−Δaをそ
れぞれ有する長さlの2種類の円形導波管を同軸に嵌合
させて製作することもでき、また、a−Δaを超えぬ半
径を有する肉厚の円筒形導体の内周面を例えば中ぐり旋
盤などにより加工して製作することもできる。
First, FIG. 1 schematically shows an example of the simplest configuration of a circular waveguide mode converter with a stepped periodic structure according to the present invention, which has a square wave periodic structure with only one step forming the periodic structure. The illustrated configuration example has a circular waveguide with radius a that acts as an oversized waveguide for the wavelength of electromagnetic waves to be transmitted, and a length β in the middle of which the radius is changed by ±Δa in a single step shape. It is constructed by interposing discontinuous parts in which two types of circular waveguides are connected in cascade alternately in multiple stages with their central axes coincident, and actually have lengths with radii a + Δa and a - Δa, respectively. It can also be manufactured by coaxially fitting two types of circular waveguides (1 and 1), and the inner peripheral surface of a thick cylindrical conductor with a radius not exceeding a - Δa can be manufactured using a boring lathe, etc. It can also be manufactured by processing.

上述の構成例における導波管半径の偏差値Δaおよび区
間長lは、第2図に示すように、半径が正弦波状に連続
して変化する前述した従来の正弦波状周期構造円形導波
管モード変換器からの近似により、正弦波状周期構造の
不連続につき後述するようにして求める半径の偏移量お
よび繰返し偏移の半周期長をそれぞれ半径偏差値Δaお
よび区間長lの設計における初期値とし、つぎに述べる
ようにモードマツチングの手法を用いた最適化の計算を
コンピュータを使用して行ない、最高の変換効率が得ら
れる最適設計値を求める。
The deviation value Δa of the waveguide radius and the section length l in the above configuration example are as shown in FIG. 2, as shown in FIG. By approximation from the converter, the amount of deviation of the radius and the half period length of the repetition deviation, which are obtained as described later for the discontinuity of the sinusoidal periodic structure, are used as initial values in the design of the radius deviation value Δa and the interval length l, respectively. As described below, optimization calculations using a mode matching method are performed using a computer, and optimal design values that provide the highest conversion efficiency are determined.

すなわち、さきに学会発表を行なった計算過程の詳細に
ついては記述を省略するが、円形導波管の第1図に示し
た構成の不連続部における電磁波伝搬の振舞いを、円形
導波管の半径が急変する階段状不連続面の前後において
、伝搬モードが異なるにも拘らず、電磁界が連続するよ
うにした場合における透過電力と反射電力とをモードマ
ツチングの手法により解析して散乱行列式として求め、
かかる不連続面が複数段縦続した場合における総合の透
過電力と反射電力とを散乱行列式の縦続接続として算出
し、前述した半径偏差値Δaおよび区間長lをそれぞれ
の初期値かられずかずつ変化させながら、上述した総合
の透過電力と反射電力とを繰返して算出し、透過電力が
最大となり、反射電力が最小となる最高変換効率が得ら
れたときの半径偏差値Δaおよび区間長lをそれぞれの
最適設計値とする。
In other words, we will omit the details of the calculation process that was presented at an academic conference earlier, but the behavior of electromagnetic wave propagation at the discontinuous part of the circular waveguide shown in Figure 1 can be calculated using the radius of the circular waveguide. The scattering determinant is obtained by analyzing the transmitted power and reflected power using a mode matching method when the electromagnetic field is continuous even though the propagation mode is different before and after a step-like discontinuous surface where the field changes suddenly. Find as,
When such discontinuous surfaces are connected in multiple stages, the total transmitted power and reflected power are calculated as a cascade of scattering determinants, and the radius deviation value Δa and section length l described above are gradually changed from their initial values. While the above-mentioned total transmitted power and reflected power are repeatedly calculated, the radius deviation value Δa and the section length l when the highest conversion efficiency is obtained where the transmitted power is maximum and the reflected power is minimum are respectively calculated. The optimum design value of

しかして、本発明円形導波管モード変換器における不連
続部の半径偏差値Δaおよび区間長lに対する上述した
設計値最適化の出発点とする前述した初期値は、従来の
正弦波状周期構造の円形導波管モード変換器についてツ
ム(M、Thumm)が開示した計算方法により、つぎ
のようにして求める。
Therefore, the above-mentioned initial values used as the starting point for optimizing the above-mentioned design values for the radius deviation value Δa and section length l of the discontinuity in the circular waveguide mode converter of the present invention are different from those of the conventional sinusoidal periodic structure. It is determined as follows using the calculation method disclosed by Thumm (M.) for a circular waveguide mode converter.

