JPH058881B2 - - Google Patents

Info

Publication number
JPH058881B2
JPH058881B2 JP61278079A JP27807986A JPH058881B2 JP H058881 B2 JPH058881 B2 JP H058881B2 JP 61278079 A JP61278079 A JP 61278079A JP 27807986 A JP27807986 A JP 27807986A JP H058881 B2 JPH058881 B2 JP H058881B2
Authority
JP
Japan
Prior art keywords
mode
periodic structure
circular waveguide
mode converter
circular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61278079A
Other languages
Japanese (ja)
Other versions
JPS63131701A (en
Inventor
Masamitsu Nakajima
Osami Wada
Juji Taki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Original Assignee
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University filed Critical Kyoto University
Priority to JP27807986A priority Critical patent/JPS63131701A/en
Publication of JPS63131701A publication Critical patent/JPS63131701A/en
Publication of JPH058881B2 publication Critical patent/JPH058881B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、円形導波管による電磁波の伝送モー
ドをTEpoモードとTEpnモードとの間で変換する
TEpo−TEpnモード変換器に関し、特に、円形導
波管の内周壁面の周期構造を段階状に改良して、
その設計および製作が容易になるようにしたもの
である。 (従来の技術) 従来、核融合プラズマの加熱方法の一種とし
て、大電力のジヤイロトロンの出力による直接加
熱がある。しかして、ジヤイロトロンからの高い
周波数帯のマイクロ波出力は、円形導波管の
TE02を中心としたTEpoモードで取出されるが、
核融合プラズマの加熱、制御、計測にとつては
HE11モードなどの直接偏波のマイクロ波を用い
るのが遥かに有利である。したがつて、従来か
ら、ジヤイロトロンの円形導波管TE02モード出
力をTE01モードを介してHE11モードの直線偏波
に変換することが一般に行なわれていた。 また、実験室レベルでの簡易なオーバサイズモ
ード変換器としてTE02モード−TE01モード間の
円形導波管モード変換器が従来一般に用いられて
いた。 (発明が解決しようとする問題点) しかして、マイクロ波、ミリ波等の高い周波数
帯における大電力用円形導波管TEpo−TEpnモー
ド変換器としては、従来、ツム(M.Thumm)に
よるInt.Electron誌、第57巻、1984年、第1225頁
乃至1246頁に記載の正弦波状周期構造円形導波管
TEpoモード−TEpnモード変換器が専ら用いられ
ていた。このモード変換器は、後に詳述するよう
に円形導波管の内周壁面の半径をTEpoモードと
TEpnモードとの間におけるビート波長を周期と
する正弦波状に変化させ、円形導波管のかかる周
期構造の不連続部を通過させることにより、
TEpo−TEpn間のモード変換が行なわれるように
したものである。 しかしながら、円形導波管の内周壁面の半径を
設計どおりに正確に正弦波状に変化させる加工・
製作には高度の技術と設備とが必要であつて容易
でないばかりでなく、後述するようにして得られ
る設計値に基づいて実際に最高変換効率が得られ
る最適値の寸法形状を求めるには、正弦波を極め
て多数の微細な段階状に近似して所要電磁波成分
が最大となる条件を決める膨大な量の計算を必要
とし、しかも、その結果とし近似解しか得られな
い、という問題点があつた。 (問題点を解決するための手段) 本発明の目的は、上述した従来の問題点を解決
し、設計・製作が容易であり、設計値を最適化す
るための計算が比較的簡単であつて厳密解が得ら
れるようにした周期構造の不連続部からなる円形
導波管TEpo−TEpn変換器を提供することにあ
る。 すなわち、本発明階段状周期構造円形導波管モ
ード変換器は、管径が所定の範囲に亘り所定の周
期で少なくとも1段の段階状に繰返して増減する
不連続部を介在させた円形導波管よりなり、
TEpoモード−TEpnモード間における電磁波伝送
モードの変換を行なうようにしたことを特徴とす
るものである。 (作用) したがつて、本発明によれば、従来に比して構
造が簡単であり、設計・製作が格段に容易であつ
て、しかも、設計値の最適化を確実・容易に行な
い得る周期構造を備えた円形導波管モード変換器
を実現することができる。 (実施例) 以下に図面を参照して実施例につき本発明を詳
細に説明する。 まず、本発明階段状周期構造円形導波管モード
変換器の周期構造をなす階段を一段のみとした方
形波状周期構造を備えた最も簡単な構成例を第1
図に模式的に示す。図示の構成例は、伝送すべき
電磁波の波長に対しオーバサイズ導波管として作
用する半径aを有する円形導波管の中間に、半径
を±Δaだけ単一階段状に変化させた長さの2
種類の円形導波管を、中心軸を一致させて複数段
交互に継続接続した形態の不連続部を介在させて
構成したものであり、実際に半径a+Δaおよび
a−Δaをそれぞれ有する長さの2種類の円形
導波管を同軸に嵌合させて製作させることもで
き、また、a−Δaを超えぬ半径を有する肉厚の
円筒形導体の内周面を例えば中ぐり旋盤などによ
り加工して製作することもできる。 上述の構成例における導波管半径の偏差値Δa
および区間長は、第2図に示すように、半径が
正弦波状に連続して変化する前述した従来の正弦
波状周期構造円形導波管モード変換器からの近似
により、正弦波状周期構造の不連続につき後述す
るようにして求める半径の偏移量および繰返し偏
移の半周期長をそれぞれ半径偏差値Δaおよび区
間長の設計における初期値とし、つぎに述べる
ようにモードマツチングの手法を用いた最適化の
計算をコンピユータを使用して行ない、最高の変
換効率が得られる最適設計値を求める。 すなわち、さきに学会発表を行なつた計算過程
の詳細については記述を省略するが、円形導波管
の第1図に示した構成の不連続部における電磁波
伝搬の振舞いを、円形導波管の半径が急変する階
段状不連続面の前後において、伝搬モードが異な
るにも拘らず、電磁界が連続するようにした場合
における透過電力と反射電力とをモードマツチン
グの手法により解析して散乱行列式として求め、
かかる不連続面が複数段継続した場合における総
合の透過電力と反射電力とを散乱行列式の継続接
続として算出し、前述した半径偏差値Δaおよび
区間長をそれぞれの初期値からわずかずつ変化
させながら、上述した総合の透過電力と反射電力
とを繰返して算出し、透過電力が最大となり、反
射電力が最小となる最高変換効率が得られたとき
の半径偏差値Δaおよび区間長をそれぞれの最
適設計値とする。 しかして、本発明円形導波管モード変換器にお
ける不連続部の半径偏差値Δaおよび区間長に
対する上述した設計値最適化の出発点とする前述
した初期値は、従来の正弦波状周期構造の円形導
波管モード変換器についてツム(M.Thumm)が
開示した計算方法により、つぎのようにして求め
る。 第3図に示すように、正弦波状周期構造を有す
る円形導波管不連続部における平均半径a0に対
し、管軸方向Zの関数をなす半径a(z)の偏移
量をΔaとし、その偏移の周期長を相互にモード
変換する円形TEpoモードとTEpnモードとのビー
ト波長λ〓に等しく設定すると、かかる周期構造の
不連続部においては伝送モード間の結合が生じ、
モード変換器として作用するようになる。 しかして、半径偏移の周期長に等しいビート波
長λ〓は、TEpoモードおよびTEpnモードの位相定
数をそれぞれβpoおよびβpnとすると、つぎの(1)式
によつて求められる。 λ〓=2π/|βpo−βpn| (1) 一方、半径偏移量Δaは、前述したように管軸
方向Zの関数となる半径a(z)を表わすつぎの
(2)式から求められる。 a(z)=a0{1+εsin(2πz/λ〓)}(2) 上式(2)中εは、不連続部の周期構造をなす半径
偏移周期の繰返し数Nを通例3〜6の範囲におい
て適切に選定して不連続部の全長LをL=N・λ〓
とすると、つぎの(3)式により与えられる。 ε=1/2・N・Cpo,pn (3) ここに、po,pnは、一次ベツセル関数J1におけ
る0を除いたn番目およびm番目の零点p1oおよ
びp1nを用いてつぎの(4)式によつて表わされる。 上述のようにして得られた各パラメータによる
正弦波状周期構造からの近似により、本発明階段
状周期構造円形導波管モード変換器における半径
偏差値Δaおよび区間長の初期値をつぎの(5)式
のように設定する。 Δa=ε・a0,=λ〓/2 (5) このようにして設定した初期値から出発して、
半径偏差値Δaおよび区間長に前述したような
最適化の計算を施し、最高変換効率が得られる最
適設定値を求める。 なお、上述の構成例においては、階段状周期構
造における円形導波管の平均半径a0からの偏差値
を±Δaと上下対称に増減させたが、結果的に得
られる最高変換効率が実用可能な90%以上となる
限りにおいては、必ずしも対称とする必要はな
く、例えば交互に嵌合させて階段状周期構造とす
る2種類の素材導波管の管径の規格等により制約
を受けた場合などにおいては、上述のようにして
求めた最適設計値に近い規格の管径を有する2種
類の円形導波管を用い、階段状周期構造の区間長
のみを最適設計値どおりに設定するようにする
ことも可能である。 上述のようにして構成した第1図示の構成例に
よる本発明階段状周期構造円形導波管モード変換
器に接続した一方の円形導波管から円形TEpo
ードの電磁波が入射すると、その電磁波の伝送モ
ードTEpoは階段状周期構造の不連続部において
種々のモードに変化する。しかしながら、同軸型
円形導波管においては円形TEpxなる形の伝送モ
ードの電磁波しか発生せず、しかも、この階段状
周期構造においては入力TEpoモードと出力TEpn
とのビート波長λ〓に近似した周期長の周期的変化
を円形導波管の半径a(z)が呈しているので、
所望の円形TEpnモードの電磁波のみが他方の円
形導波管から取出され、TEpoモード−TEpnモー
ド間のモード変換が達成される。 なお、第1図示の構成例においては、本発明に
より円形導波管の半径を周期的に変化させる階段
状周期構造を単一段の増減のみとし、方形波状周
期構造としたが、正弦波状周期構造からの近似に
より複数段の階段状周期構造とすることもでき、
しかも、その複数段を各段均等の階段状とするこ
とも、また、各段毎に不均等の階段状とすること
もでき、いずれの場合においても、単一段の階段
状周期構造につき前述したと同様のモードマツチ
ングの手法を用いてそれぞれ最適設計値を求め得
ること勿論でる。しかして、いずれの場合におい
ても、正弦波状周期構造からの近似に基づくとは
いえ、有限段数の階段状周期構造に対する設計値
の最適化であるから、正弦波状周期構造自体の設
計値の最適化においては無数の微細な階段状近似
により膨大な量の計算を要してしかも近似解しか
得られないのに反し、格段に少ない量を計算によ
り厳密解として最適設計値を得ることができる。 つぎに、本発明階段状周期構造円形導波管モー
ド変換器の具体的数値例について説明する。 (1) 周波数35.5GHzの円形TE01→TE02モード変
