JPS63130285A - Manufacture of high damping material - Google Patents
Manufacture of high damping materialInfo
- Publication number
- JPS63130285A JPS63130285A JP27671386A JP27671386A JPS63130285A JP S63130285 A JPS63130285 A JP S63130285A JP 27671386 A JP27671386 A JP 27671386A JP 27671386 A JP27671386 A JP 27671386A JP S63130285 A JPS63130285 A JP S63130285A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- plate
- bundling
- rolling
- damping material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 38
- 238000013016 damping Methods 0.000 title claims abstract description 22
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 61
- 239000000956 alloy Substances 0.000 claims abstract description 61
- 238000005096 rolling process Methods 0.000 claims abstract description 14
- 238000000034 method Methods 0.000 claims description 6
- 238000005098 hot rolling Methods 0.000 abstract description 13
- 238000010438 heat treatment Methods 0.000 abstract description 9
- 238000010030 laminating Methods 0.000 abstract description 5
- 229910000831 Steel Inorganic materials 0.000 abstract description 3
- 238000005097 cold rolling Methods 0.000 abstract description 3
- 239000010959 steel Substances 0.000 abstract description 3
- 230000000452 restraining effect Effects 0.000 description 7
- 238000009792 diffusion process Methods 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 238000005266 casting Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 2
- 101100269328 Caenorhabditis elegans aff-1 gene Proteins 0.000 description 1
- 229910000639 Spring steel Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 239000002648 laminated material Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
- B23K20/04—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a rolling mill
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Vibration Prevention Devices (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
- Laminated Bodies (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野〕
本発明は、機器や配管等の制振装置に用いる超塑性合金
板とその他の合金板とを積層してなる制振材の製造方法
に関する。Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for manufacturing a vibration damping material made by laminating a superplastic alloy plate and another alloy plate for use in vibration damping devices for equipment, piping, etc. .
配管等に用いる制振材としては、例えば特開昭60−1
36639号公報あるいは実開昭60−108875号
公報に示されるように、超塑性合金板とその他の合金板
とを積層したものが知られている。As a vibration damping material used for piping etc., for example, Japanese Patent Application Laid-Open No. 60-1
As shown in Japanese Unexamined Patent Publication No. 36639 or Japanese Utility Model Application Publication No. 108875/1987, a laminated structure of a superplastic alloy plate and another alloy plate is known.
超塑性合金板とその他の合金とを面接合させて制振材を
製造する場合、従来は超塑性合金板とその他の合金板に
夫々所要の表面処理を施し、しかる後各合金板を積層し
、次いで熱間圧延を行い、熱間圧延後に所要の拡散処理
を行って制振材を製造していた。When manufacturing vibration damping materials by face-to-face bonding of superplastic alloy plates and other alloys, conventionally the superplastic alloy plates and other alloy plates are subjected to the required surface treatment, and then each alloy plate is laminated. Next, hot rolling is performed, and after the hot rolling, necessary diffusion treatment is performed to produce a vibration damping material.
しかしながら、上述の従来方法では、積層材の固定が不
十分で居間にズレを生じ高い加工度が得られなかった。However, in the above-mentioned conventional method, the laminated material was insufficiently fixed, causing misalignment in the living room, and a high degree of processing could not be achieved.
そして積層後直ちに熱間圧延を行うため、熱間圧延のた
めの加熱途中で超塑性合金板あるいはその他の合金板の
接合面上に酸化被膜が生じてしまい良好な接合界面を得
ることができなかった。Since hot rolling is performed immediately after lamination, an oxide film forms on the joint surfaces of the superplastic alloy sheets or other alloy sheets during heating for hot rolling, making it impossible to obtain a good joint interface. Ta.
また、熱間圧延後に拡散処理のために加熱を行っている
が、この加熱によって、超塑性合金側にミクロボイドと
いう微細な孔が発生し、接合不良の原因となっていた。Furthermore, although heating is performed for diffusion treatment after hot rolling, this heating generates fine holes called microvoids on the superplastic alloy side, which causes bonding failure.
これは超塑性合金とその伯の合金との組合せの場合は金
属組織中の原子間の拡散係数の差が大きい合金を取板う
ためであると思われる。ちなみに超塑性合金であるZn
−22Aノ合金とΔノ合金との接合の場合、約350
℃における拡散係数(または原子の移動速度)はZnの
方がAノの数100倍と大きく、拡散処理後に接合界面
の特に超塑性合金側にミクロボイドの発生がみられ、接
合面における剥離の原因となる恐れがある。This seems to be because in the case of a combination of a superplastic alloy and a superplastic alloy, an alloy with a large difference in diffusion coefficient between atoms in the metal structure is used. By the way, Zn is a superplastic alloy.