第3図に示すように、正弦波状周期構造を有する円形導
波管不連続部における平均半径a0に対し、管軸方向Z
の関数をなす半径a (z)の偏移量をΔaとし、その
偏移の周期長を相互にモード変換する円形TEonモー
ドとTEonモードとのヒート波長λβに等しく設定す
ると、かかる周期構造の不連続部においては伝送モード
間の結合が生じ、モード変換器として作用するようにな
る。
As shown in FIG. 3, with respect to the average radius a0 in the circular waveguide discontinuity having a sinusoidal periodic structure, the tube axis direction Z
Let Δa be the deviation of the radius a (z) which is a function of Coupling between transmission modes occurs in the continuum, which acts as a mode converter.

しかして、半径偏移の周期長に等しいヒート波長λβは
、TE。7モードおよびTEonモードの位相定数をそ
れぞれβ。7およびβ。、とすると、つぎの(11式に
よって求めれらる。
Thus, the heat wavelength λβ equal to the period length of the radial shift is TE. The phase constants of the 7 mode and TEon mode are β, respectively. 7 and β. , it can be determined by the following equation (11).

一方、半径偏移量Δaは、前述したように管軸方向Zの
関数となる半径a (z)を表わすつぎの(2)式から
求められる。
On the other hand, the radial deviation amount Δa is determined from the following equation (2) expressing the radius a (z) which is a function of the tube axis direction Z, as described above.

a(z)=a0(1+εsin (2π2/λβ)) 
(2)上式(2)中εは、不連続部の周期構造をなす半
径偏移周期の繰返し数Nを通例3〜6の範囲において適
切に選定して不連続部の全長りをL=N・λβとすると
、つぎの(3)式により与えられる。
a(z)=a0(1+εsin (2π2/λβ))
(2) In the above equation (2), ε is the number of repetitions of the radial shift period forming the periodic structure of the discontinuous part, which is usually selected appropriately in the range of 3 to 6, and the total length of the discontinuous part is L = Assuming N·λβ, it is given by the following equation (3).

ε=                   (312
・N−C,ア、。1 ここに、COn +。つは、−次ベツセル関数J、にお
ける0を除いたn番目およびm番目の零点ρInおよび
ρ、を用いてつぎの(4)式によって表わされる。
ε= (312
・NC, a. 1 Here, CON +. is expressed by the following equation (4) using the n-th and m-th zero points ρIn and ρ other than 0 in the −th order Betzel function J.

正弦波状周期構造からの近似により、本発明階段状周期
構造円形導波管モード変換器における半径偏差値Δaお
よび区間長lの初期値をつぎの(5)式うに設定する。
By approximation from a sinusoidal periodic structure, the initial values of the radius deviation value Δa and section length l in the step-like periodic structure circular waveguide mode converter of the present invention are set to the following equation (5).

2β Δa=ε・atr  、    l=       (
5)このようにして設定した初期値から出発して、半径
偏差値Δaおよび区間長lに前述したような最適化の計
算を施し、最高変換効率が得られる最適設計値を求める
2β Δa=ε・atr, l= (
5) Starting from the initial values set in this manner, the radius deviation value Δa and the interval length l are subjected to the optimization calculations described above to find the optimal design values that provide the highest conversion efficiency.