換器。 周波数35.5GHz、導波管半径16mmのオーバサイ
ズ導波系における円形TE01→TE02モード変換器
の構造について具体的数値例を第4図に示す。図
示の具体例については、TE01モード−TE02モー
ド間のビート波長λ〓=60.8mmとなり、半径偏移周
期の繰返し数N=4とすると平均半径a0=16mmに
対する偏移量Δa=1.28mmとなる。しかして、素
材導波管の入手の容易さや加工の容易さを考慮し
て、半径の偏差値Δaを+1.0mmおよび−1.5mmとし
た半径1.7mmおよび14.5mmの素材導波管を採用す
ることとし、階段状周期構造の周期長2の上述
した初期値λ〓=60.8mmから出発して最適化を行な
い、周期長2=59.7mmとした。かかる構造の不
連続部の前後に半径16mmの円形導波管を接続して
その両端に接続用フランジを取付ける。 上述した具体例における各伝送モードによる透
過電力および反射電力の電力比を初期値および最
適設計値についてそれぞれ示すとつぎの第1表お
よび第2表のようになり、初期値によつて得られ
るモード変換効率が約85%であるのに対し、最適
設計値によつて得られるモード変換効率は約93%
まで改善されており、実測の結果もほぼ同様であ
つた。なお、同じ初期値に基づく従来の正弦波状
周期構造のモード変換器においてはモード変換効
率が約90%になり、前述したような近似により最
適化を施せば約97%にも達するとみられるが、モ
ード変換器としては90%の変換効率があれば充分
に実用になるので、正弦波状周期構造のモード変
換器については極めて膨大な量の計算を行なつて
最適化を施すことなく、従来、初期値に基づいて
設計・製作が行なわれていたが、その精密加工に
相当の技術を要するほか、実際に製作したものが
設計値から外れれば所期のモード変換効率が得ら
れない、という問題点があつた。
(Industrial Application Field) The present invention converts the transmission mode of electromagnetic waves by a circular waveguide between TE po mode and TE pn mode.
Regarding the TE po -TE pn mode converter, in particular, the periodic structure of the inner peripheral wall of the circular waveguide is improved in stages,
This makes the design and production easier. (Prior Art) Conventionally, as a type of heating method for fusion plasma, there is direct heating using the output of a high-power Gyrrotron. Therefore, the high frequency microwave output from the Gyrrotron is transmitted through the circular waveguide.
Although it is taken out in TE po mode centered on TE 02 ,
For heating, control, and measurement of fusion plasma
It is much more advantageous to use directly polarized microwaves such as HE 11 mode. Therefore, conventionally, it has been common practice to convert the circular waveguide TE 02 mode output of a gyrrotron into a linearly polarized HE 11 mode via the TE 01 mode. Furthermore, a circular waveguide mode converter between TE 02 mode and TE 01 mode has been commonly used as a simple oversized mode converter at the laboratory level. (Problem to be Solved by the Invention) However, as a circular waveguide TE po -TE pn mode converter for high power use in high frequency bands such as microwaves and millimeter waves, conventionally, M.Thumm A circular waveguide with a sinusoidal periodic structure as described in Int.Electron, Vol. 57, 1984, pp. 1225-1246.
TE po mode to TE pn mode converters were used exclusively. This mode converter converts the radius of the inner peripheral wall of the circular waveguide into the TE po mode, as will be detailed later.
By changing the beat wavelength between the TE pn mode in a sinusoidal manner and passing through the discontinuous part of the periodic structure of the circular waveguide,
This allows mode conversion between TE po and TE pn . However, there is a process that changes the radius of the inner circumferential wall of a circular waveguide into a sinusoidal waveform exactly as designed.
Manufacturing requires advanced technology and equipment, which is not easy, and in order to find the optimal dimensions and shape that will actually provide the highest conversion efficiency, based on the design values obtained as described below. The problem is that it requires an enormous amount of calculation to determine the conditions under which the required electromagnetic wave component is maximized by approximating a sine wave into an extremely large number of minute steps, and as a result only approximate solutions can be obtained. Ta. (Means for Solving the Problems) An object of the present invention is to solve the above-mentioned conventional problems, to be easy to design and manufacture, and to make calculations for optimizing design values relatively simple. The object of the present invention is to provide a circular waveguide TE po -TE pn converter consisting of discontinuous parts of a periodic structure in which an exact solution can be obtained. That is, the stepped periodic structure circular waveguide mode converter of the present invention is a circular waveguide with a discontinuous portion in which the pipe diameter repeatedly increases and decreases in at least one step at a predetermined period over a predetermined range. Consisting of a tube,
This is characterized in that the electromagnetic wave transmission mode is converted between the TE po mode and the TE pn mode. (Function) Therefore, according to the present invention, the structure is simpler than the conventional one, the design and manufacturing are much easier, and the cycle is such that design values can be reliably and easily optimized. A circular waveguide mode converter with a structure can be realized. (Example) The present invention will be described in detail below with reference to the drawings. First, a first example of the simplest configuration of a circular waveguide mode converter with a stepped periodic structure according to the present invention having a square wave periodic structure with only one step forming the periodic structure will be described.
It is schematically shown in the figure. The illustrated configuration example consists of a circular waveguide with a radius a that acts as an oversized waveguide for the wavelength of the electromagnetic waves to be transmitted, and a circular waveguide with a length in the middle of which the radius is changed in a single step by ±Δa. 2