-22A alloy and Δ alloy, approximately 350
The diffusion coefficient (or atomic movement speed) at °C is several hundred times larger for Zn than for A, and microvoids are observed to occur at the bonding interface, especially on the superplastic alloy side, after diffusion treatment, which is the cause of peeling at the bonding surface. There is a possibility that it will become.
更に、超塑性合金の組織調整が十分になされないままそ
の他の合金と接合しているために制振効果が悪い、等々
の問題点があった。Furthermore, since the superplastic alloy is joined to other alloys without sufficient structural adjustment, there are other problems such as poor vibration damping effect.
本発明は、上記問題点に鑑みなされたもので、その目的
は超塑性合金とその他の合金からなる制振材を製造する
場合に接合不良のない良好な制振材が得られるようにす
ることにある。The present invention was made in view of the above-mentioned problems, and its purpose is to make it possible to obtain a good vibration damping material without bonding defects when manufacturing a damping material made of a superplastic alloy and other alloys. It is in.
本発明は、予め組織調整を行った超塑性合金板とそれ以
外の合金板とを積重ねて積層板となし、該積層板を管状
の拘束材内に挿入し、その拘束じた状態で冷間圧延し、
次いで熱間圧延することを要旨とする。The present invention involves stacking a superplastic alloy plate whose structure has been adjusted in advance and other alloy plates to form a laminate, inserting the laminate into a tubular restraining material, and cold-heating it in the restrained state. Rolled,
The gist is then hot rolling.
超塑性合金、例えばZn −22Aノなどは約250℃
までの比較的低温において超塑性を示す材料であるが、
合金を鋳造により溶製したままの状態では巣が多く発生
しており、所期の特性を期待することはできない。従っ
て、予め超塑性合金板の組織調整を行うことにより十分
に超塑性としての特性を与えておく。For superplastic alloys, such as Zn-22A, the temperature is approximately 250°C.
It is a material that exhibits superplasticity at relatively low temperatures up to
If the alloy is produced by casting, many cavities will occur, and the desired characteristics cannot be expected. Therefore, the structure of the superplastic alloy plate is adjusted in advance to give it sufficient superplastic properties.
次いで組織調整をした超塑性合金板とそれ以外の合金板
とを積重ねた積層板を管状の拘束材内に挿入し、板の相
互間移動を拘束した状態で圧延するため、積層板の加工
中のズレを防ぎ、積層板は圧延ローラに直接触れること
がないため割れを発生することもなく高い加工度を与え
ることが可能となる。また、冷間圧延によって成る程度
加工度を与え接合面を密着させた後熱間圧延を行うため
、加熱途中に発生する接合面上の酸化被膜の生成を防止
できる。更に熱間圧延中は高い加工度を与えて接合面で
容易に新生面をだすことができるので接合強度の優れた
制振材を得ることができる。Next, a laminate consisting of the texture-adjusted superplastic alloy plate and other alloy plates is inserted into a tubular restraining material, and the plates are rolled while restraining mutual movement, so the laminate is processed. Since the laminate does not come into direct contact with the rolling rollers, it is possible to provide a high degree of processing without causing cracks. Further, since hot rolling is performed after applying a certain degree of working through cold rolling to bring the bonded surfaces into close contact, it is possible to prevent the formation of an oxide film on the bonded surfaces during heating. Furthermore, during hot rolling, a high working degree is applied to easily produce a new surface at the joint surface, so a vibration damping material with excellent joint strength can be obtained.
以下、本発明の方法を図に基づいて説明する。 Hereinafter, the method of the present invention will be explained based on the drawings.
第1図は本発明に係る超塑性合金の組織調整工程、第2
図は本発明に係る制振材の製造工程を示す。Figure 1 shows the microstructural adjustment process of the superplastic alloy according to the present invention, and the second
The figure shows the manufacturing process of the damping material according to the present invention.
第1図により超塑性合金の組織調整について説明する。The structure adjustment of a superplastic alloy will be explained with reference to FIG.
鋳造により溶製された超塑性合金からなる素材1を圧延
機2によって約10〜30%の圧下率で冷間圧延し、次
いで加熱炉等で加熱したうえ圧延機3によって約40〜
70%の圧下率で熱間圧延して、素材1内に介在してい
る巣を解消する。次いで加熱炉等で素材1の共析点以上
の温度まで加熱した後水冷等によって急速に冷却して、
材料の組織が改善された超塑性合金としての特性を有す
る超塑性合金板4が得られる。A material 1 made of a superplastic alloy produced by casting is cold-rolled by a rolling mill 2 at a rolling reduction of about 10 to 30%, then heated in a heating furnace, etc., and then rolled by a rolling mill 3 to a rolling reduction of about 40 to 30%.