なお、上述の構成例においては、階段状周期構造におけ
る円形導波管の平均半径a0からの偏差値を±Δaと上
下対称に増減させたが、結果的に得られる最高変換効率
が実用可能な90%以上となる限りにおいては、必ずし
も対称とする必要はなく、例えば交互に嵌合させて階段
状周期構造とする2種類の素材導波管の管径の規格等に
より制約を受けた場合などにおいては、上述のようにし
て求めた最適設計値に近い規格の管径を有する2種類の
円形導波管を用い、階段状周期構造の区間長lのみを最
適設計値どおりに設定するようにすることも可能である
In the above configuration example, the deviation value from the average radius a0 of the circular waveguide in the stepped periodic structure was vertically symmetrically increased or decreased to ±Δa, but the highest conversion efficiency obtained as a result is practically practicable. As long as it is 90% or more, it does not necessarily have to be symmetrical; for example, if there are restrictions due to the pipe diameter standards of two types of waveguides that are made to fit alternately to form a stepped periodic structure, etc. In this case, two types of circular waveguides with standard pipe diameters close to the optimal design value obtained as described above are used, and only the section length l of the stepped periodic structure is set to the optimal design value. It is also possible to do so.

上述のようにして構成した第1図示の構成例による本発
明階段状周期構造円形導波管モード変換器に接続した一
方の円形導波管から円形TEonモードの電磁波が入射
すると、その電磁波の伝送モードTE、nは階段状周期
構造の不連続部において種々のモードに変化する。しか
しながら、同軸型円形導波管においては円形TE、Xな
る形の伝送モードの電磁波しか発生せず、しかも、この
階段状周期構造においては入力TEon、、モードと出
力TEonモードとのヒート波長λβに近似した周期長
の周期的変化を円形導波管の半径a (z)が呈してい
るので、所望の円形TE、イモードの電磁波のみが他方
の円形導波管から取出され、TEonモード−TEol
11モード間のモード変換が達成される。
When an electromagnetic wave in the circular TEon mode is incident from one of the circular waveguides connected to the stepped periodic structure circular waveguide mode converter of the present invention according to the configuration example shown in the first diagram configured as described above, the electromagnetic wave is transmitted. The mode TE,n changes into various modes at the discontinuous portion of the stepped periodic structure. However, in a coaxial circular waveguide, only the electromagnetic waves in the circular TE, Since the radius a (z) of the circular waveguide exhibits a periodic change of approximated period length, only the desired circular TE, imode electromagnetic waves are extracted from the other circular waveguide, and the TEon mode - TEol
Mode conversion between 11 modes is achieved.

なお、第1図示の構成例においては、本発明により円形
導波管の半径を周期的に変化させる階段状周期構造を単
一段の増減のみとし、方形波状周期構造としたが、正弦
波状周期構造からの近似により複数段の階段状周期構造
とすることもでき、しかも、その複数段を各段均等の階
段状とすることも、また、各段毎に不均等の階段状とす
ることもでき、いずれの場合においても、単一段の階段
状周期構造につき前述したと同様のモードマツチングの
手法を用いてそれぞれ最適設計値を求め得ること勿論で
る。しかして、いずれの場合においても、正弦波状周期
構造からの近似に基づくとはいえ、有限段数の階段状周
期構造に対する設計値の最適化であるから、正弦波状周
期構造自体の設計値の最適化においては無数の微細な階
段状近似により膨大な量の計算を要してしかも近似解し
か得られないのに反し、格段に少ない量の計算により厳
密解として最適設計値を得ることができる。
In the configuration example shown in the first diagram, according to the present invention, the step-like periodic structure that periodically changes the radius of the circular waveguide is increased or decreased by only a single step, and is made into a square wave-like periodic structure, but the sine-wave periodic structure A step-like periodic structure with multiple steps can be obtained by approximation from In any case, it is of course possible to find the optimum design values for a single-stage stepped periodic structure using the same mode matching method as described above. Therefore, in any case, although it is based on approximation from a sinusoidal periodic structure, it is an optimization of the design value for a stepped periodic structure with a finite number of stages, so it is an optimization of the design value of the sinusoidal periodic structure itself. In contrast to this, which requires a huge amount of calculation due to countless minute step-like approximations and can only obtain an approximate solution, it is possible to obtain the optimal design value as an exact solution with a much smaller amount of calculation.

つぎに、本発明階段状周期構造円形導波管モード変換器
の具体的数値例について説明する。
Next, specific numerical examples of the stepped periodic structure circular waveguide mode converter of the present invention will be explained.

(1)周波数35.5 GHzの円形TEOI−TE+
12モード変換器。
(1) Circular TEOI-TE+ with frequency 35.5 GHz
12 mode converter.