It is constructed by interposing discontinuous parts in which multiple stages of circular waveguides are connected in an alternating manner with their central axes coincident, and in actuality they have lengths with radii a + Δa and a - Δa, respectively. It is also possible to manufacture two types of circular waveguides by coaxially fitting them together, or by machining the inner peripheral surface of a thick cylindrical conductor with a radius not exceeding a-Δa using, for example, a boring lathe. It can also be manufactured by Deviation value Δa of waveguide radius in the above configuration example
As shown in Figure 2, the discontinuity of the sinusoidal periodic structure is determined by approximation from the conventional circular waveguide mode converter with a sinusoidal periodic structure in which the radius changes continuously in a sinusoidal manner. The radius deviation amount and the half-period length of the repetition deviation obtained as described below are used as initial values in the design of the radius deviation value Δa and the section length, respectively, and the optimum value is calculated using the mode matching method as described below. A computer is used to calculate the conversion rate, and the optimal design value that provides the highest conversion efficiency is determined. In other words, we will omit the details of the calculation process that was presented earlier at an academic conference, but we will explain the behavior of electromagnetic wave propagation at the discontinuous part of the circular waveguide shown in Figure 1. A scattering matrix is obtained by analyzing the transmitted power and reflected power using a mode matching method when the electromagnetic field is continuous even though the propagation mode is different before and after a step-like discontinuous surface where the radius suddenly changes. Find it as a formula,
The total transmitted power and reflected power in the case where such discontinuous surfaces continue in multiple stages are calculated as a continuous connection of the scattering determinant, and the above-mentioned radius deviation value Δa and section length are slightly changed from their initial values. , the above-mentioned total transmitted power and reflected power are repeatedly calculated, and the radius deviation value Δa and section length are determined for each optimal design when the highest conversion efficiency is obtained, where the transmitted power is maximum and the reflected power is minimum. value. Therefore, the above-mentioned initial values used as the starting point for optimizing the above-mentioned design values for the radius deviation value Δa and section length of the discontinuity in the circular waveguide mode converter of the present invention are different from the conventional It is determined as follows using the calculation method disclosed by M. Thumm for a waveguide mode converter. As shown in FIG. 3, with respect to the average radius a0 in the circular waveguide discontinuity having a sinusoidal periodic structure, the deviation amount of the radius a(z) which is a function of the tube axis direction Z is Δa, When the periodic length of the shift is set equal to the beat wavelength λ of the circular TE po mode and TE pn mode that mutually mode convert, coupling between the transmission modes occurs at the discontinuous part of the periodic structure,
It comes to act as a mode converter. Therefore, the beat wavelength λ〓, which is equal to the period length of the radial shift, can be obtained by the following equation (1), assuming that the phase constants of the TE po mode and the TE pn mode are β po and β pn , respectively. λ〓=2π/|β po −β pn | (1) On the other hand, the radial deviation amount Δa is expressed as
It is obtained from equation (2). a(z)=a 0 {1+εsin(2πz/λ〓)}(2) In the above equation (2), ε is the number of repetitions N of the radial shift period forming the periodic structure of the discontinuity, which is usually 3 to 6. Appropriately select the total length of the discontinuous part within the range L=N・λ〓
Then, it is given by the following equation (3). ε=1/2・N・C po,pn (3) Here, po,pn is the following expression using the n-th and m-th zero points p 1o and p 1n excluding 0 in the linear Betzel function J 1 . It is expressed by equation (4). By approximation from the sinusoidal periodic structure using each parameter obtained as described above, the initial values of the radius deviation value Δa and section length in the circular waveguide mode converter with the stepped periodic structure of the present invention can be calculated as follows (5) Set it like the expression. Δa=ε・a 0 ,=λ〓/2 (5) Starting from the initial value set in this way,