Hot rolling is performed at a reduction rate of 70% to eliminate voids present in the material 1. Next, it is heated in a heating furnace or the like to a temperature equal to or higher than the eutectoid point of the material 1, and then rapidly cooled by water cooling or the like.
A superplastic alloy plate 4 having characteristics as a superplastic alloy with improved material structure is obtained.
以上のようにして組織調整を行った超塑性合金板4を制
振材に用いるが、超塑性合金を前述の組織調整を行った
ところ表1の如き結果が得られ、所期の特性を得ること
ができた。すなわち、組織調整を施した供試材2はそう
でない供試材1に比べてm値のバラツキは小さく、破断
伸びにおいても優れていることが解る。The superplastic alloy plate 4 whose structure has been adjusted as described above is used as a damping material. When the structure of the superplastic alloy is adjusted as described above, the results shown in Table 1 are obtained, and the desired characteristics are obtained. I was able to do that. In other words, it can be seen that Sample Material 2, which has undergone structure adjustment, has smaller variations in m value and is superior in elongation at break than Sample Material 1, which has not undergone structure adjustment.
表1 室温における引張特性変化例
表1に示す供試材1は、鋳造により溶製したz、n−2
2Aノ合金を共析点温度350℃まで加熱した後急速冷
却したもの。供試材2は鋳造により溶製したZn−22
Aノ合金を冷間圧延し、次いで熱間圧延した後、共析点
温度350℃まで加熱し、急速冷却して組II調整を行
ったものである。なお供試材1.2共に各5個を使用し
た。Table 1 Example of change in tensile properties at room temperature Sample material 1 shown in Table 1 is z, n-2 produced by casting.
2A alloy heated to the eutectoid point temperature of 350°C and then rapidly cooled. Sample material 2 is Zn-22 produced by casting.
The alloy A was cold-rolled, then hot-rolled, heated to the eutectoid point temperature of 350° C., and rapidly cooled to perform Group II adjustment. Note that 5 pieces of each of sample materials 1 and 2 were used.
第2図により制振材の製造工程を説明する。The manufacturing process of the damping material will be explained with reference to FIG.
予め組織調整を行ったZn−22Aノ合金からなる超塑
性合金板4とAI!合金からなる合金板5の接合面をワ
イヤブラシ等によって機械的に表面研磨し、酸化被膜を
除去した侵、合金板4,5.4を図示の如く3層に積重
ねる。一方鋼製のパイプ7から予め積層板6の寸法に合
せて偏平に成形した拘束材8を準備しておく。なお必要
に応じてパイプの先端をプレス加工により傾斜させてお
き圧延機への導入をよくすると共にパイプ内面はフラッ
シング等によって汚れを除去しておくようにするとよい
。拘束材8内に積層板6を挿入し、拘束した状態で圧延
機9によって冷間圧延し、約10〜30%の圧下率を与
えて積層板6の密着を計る。次いで加熱炉等によって約
250〜300℃に加熱し圧延機10によって熱間圧延
する。その圧下率は高い加工度を与えるために70%以
上が好ましい。必要に応じて複数回パス数を繰り返して
行うようにする。熱間圧延後に外被となった拘束材8を
除去すれば制振材が得られる。Superplastic alloy plate 4 made of Zn-22A alloy whose structure has been adjusted in advance and AI! The joint surface of the alloy plate 5 made of an alloy is mechanically polished using a wire brush or the like to remove the oxide film, and the alloy plates 4 and 5.4 are stacked in three layers as shown in the figure. On the other hand, a restraining material 8 is prepared in advance, which is formed from a steel pipe 7 into a flat shape according to the dimensions of the laminate 6. If necessary, the tip of the pipe may be inclined by press working to facilitate introduction into the rolling mill, and the inner surface of the pipe may be cleaned of dirt by flushing or the like. The laminated plate 6 is inserted into the restraining material 8, and cold-rolled in a restrained state by a rolling mill 9, and the adhesion of the laminated plate 6 is measured by applying a rolling reduction of about 10 to 30%. Next, it is heated to about 250 to 300°C using a heating furnace or the like and hot rolled using a rolling mill 10. The rolling reduction ratio is preferably 70% or more in order to provide a high degree of workability. Repeat the number of passes multiple times as necessary. A damping material can be obtained by removing the restraining material 8 that has become the outer covering after hot rolling.