周波数35.5 GH2,導波管半径16鶴のオーバサ
イズ導波系における円形TEo+=TEozモード変換
器の構造について具体的数値例を第4図に示す。図示の
具体例については、TEonモード−TEozモード間
のヒート波長λβ= 60.8 mとなり、半径偏移周
期の繰返し数N=4とすると平均半径a、=16mに対
する偏移量Δa =1.28wmとなる。しかして、素
材導波管の入手の容易さや加工の容易さを考慮して、半
径の偏差値Δaを+1.ONおよび−1,5龍とした半
径17+nおよび14.5nの素材導波管を採用するこ
ととし、階段状周期構造の周期長21の上述した初期値
λβ= 60.8 鶴から出発して最適化を行ない、周
期長2J =59.7mとした。かかる構造の不連続部
の前後に半径16龍の円形導波管を接続してその両端に
接続用フランジを取付ける。
FIG. 4 shows a concrete numerical example of the structure of a circular TEo+=TEoz mode converter in an oversized waveguide system with a frequency of 35.5 GH2 and a waveguide radius of 16 mm. In the illustrated example, the heat wavelength λβ between the TEon mode and the TEoz mode is 60.8 m, and when the number of repetitions of the radial shift period N = 4, the deviation amount Δa for the average radius a = 16 m is 1. It becomes 28wm. Therefore, considering the ease of obtaining the material waveguide and the ease of processing, the deviation value Δa of the radius was set to +1. We decided to adopt material waveguides with radii of 17+n and 14.5n with ON and -1,5 dragons, and set the periodic length 21 of the stepped periodic structure to the above-mentioned initial value λβ = 60.8 Optimal starting from Tsuru. The period length was set to 2J = 59.7m. A circular waveguide with a radius of 16 mm is connected before and after the discontinuous portion of such a structure, and connecting flanges are attached to both ends of the circular waveguide.

上述した具体例における各伝送モードによる透過電力お
よび反射電力の電力比を初期値および最適設計値につい
てそれぞれ示すとつぎの第1表および第2表のようにな
り、初期値によって得られるモード変換効率が約85%
であるのに対し、最適設計値によって得られるモード変
換効率は約93%′まで改善されており、実測の結果も
ほぼ同様であった。なお、同じ初期値に基づ〈従来の正
弦波状周期構造のモード変換器においてはモード変換効
率が約90%になり、前述したような近似により最適化
を施せば約97%にも達するとみられるが、モード変換
器としては90%の変換効率があれば充分に実用になる
ので、正弦波状周期構造のモード変換器については極め
て膨大な量の計算を行なって最適化を施すことなく、従
来、初期値に基づいて設計・製作が行なわれていたが、
その精密加工に相当の技術を要するほか、実際に製作し
たものが設計値から外れれば所期のモード変換効率が得
られない、という問題点があった。
The power ratios of transmitted power and reflected power for each transmission mode in the above specific example are shown for initial values and optimal design values, respectively, as shown in Tables 1 and 2 below, and the mode conversion efficiency obtained by the initial values is shown in Tables 1 and 2 below. is about 85%
On the other hand, the mode conversion efficiency obtained with the optimal design value was improved to about 93%', and the actual measurement results were also almost the same. Based on the same initial values, the mode conversion efficiency in a conventional mode converter with a periodic sinusoidal structure is approximately 90%, and if optimization is performed using the approximation described above, it is expected to reach approximately 97%. However, as a mode converter, a conversion efficiency of 90% is sufficient for practical use, so conventionally, mode converters with a sinusoidal periodic structure do not require an extremely large amount of calculations and optimization. Design and production were carried out based on initial values, but
In addition to requiring considerable technology for precision machining, there was a problem in that if the actually manufactured product deviated from the design values, the desired mode conversion efficiency could not be obtained.

第1表 第2表 (2)周波数56 G11zの円形TfEoz−TIi
a+モード変換器。
Table 1 Table 2 (2) Frequency 56 G11z circular TfEoz-TIi
a+ mode converter.