The radius deviation value Δa and the section length are subjected to optimization calculations as described above, and the optimal setting value that provides the highest conversion efficiency is determined. In addition, in the above configuration example, the deviation value from the average radius a 0 of the circular waveguide in the stepped periodic structure was vertically symmetrically increased or decreased to ±Δa, but the resulting highest conversion efficiency is practical. As long as it is 90% or more, it does not necessarily have to be symmetrical; for example, if there are restrictions such as the pipe diameter standards of two types of waveguides that are fitted alternately to form a stepped periodic structure. In such cases, two types of circular waveguides with standard tube diameters close to the optimal design value obtained as described above are used, and only the section length of the stepped periodic structure is set to the optimal design value. It is also possible to do so. When an electromagnetic wave in the circular TE po mode is incident from one of the circular waveguides connected to the stepped periodic structure circular waveguide mode converter of the present invention according to the configuration example shown in the first figure configured as described above, the electromagnetic wave is The transmission mode TE po changes into various modes at discontinuities in the stepped periodic structure. However, in a coaxial circular waveguide, only the electromagnetic waves in the circular TE px transmission mode are generated, and in this stepped periodic structure, the input TE po mode and the output TE pn
Since the radius a(z) of the circular waveguide exhibits a periodic change in period length that approximates the beat wavelength λ〓,
Only the electromagnetic waves of the desired circular TE pn mode are extracted from the other circular waveguide, and mode conversion between the TE po mode and the TE pn mode is achieved. In the configuration example shown in the first diagram, according to the present invention, the step-like periodic structure that periodically changes the radius of the circular waveguide is increased or decreased by only a single step, and is made into a square wave-like periodic structure, but the sine-wave periodic structure It is also possible to create a multi-stage step-like periodic structure by approximating from
Furthermore, the plurality of stages can be made into a step-like shape with each step being equal, or each step can be made into an unequal step-like shape. Of course, the optimum design values can be obtained using the same mode matching method as in the above. Therefore, in any case, although it is based on approximation from a sinusoidal periodic structure, it is an optimization of the design value for a stepped periodic structure with a finite number of stages, so it is an optimization of the design value of the sinusoidal periodic structure itself. In contrast, an enormous amount of calculation is required due to countless minute step-like approximations, and only an approximate solution can be obtained.However, it is possible to obtain the optimal design value as an exact solution by calculating a much smaller amount. Next, specific numerical examples of the stepped periodic structure circular waveguide mode converter of the present invention will be explained. (1) Circular TE 01 → TE 02 mode converter with frequency 35.5GHz. Figure 4 shows a concrete numerical example of the structure of a circular TE 01 → TE 02 mode converter in an oversized waveguide system with a frequency of 35.5 GHz and a waveguide radius of 16 mm. For the specific example shown, if the beat wavelength λ = 60.8 mm between the TE 01 mode and the TE 02 mode, and the number of repetitions of the radial shift period N = 4, the deviation amount Δa = 1.28 for the average radius a 0 = 16 mm. mm. Therefore, considering the ease of obtaining material waveguides and the ease of processing, we adopted material waveguides with radii of 1.7 mm and 14.5 mm with radius deviation values Δa of +1.0 mm and -1.5 mm. In this case, optimization was performed starting from the above-mentioned initial value λ = 60.8 mm of the period length 2 of the stepped periodic structure, and the period length 2 was set to 59.7 mm. A circular waveguide with a radius of 16 mm is connected before and after the discontinuous part of such a structure, and connecting flanges are attached to both ends of the waveguide. Tables 1 and 2 below show the power ratios of transmitted power and reflected power for each transmission mode in the above specific example for initial values and optimal design values, respectively, and the modes obtained by the initial values are shown in Tables 1 and 2 below. While the conversion efficiency is approximately 85%, the mode conversion efficiency obtained with the optimal design value is approximately 93%.
The actual measurement results were almost the same. In addition, in a conventional mode converter with a sinusoidal periodic structure based on the same initial value, the mode conversion efficiency is about 90%, and if optimization is performed using the approximation described above, it is expected to reach about 97%. As a mode converter, a conversion efficiency of 90% is sufficient for practical use, so conventionally, mode converters with a sinusoidal periodic structure were initially developed without performing an extremely large amount of calculations and optimization. Design and manufacturing were performed based on these values, but in addition to requiring considerable skill in precision machining, the problem was that if the actually manufactured product deviated from the design values, the desired mode conversion efficiency could not be obtained. It was hot.

【表】【table】

【表】 (2) 周波数56GHzの円形TE02→TE01モード変換
器。 周波数56GHz、導波管半径12.8mmのオーバサイ
ズ導波系における円形TE02→TE01モード変換器
の構造について具体的数値例を第5図に示す。図
示の具体例においては、平均半径a0=12.2mmに対
する最適偏移量Δaを±0.6mmとし、半径13.4mmお
よび12.2mmの素材導波管を採用し、階段状周期構
造の周期長64.6mmとして5周期繰返し、両端の円
形導波管に接続用フランジを取付ける。 上述した具体例における各伝送モードによる透
過電力および反射電力の電力比を最適設計値につ
いて示すとつぎの第3表のようになり、初期値に
よつて得られるモード変換効率が約95%であるの
に対し、最適設計値によつて得られるモード変換
効率は約98%まで改善されている。
[Table] (2) Circular TE 02 → TE 01 mode converter with a frequency of 56 GHz. Figure 5 shows a concrete numerical example of the structure of a circular TE 02 → TE 01 mode converter in an oversized waveguide system with a frequency of 56 GHz and a waveguide radius of 12.8 mm. In the illustrated example, the optimum deviation amount Δa for the average radius a 0 = 12.2 mm is ±0.6 mm, material waveguides with radii of 13.4 mm and 12.2 mm are used, and the period length of the stepped periodic structure is 64.6 mm. Repeat this for 5 cycles and attach connecting flanges to the circular waveguides at both ends. The power ratio of transmitted power and reflected power for each transmission mode in the above-mentioned specific example is shown in Table 3 below with respect to the optimum design value, and the mode conversion efficiency obtained with the initial value is approximately 95%. On the other hand, the mode conversion efficiency obtained with the optimal design values is improved to about 98%.