周波数56 GHz、導波管半径12.8mのオーバサ
イズ導波系における円形TEoz→TEo+モード変換
器の構造について具体的数値例を第5図に示す。図示の
具体例においては、平均半径ao =12.2鰭に刻す
る最適偏移量Δaを±0.6mmとし、半径13.4m
mおよび12.2mmの素材導波管を採用し、階段状周
期構造の周期長64.6+nとして5周期繰返し、両端
の円形導波管に接続用フランジを取付ける。
FIG. 5 shows a concrete numerical example of the structure of a circular TEoz→TEo+ mode converter in an oversized waveguide system with a frequency of 56 GHz and a waveguide radius of 12.8 m. In the illustrated example, the average radius ao = 12.2, the optimum deviation amount Δa for carving on the fin is ±0.6 mm, and the radius is 13.4 m.
Using material waveguides of 12.2 mm and 12.2 mm, a stepped periodic structure with a period length of 64.6+n is repeated for 5 cycles, and connection flanges are attached to the circular waveguides at both ends.

上述した具体例における各伝送モードによる透過電力お
よび反射電力の電力比を最適設計値について示すとっぎ
の第3表のようになり、初期値によって得られるモード
変換効率が約95%であるのに対し、最適設計値によっ
て得られるモード変換効率は約98%まで改善されてい
る。
Table 3 shows the power ratio of transmitted power and reflected power for each transmission mode in the above-mentioned specific example with respect to the optimal design value, and the mode conversion efficiency obtained with the initial value is about 95%. , the mode conversion efficiency obtained with the optimal design values is improved to about 98%.

第3表 本発明モード変換器に対する設計値の上述した最適化の
結果を検証するために、例えば前述した具体的数値例(
11の円形TE6+=TEozモード変換器につき、階
段状周期構造の半径偏移周期の繰返し数Nを順次に増大
させたときの不連続端面開口がら電磁波を空中に放射さ
せてそれぞれの遠方放射電界強度を測定し、その測定結
果がらっぎの(6)式によりTEon(m=1.2.3
)モードの電磁波の振幅の絶対値I  AnIを求めて
各伝搬モードの電力を算出した。
Table 3 Design values for the mode converter of the present invention In order to verify the above-mentioned optimization results, for example, the above-mentioned specific numerical example (
For 11 circular TE6+=TEoz mode converters, when the number of repetitions N of the radial shift period of the stepped periodic structure is increased sequentially, electromagnetic waves are radiated into the air from the discontinuous end face opening, and the respective far-field radiated electric field strengths are calculated. The measurement result is expressed as TEon(m=1.2.3
) The power of each propagation mode was calculated by determining the absolute value of the amplitude of the electromagnetic wave in the mode IAnI.

点の極座標であり、Eψは、放射開口端面座標角ψに関
する遠方放射電界の9成分である。
are the polar coordinates of the point and Eψ are the nine components of the far radiation electric field with respect to the radiation aperture end face coordinate angle ψ.

上述した遠方放射電界測定系の概略構成配置を第6図に
示し、半径偏移周期繰返し数Nを順次に増大させたとき
におけるTEo+、 TEOZ、 TEO3各伝搬モー
ドの電力比の測定結果を第7図、第8図、第9図にそれ
ぞれ示す。
The schematic arrangement of the far-field radiation electric field measurement system described above is shown in FIG. 8 and 9, respectively.

第6図示の測定′系においては、ガン発振器1からの3
5.5 G11zの電磁波を、反射波吸収用サーキュレ
ータ2および周波数計3を順次に介し、可変減衰器4に
供給して電力を調整したうえで、方向性結合器5および
6をそれぞれ介して供給電力および反射電力をそれぞれ
測定した後に、モード変換器7に供給し、測定糸用方形
TE、。モードを円形TEonモードに変換し、さらに
モードフィルタ8を介して取出した円形TEo+モード
の電磁波のみを管径変換用テーバ管9を介して第4図示
の構成による供試モード変換器10に供給する。その供
試モード変換器10の端面開口からの遠方放射電界を検
出器11により検出し、その放射パターンを解析して各
伝搬モードTEo+、 TEoz、 TEosの電力を
算出する。
In the measurement system shown in FIG.
5.5 G11z electromagnetic waves are sequentially supplied to the variable attenuator 4 via the reflected wave absorption circulator 2 and the frequency meter 3 to adjust the power, and then supplied via the directional couplers 5 and 6, respectively. After measuring the power and the reflected power, respectively, they are supplied to the mode converter 7, and the square TE for the measuring thread is supplied. The mode is converted to the circular TEon mode, and only the circular TEo+ mode electromagnetic waves taken out through the mode filter 8 are supplied to the test mode converter 10 having the configuration shown in FIG. 4 through the Taber tube 9 for pipe diameter conversion. . The detector 11 detects the far-field radiated electric field from the end face opening of the test mode converter 10, and the radiation pattern is analyzed to calculate the power of each propagation mode TEo+, TEoz, and TEos.