【表】 本発明モード変換器に対する設計値の上述した
最適化の結果を検証するために、例えば前述した
具体的数値例(1)の円形TE01→TE02モード変換器
につき、階段状周期構造の半径偏移周期の繰返し
数Nを順次に増大させたときの不連続端面開口か
ら電磁波を空中に放射させてそれぞれの遠方放射
電界強度を測定し、その測定結果からつぎの(6)式
によりTEpn(m=1,2,3)モードの電磁波の
振幅の絶対値|Ao|を求めて各伝搬モードの電
力を算出した。 |Aoz=|E|θ=θn2R2/fn(θn2(m=
1,2,3)(6) ここに、R,θ,は放射点を原点とした測定
点の極座標であり、Eは、放射開口端面座標角
に関する遠方放射電界の成分である。 上述した遠方放射電界測定系の概略構成配置を
第6図に示し、半径偏移周期繰返し数Nを順次に
増大させたときにおけるTE01,TE02,TE03各伝
搬モードの電力比の測定結果を第7図、第8図、
第9図にそれぞれ示す。 第6図示の測定系においては、ガン発振器1か
らの35.5GHzの電磁波は、反射波吸収用サーキユ
レータ2および周波数計3を順次に介し、可変減
衰器4に供給して電力を調整したうえで、方向性
結合器5および6をそれぞれ介して供給電力およ
び反射電力をそれぞれ測定した後に、モード変換
器7に供給し、測定系用方形TE10モードを円形
TE01モードに変換し、さらにモードフイルタ8
を介して取出した円形TE01モードの電磁波のみ
を管径変換用テーパ管9を介して第4図示の構成
による供試モード変換器10に供給する。その供
試モード変換器10の端面開口からの遠方放射電
界を検出器11により検出し、その放射パターン
を解析して各伝搬モードTE01,TE02,TE03の電
力を算出する。 一方、上述の測定結果を示す第7図乃至第9図
においては、実線により理論値を示し、点線によ
り測定値を示す。また、各図の最初の点は入力に
おける各電力比を示し、最後の点は最終的に得ら
れる第2表に示した各電力比を示している。 (発明の効果) 以上の説明から明らかなように、本発明によれ
ば、核融合プラズマの直接加熱などに多用される
円形導波管TEpo−TEpnモード変換器について、
精密加工により製作に相当の技術を要し、最適化
に膨大な量の計算を要する従来の正弦波状周期構
造に替えて、極めて簡単な階段状周期構造を用い
ることにより、つぎのような顕著な効果を挙げる
ことができる。 (1) 従来の正弦波状周期構造に比して周期構造が
極めて簡単であり、製作が格段に容易である。 (2) オーバサイズ円形導波管によりモード変換器
として、膨大な量の計算により近似解しか得ら
れない従来の正弦波状周期構造に比して、格段
に少ない量の計算により厳密解を得て容易に最
適設計を行なうことができ、しかも、その自由
度が大きい。 (3) 円形導波管によるTEモード変換器における
管径の正弦波状摂動を製作容易な階段状摂動に
よつて実現する場合に、従来技術においてはそ
の階段状摂動の基本波成分が正弦状摂動に等し
くなるように近似するのが常道であろうが、計
算および実験に基づいて以上に説明したよう
に、かかる正弦波状摂動に対する近似ではモー
ド変換効率が低く、本発明により階段状摂動の
周期および振幅を正弦波状摂動における値から
それぞれずらした方が却つて高い変換効率が得
られる。 (4) 円形導波管の平均半径からの周期構造による
不連続偏差があまり大きくならにようになし得
るので、ある程度大電力にも耐え得る。
[Table] In order to verify the results of the above-mentioned optimization of the design values for the mode converter of the present invention, for example, for the circular TE 01 → TE 02 mode converter of the above-mentioned specific numerical example (1), the step-like periodic structure When the number of repetitions N of the radial shift period is increased sequentially, electromagnetic waves are radiated into the air from the discontinuous end face opening, and the respective far-field radiated electric field strengths are measured, and from the measurement results, the following equation (6) is used. The absolute value |A o | of the amplitude of the electromagnetic wave in the TE pn (m=1, 2, 3) mode was determined to calculate the power in each propagation mode. |A o | z = |E|θ=θ n | 2 R 2 /f nn ) 2 (m=
1, 2, 3) (6) Here, R, θ are the polar coordinates of the measurement point with the radiation point as the origin, and E is the component of the far radiation electric field regarding the coordinate angle of the radiation aperture end face. Figure 6 shows the schematic arrangement of the far-field radiation electric field measurement system described above, and shows the measurement results of the power ratio of each propagation mode of TE 01 , TE 02 , and TE 03 when the number of radial shift cycle repetitions N is increased sequentially. Figure 7, Figure 8,
Each is shown in FIG. In the measurement system shown in FIG. 6, the 35.5 GHz electromagnetic wave from the Gunn oscillator 1 passes through the reflected wave absorption circulator 2 and the frequency meter 3 in sequence, and is supplied to the variable attenuator 4 to adjust the power. After measuring the supplied power and reflected power through the directional couplers 5 and 6, respectively, they are supplied to the mode converter 7, and the rectangular TE 10 mode for the measurement system is converted into a circular
Convert to TE 01 mode and add mode filter 8
Only the circular TE 01 mode electromagnetic waves taken out through the pipe are supplied to the test mode converter 10 having the configuration shown in FIG. 4 through the tapered pipe 9 for pipe diameter conversion. The detector 11 detects the far-field radiated electric field from the end face opening of the test mode converter 10, analyzes the radiation pattern, and calculates the power of each propagation mode TE 01 , TE 02 , TE 03 . On the other hand, in FIGS. 7 to 9 showing the above-mentioned measurement results, the solid line indicates the theoretical value, and the dotted line indicates the measured value. Further, the first point in each figure indicates each power ratio in the input, and the last point indicates each power ratio finally obtained as shown in Table 2. (Effects of the Invention) As is clear from the above description, according to the present invention, the circular waveguide TE po -TE pn mode converter, which is often used for direct heating of fusion plasma, etc.
By using an extremely simple step-like periodic structure instead of the conventional sinusoidal periodic structure, which requires considerable technology to manufacture through precision processing and a huge amount of calculations to optimize, we have achieved the following remarkable results. It can be said that it is effective. (1) The periodic structure is extremely simple compared to the conventional sinusoidal periodic structure, and manufacturing is much easier. (2) By using an oversized circular waveguide as a mode converter, an exact solution can be obtained with a much smaller amount of calculations than with the conventional sinusoidal periodic structure, which requires a huge amount of calculations to obtain only approximate solutions. Optimum design can be easily carried out, and the degree of freedom is large. (3) When a sinusoidal perturbation of the pipe diameter in a TE mode converter using a circular waveguide is realized by an easy-to-manufacture step-like perturbation, in the conventional technology, the fundamental wave component of the step-like perturbation is a sinusoidal perturbation. However, as explained above based on calculations and experiments, the approximation for such a sinusoidal perturbation has low mode conversion efficiency, and the present invention improves the period and period of the step-like perturbation. On the contrary, higher conversion efficiency can be obtained by shifting the amplitude from the value in the sinusoidal perturbation. (4) Since the discontinuous deviation due to the periodic structure from the average radius of the circular waveguide is too large, it can withstand a certain amount of high power.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明階段状周期構造円形導波管モー
ド変換器の構成例を模式的に示す縦断面図、第2
図は従来の正弦波状周期構造円形導波管モード変
換器の構成を模式的に示す縦断面図、第3図は本
発明モード変換器の設計の初期値を定義する図
面、第4図は本発明モード変換器の設計値の具体
例を示す縦断面図、第5図は同じくその設計値の
他の具体例を示す縦断面図、第6図は本発明モー
ド変換器の遠方放射電界に基づく電力変換効率測
定系の概略構成を示す構成配置図、第7図乃至第
9図は同じくその電力変換効率の測定結果を各伝
搬モードについてそれぞれ示す特性曲線図であ
る。 1……ガン発振器、2……反射電力吸収用サー
キユレータ、3……周波数計、4……可変減衰
器、5,6……電力測定用方向性結合器、7……
方形−円形モード変換器、8……モードフイル
タ、9……テーパ管、10……供試モード変換
器、11……検出器。
FIG. 1 is a vertical cross-sectional view schematically showing a configuration example of a circular waveguide mode converter with a stepped periodic structure according to the present invention, and FIG.
The figure is a vertical cross-sectional view schematically showing the configuration of a conventional circular waveguide mode converter with a periodic sinusoidal structure. FIG. 5 is a vertical cross-sectional view showing a specific example of the design values of the invention mode converter, FIG. 5 is a longitudinal cross-sectional view showing another specific example of the design values, and FIG. 7 to 9 are characteristic curve diagrams showing the measurement results of the power conversion efficiency for each propagation mode. 1... Gunn oscillator, 2... Circulator for absorbing reflected power, 3... Frequency meter, 4... Variable attenuator, 5, 6... Directional coupler for power measurement, 7...
Rectangular-circular mode converter, 8...mode filter, 9...tapered tube, 10...test mode converter, 11...detector.