一方、上述の測定結果を示す第7図乃至第9図において
は、実線により理論値を示し、点線により測定値を示す
。また、各図の最初の点は入力における各電力比を示し
、最後の点は最終的に得られる第2表に示した各電力比
を示している。
On the other hand, in FIGS. 7 to 9 showing the above-mentioned measurement results, the solid line indicates the theoretical value, and the dotted line indicates the measured value. Further, the first point in each figure indicates each power ratio in the input, and the last point indicates each power ratio finally obtained as shown in Table 2.

(発明の効果) 以上の説明から明らかなように、本発明によれば、核融
合プラズマの直接加熱などに多用される円形導波管Tε
。、 −TH,、モード変換器について、精密加工によ
り製作に相当の技術を要し、最適化に膨大な量の計算を
要する従来の正弦波状周期構造に替えて、極めて簡単な
階段状周期構造を用いることにより、つぎのような顕著
な効果を挙げることができる。
(Effects of the Invention) As is clear from the above explanation, according to the present invention, the circular waveguide Tε, which is often used for direct heating of nuclear fusion plasma, etc.
. , -TH,,For the mode converter, instead of the conventional sinusoidal periodic structure that requires a considerable amount of precision manufacturing technology and a huge amount of calculation for optimization, we have created an extremely simple step-like periodic structure. By using it, the following remarkable effects can be achieved.

(1)  従来の正弦波状周期構造に比して周期構造が
極めて簡単であり、製作が格段に容易である。
(1) The periodic structure is extremely simple compared to the conventional sinusoidal periodic structure, and manufacturing is much easier.

(2)オーバサイズ円形導波管によりモード変化器とし
て、膨大な量の計算により近似解しか得られない従来の
正弦波状周期構造に比して、格段に少ない量の計算によ
り厳密解を得て容易に最適設計を行なうことができ、し
かも、その自由度が大きい。
(2) By using an oversized circular waveguide as a mode changer, an exact solution can be obtained with a much smaller amount of calculation than with the conventional sinusoidal periodic structure, which requires an enormous amount of calculation to obtain only an approximate solution. Optimum design can be easily carried out, and the degree of freedom is large.

(3)円形導波管の平均半径からの周期構造による不連
続偏差があまり太き(ならないようになし得るので、あ
る程度大電力にも耐え得る。
(3) Since the discontinuous deviation due to the periodic structure from the average radius of the circular waveguide can be prevented from becoming too large, it can withstand a certain amount of high power.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明階段状周期構造円形導波管モード変換器
の構成例を模式的に示す縦断面図、第2図は従来の正弦
波状周期構造円形導波管モード変換器の構成を模式的に
示す縦断面図、第3図は本発明モード変換器の設計の初
期値を定義する図面、 第4図は本発明モード変換器の設計値の具体例を示す縦
断面図、 第5図は同じ(その設計値の他の具体例を示す縦断面図
、 第6図は本発明モード変換器の遠方放射電界に基づく電
力変換効率測定系の概略構成を示す構成配置図、 第7図乃至第9図は同じくその電力変換効率の測定結果
を各伝搬モードについてそれぞれ示す特性曲線図である
。 1・・・ガン発振器 2・・・反射電力吸収用サーキュレータ3・・・周波数
計     4・・・可変減衰器5.6・・・電力測定
用方向性結合器 7・・・方形−円形モード変換器 8・・・モードフィルタ  9・・・テーバ管10・・
・供試モード変換器 11・・・検出器第1図 第2図 第3図
FIG. 1 is a vertical cross-sectional view schematically showing an example of the configuration of a circular waveguide mode converter with a stepped periodic structure according to the present invention, and FIG. 2 is a schematic diagram showing the configuration of a conventional circular waveguide mode converter with a sine wave periodic structure. 3 is a drawing defining the initial values of the design of the mode converter of the present invention; FIG. 4 is a longitudinal sectional view showing a specific example of the design values of the mode converter of the present invention; FIG. 5 are the same (longitudinal cross-sectional view showing other specific examples of the design values; FIG. 6 is a configuration layout diagram showing the schematic configuration of the power conversion efficiency measurement system based on the far-field radiated electric field of the mode converter of the present invention; FIGS. 7 to 7). FIG. 9 is a characteristic curve diagram showing the measurement results of the power conversion efficiency for each propagation mode. 1... Gunn oscillator 2... Circulator for absorbing reflected power 3... Frequency meter 4... Variable attenuator 5.6... Directional coupler for power measurement 7... Rectangular-circular mode converter 8... Mode filter 9... Taber tube 10...
・Test mode converter 11...Detector Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1、管径が所定の範囲に亘り所定の周期で少なくとも1
段の段階状に繰返して増減する不連続部を介在させた円
形導波管よりなり、TE_o_nモード−TE_o_m
モード間における電磁波伝送モードの変換を行なうよう
にしたことを特徴とする階段状周期構造円形導波管モー
ド変換器。 2、前記少なくとも1段の段階状の繰返し増減を方形波
状の増減としたことを特徴とする特許請求の範囲第1項
記載の円形導波管モード変換器。 3、前記所定の周期を前記TE_o_nモードと前記T
E_o_mモードとの間におけるヒート波長に基づいて
設定するとともに、管径増減の前記所定の範囲を、管径
増減の繰返し周期の数と前記TE_o_nモードおよび
前記TE_o_mモードの各位相定数と電磁波伝送を表
わす1次ベッセル関数の0を除くn番目およびm番目の
零点とに基づいて設定することを特徴とする特許請求の
範囲第1項または第2項記載の階段状周期構造円形導波
管モード変換器。 4、特許請求の範囲第3項記載のように設定した前記所
定の周期および前記所定の範囲をモードマッチングの手
法を用いて最適化したことを特徴とする特許請求の範囲
第1項または第2項記載の階段状周期構造円形導波管モ
ード変換器。
[Claims] 1. At least once at a predetermined period over a predetermined range of pipe diameter
It consists of a circular waveguide with a discontinuous part that increases and decreases repeatedly in steps, and the TE_o_n mode - TE_o_m
A circular waveguide mode converter with a stepped periodic structure, characterized in that it converts electromagnetic wave transmission modes between modes. 2. The circular waveguide mode converter according to claim 1, wherein the at least one stepwise repeated increase/decrease is a rectangular wave-like increase/decrease. 3. The predetermined period is the TE_o_n mode and the T
It is set based on the heat wavelength between the E_o_m mode and the predetermined range of increase/decrease in the tube diameter, which represents the number of repetition periods of increase/decrease in the tube diameter, each phase constant of the TE_o_n mode and the TE_o_m mode, and electromagnetic wave transmission. The stepped periodic structure circular waveguide mode converter according to claim 1 or 2, wherein the step-like periodic structure circular waveguide mode converter is set based on the n-th and m-th zero points excluding 0 of the first-order Bessel function. . 4. Claim 1 or 2, characterized in that the predetermined period and the predetermined range set as described in Claim 3 are optimized using a mode matching technique. The step-like periodic structure circular waveguide mode converter described in 2.
JP27807986A 1986-11-21 1986-11-21 Circular waveguide mode converter with stepwise periodic structure Granted JPS63131701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27807986A JPS63131701A (en) 1986-11-21 1986-11-21 Circular waveguide mode converter with stepwise periodic structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27807986A JPS63131701A (en) 1986-11-21 1986-11-21 Circular waveguide mode converter with stepwise periodic structure

Publications (2)

Publication Number Publication Date
JPS63131701A true JPS63131701A (en) 1988-06-03
JPH058881B2 JPH058881B2 (en) 1993-02-03

Family

ID=17592346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27807986A Granted JPS63131701A (en) 1986-11-21 1986-11-21 Circular waveguide mode converter with stepwise periodic structure

Country Status (1)