Claims (1)

【特許請求の範囲】 1 管径が所定の範囲に亘り所定の周期で少なく
とも1段の段階状に繰返して増減する不連続部を
介在させた円形導波管よりなり、TEpoモード−
TEpnモード間における電磁波伝送モードの変換
を行なうようにしたことを特徴とする段階状周期
構造円形導波管モード変換器。 2 前記少なくとも1段の段階状の繰返し増減を
方形波状の増減としたことを特徴とする特許請求
の範囲第1項記載の円形導波管モード変換器。 3 前記所定の周期を前記TEpoモードと前記
TEpnモードとの間におけるビート波長に基づい
て設定するとともに、管径増減の前記所定の範囲
を、管径増減の繰返し周期の数と前記TEpoモー
ドおよび前記TEpnモードの各位相定数と電磁波
伝送を表わす1次ベツセル関数の0を除くn番目
およびm番目の零点とに基づいて設定することを
特徴とする特許請求の範囲第1項または第2項記
載の段階状周期構造円形導波管モード変換器。 4 特許請求の範囲第3項記載のように設定した
前記所定の周期および前記所定の範囲をモードマ
ツチングの手法を用いて最適化したことを特徴と
する特許請求の範囲第1項または第2項記載の段
階状周期構造円形導波管モード変換器。
[Claims] 1. Consisting of a circular waveguide with a discontinuous portion in which the pipe diameter repeatedly increases and decreases in at least one stage at a predetermined period over a predetermined range, and in TE po mode.
A circular waveguide mode converter with a stepped periodic structure, characterized in that it converts electromagnetic wave transmission modes between TE pn modes. 2. The circular waveguide mode converter according to claim 1, wherein the at least one stepwise repeated increase/decrease is a rectangular wave-like increase/decrease. 3 The predetermined period is set to the TE po mode and the
The predetermined range of pipe diameter increase/decrease is set based on the beat wavelength between the TE pn mode and the number of repetition cycles of the pipe diameter increase/decrease, each phase constant of the TE po mode and the TE pn mode, and the electromagnetic wave. The stepped periodic structure circular waveguide according to claim 1 or 2, wherein the waveguide is set based on the n-th and m-th zero points excluding 0 of a first-order Betzel function representing transmission. mode converter. 4. Claims 1 or 2, characterized in that the predetermined period and the predetermined range set as described in claim 3 are optimized using a mode matching technique. Stepped periodic structure circular waveguide mode converter as described in .
JP27807986A 1986-11-21 1986-11-21 Circular waveguide mode converter with stepwise periodic structure Granted JPS63131701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27807986A JPS63131701A (en) 1986-11-21 1986-11-21 Circular waveguide mode converter with stepwise periodic structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27807986A JPS63131701A (en) 1986-11-21 1986-11-21 Circular waveguide mode converter with stepwise periodic structure

Publications (2)

Publication Number Publication Date
JPS63131701A JPS63131701A (en) 1988-06-03
JPH058881B2 true JPH058881B2 (en) 1993-02-03

Family

ID=17592346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27807986A Granted JPS63131701A (en) 1986-11-21 1986-11-21 Circular waveguide mode converter with stepwise periodic structure

Country Status (1)

Country Link
JP (1) JPS63131701A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017105062A1 (en) * 2015-12-14 2017-06-22 한국전기연구원 Method and system for removing biofilm by using high power millimeter waves
CN113278854B (en) * 2021-05-24 2022-05-10 河北新立中有色金属集团有限公司 SiCp/Al-Si-Cu composite powder material and preparation method thereof
CN115925431B (en) * 2022-12-26 2023-09-05 宜兴瑞泰耐火材料工程有限公司 High-heat-conductivity self-flowing castable for water-cooled wall and preparation process thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4889655A (en) * 1972-02-25 1973-11-22
JPS523705A (en) * 1975-11-29 1977-01-12 Kayaba Ind Co Ltd Gear pump
JPS52135649A (en) * 1976-05-10 1977-11-12 Nippon Telegr & Teleph Corp <Ntt> Mode exciter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4889655A (en) * 1972-02-25 1973-11-22
JPS523705A (en) * 1975-11-29 1977-01-12 Kayaba Ind Co Ltd Gear pump
JPS52135649A (en) * 1976-05-10 1977-11-12 Nippon Telegr & Teleph Corp <Ntt> Mode exciter

Also Published As

Publication number Publication date
JPS63131701A (en) 1988-06-03

Similar Documents

Publication Publication Date Title
Neilson et al. Determination of the resonant frequencies in a complex cavity using the scattering matrix formulation
Thumm High-power millimetre-wave mode converters in overmoded circular waveguides using periodic wall perturbations
Thumm et al. Design of short high-power TE/sub 11/-HE/sub 11/mode converters in highly overmoded corrugated waveguides
Thumm High power mode conversion for linearly polarized HE11 hybrid mode output
Lawson Theoretical evaluation of nonlinear tapers for a high-power gyrotron
Lawson et al. The design of serpentine-mode converters for high-power microwave applications
Shu et al. Study of H-band high-order overmoded power couplers for sheet electron beam devices
US7369011B2 (en) High order mode electromagnetic wave coupler and coupling method using proportional distributing waves
Luneville et al. An original approach to mode converter optimum design
CN104134834A (en) Waveguide mode exciting device
Kinzer et al. Some results on cylindrical cavity resonators
CN105552483A (en) TE&lt;0&gt;0n/TE&lt;0&gt;1n mode exciter
JPH058881B2 (en)
Kumrić et al. Optimized overmoded TE01-to-TM11 mode converters for high-power millimeter wave applications at 70 and 140 GHz
Pu et al. Theoretical and experimental investigations on a compact and broadband TE 01 oversized deformed waveguide bend
CN113224481B (en) Circularly symmetric TE0nMode filter
Lawson et al. Bandwidth studies of TE/sub 0n/-TE/sub 0 (n+ 1)/ripple-wall mode converters in circular waveguide
Li et al. Investigation of oversized circular waveguides with deformed cross section for gradual TE 01 mode bends
Thumm et al. TE 03 to TE 01 mode converters for use with a 150 GHz gyrotron
Gu et al. Design of TE01-to-HE11 mode converters for high-power millimeter wave applications at 35 GHz
CN203895575U (en) Low-order whispering gallery mode waveguide radiator
Niu et al. High-power TE 01–TE 11 mode converter for gyroklystron
da Silva et al. Analysis of the junction between smooth and corrugated cylindrical waveguides in mode converters
Doane Compact HE 11 to surface wave converters for high power waveguide dummy loads
Zouros Exact cutoff wavenumbers of composite elliptical metallic waveguides

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term