Country Link
JP (1) JPS63131701A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017105062A1 (en) * 2015-12-14 2017-06-22 한국전기연구원 Method and system for removing biofilm by using high power millimeter waves
CN113278854A (en) * 2021-05-24 2021-08-20 河北新立中有色金属集团有限公司 SiCp/Al-Si-Cu composite powder material and preparation method thereof
CN115925431A (en) * 2022-12-26 2023-04-07 宜兴瑞泰耐火材料工程有限公司 High-thermal-conductivity self-flow castable for water-cooled wall and preparation process thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4889655A (en) * 1972-02-25 1973-11-22
JPS523705A (en) * 1975-11-29 1977-01-12 Kayaba Ind Co Ltd Gear pump
JPS52135649A (en) * 1976-05-10 1977-11-12 Nippon Telegr & Teleph Corp <Ntt> Mode exciter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4889655A (en) * 1972-02-25 1973-11-22
JPS523705A (en) * 1975-11-29 1977-01-12 Kayaba Ind Co Ltd Gear pump
JPS52135649A (en) * 1976-05-10 1977-11-12 Nippon Telegr & Teleph Corp <Ntt> Mode exciter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017105062A1 (en) * 2015-12-14 2017-06-22 한국전기연구원 Method and system for removing biofilm by using high power millimeter waves
CN113278854A (en) * 2021-05-24 2021-08-20 河北新立中有色金属集团有限公司 SiCp/Al-Si-Cu composite powder material and preparation method thereof
CN115925431A (en) * 2022-12-26 2023-04-07 宜兴瑞泰耐火材料工程有限公司 High-thermal-conductivity self-flow castable for water-cooled wall and preparation process thereof
CN115925431B (en) * 2022-12-26 2023-09-05 宜兴瑞泰耐火材料工程有限公司 High-heat-conductivity self-flowing castable for water-cooled wall and preparation process thereof

Also Published As

Publication number Publication date
JPH058881B2 (en) 1993-02-03

Similar Documents

Publication Publication Date Title
Thumm High-power millimetre-wave mode converters in overmoded circular waveguides using periodic wall perturbations
Neilson et al. Determination of the resonant frequencies in a complex cavity using the scattering matrix formulation
Thumm et al. Design of short high-power TE/sub 11/-HE/sub 11/mode converters in highly overmoded corrugated waveguides
Burt et al. Dispersion of helically corrugated waveguides: Analytical, numerical, and experimental study
Thumm High power mode conversion for linearly polarized HE11 hybrid mode output
Cui et al. High-Efficiency, Broadband Converter From A Rectangular Waveguide TE 10 Mode to A Circular Waveguide TM 01 Mode for Overmoded Device Measurement
US7369011B2 (en) High order mode electromagnetic wave coupler and coupling method using proportional distributing waves
Kumrić et al. Optimization of mode converters for generating the fundamental TE01 mode from TE06 gyrotron output at 140 GHz
Garner et al. Design study of a 372-GHz higher order mode input coupler
Donaldson et al. CNC machined helically corrugated interaction region for a THz gyrotron traveling wave amplifier
Kinzer et al. Some results on cylindrical cavity resonators
Kumrić et al. Optimized overmoded TE01-to-TM11 mode converters for high-power millimeter wave applications at 70 and 140 GHz
JPS63131701A (en) Circular waveguide mode converter with stepwise periodic structure
Pohl et al. High precision radar distance measurements in overmoded circular waveguides
Donaldson et al. Fivefold helically corrugated waveguide for high-power W-band gyro-devices and pulse compression
Thumm Computer-aided analysis and design of corrugated TE 11 to HE 11 mode converters in highly overmoded waveguides
Thumm et al. TE 03 to TE 01 mode converters for use with a 150 GHz gyrotron
Alexandrov et al. Low-power excitation of gyrotron-type modes in a cylindrical waveguide using quasi-optical techniques
Pu et al. Theoretical and experimental investigations on a compact and broadband TE 01 oversized deformed waveguide bend
US6879226B2 (en) Waveguide quardruple mode microwave filter having zero transmission
Gu et al. Design of TE01-to-HE11 mode converters for high-power millimeter wave applications at 35 GHz
Zhang et al. Mode analysis of gyrotron radiation by far field measurements
Doane Compact HE 11 to surface wave converters for high power waveguide dummy loads
CN103996893A (en) Low-order whispering gallery mode waveguide radiator
Shapiro et al. Calculation of a hyperbolic corrugated horn converting the TEM 00 mode to the HE 11 mode

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term