本発明に使用する超塑性合金としては、前記Zn −2
2AJ!合金の外にA7−33Cu合金、B1−44S
n合金等があり、またこれに積層するそれ以外の合金と
しては、前記Aff1合金の外に高張力鋼、バネ鋼等の
高降伏材料が用いられる。As the superplastic alloy used in the present invention, the above-mentioned Zn-2
2AJ! In addition to the alloy, A7-33Cu alloy, B1-44S
In addition to the Aff1 alloy, high yield materials such as high tensile strength steel and spring steel are used as alloys laminated thereon.
なお、上記実施例では、3層に積層した制振材の製造方
法について)本べたが、2居あるいは4層またはそれ以
上でもよく、要は複数層からなる制振材に本発明の方法
を適用してもよいこと、その池水発明の要旨を逸脱しな
い範囲内で変更し得ることは勿論である。In addition, in the above embodiment, the method of manufacturing a vibration damping material laminated in three layers is described, but it may be two layers, four layers or more, and in short, the method of the present invention can be applied to a vibration damping material consisting of multiple layers. Of course, the invention may be applied and changes may be made without departing from the gist of the invention.
以上の構成から本発明は次のような効果を発揮する。 With the above configuration, the present invention exhibits the following effects.
(1)超塑性合金は組織調整を行ったものを使用するた
め優れた制振効果が計れる。(1) Superplastic alloys are used that have undergone structural adjustment, so excellent vibration damping effects can be measured.
(2)管状の拘束材内で積層板を圧延し、接合させるた
め、高い加工度が与えられ、接合強度の高い制振材が得
られる。(2) Since the laminated plates are rolled and joined within the tubular restraint material, a high degree of processing is achieved, and a vibration damping material with high joint strength can be obtained.
第1図は本発明に係る超塑性゛合金の組織調整工程の説
明図、第2図は本発明に係る制振材の製造工程の説明図
である。
図中、1は超塑性合金からなる素材、2,3,9゜10
は圧延機、4は超塑性合金板、5は合金板、6は積層板
、7はパイプ、8は偏平に成形した拘束材を示す。
特許出願人 石川島播磨重工業株式会社第1図FIG. 1 is an explanatory diagram of a process for adjusting the structure of a superplastic alloy according to the present invention, and FIG. 2 is an explanatory diagram of a manufacturing process of a damping material according to the present invention. In the figure, 1 is a material made of superplastic alloy, 2, 3, 9゜10
4 is a rolling machine, 4 is a superplastic alloy plate, 5 is an alloy plate, 6 is a laminate plate, 7 is a pipe, and 8 is a restraining material formed into a flat shape. Patent applicant Ishikawajima-Harima Heavy Industries Co., Ltd. Figure 1
Claims (1)
とを積重ねて積層板となし、該積層板を管状の拘束材内
に挿入し、その拘束した状態で冷間圧延し、次いで熱間
圧延することを特徴とする制振材の製造方法。A superplastic alloy plate whose structure has been adjusted in advance and other alloy plates are stacked to form a laminate, the laminate is inserted into a tubular restraint, cold rolled in the restrained state, and then heated. A method for manufacturing a damping material, which comprises rolling.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61276713A JPH0753318B2 (en) | 1986-11-21 | 1986-11-21 | Damping material manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61276713A JPH0753318B2 (en) | 1986-11-21 | 1986-11-21 | Damping material manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63130285A true JPS63130285A (en) | 1988-06-02 |
JPH0753318B2 JPH0753318B2 (en) | 1995-06-07 |
Family
ID=17573289
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61276713A Expired - Lifetime JPH0753318B2 (en) | 1986-11-21 | 1986-11-21 | Damping material manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0753318B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008082386A (en) * | 2006-09-26 | 2008-04-10 | Bridgestone Corp | Base isolation device |
CN104526791A (en) * | 2015-01-04 | 2015-04-22 | 南京工业大学 | Durable wood-plastic laminated plate for wood building in high-humidity environment and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57154387A (en) * | 1981-02-18 | 1982-09-24 | Sumitomo Metal Ind Ltd | Production for clad steel plate |
JPS57185145A (en) * | 1981-05-11 | 1982-11-15 | Matsuo Miyagawa | Vibration-proof material for high temperature |
-
1986
- 1986-11-21 JP JP61276713A patent/JPH0753318B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57154387A (en) * | 1981-02-18 | 1982-09-24 | Sumitomo Metal Ind Ltd | Production for clad steel plate |
JPS57185145A (en) * | 1981-05-11 | 1982-11-15 | Matsuo Miyagawa | Vibration-proof material for high temperature |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008082386A (en) * | 2006-09-26 | 2008-04-10 | Bridgestone Corp | Base isolation device |
CN104526791A (en) * | 2015-01-04 | 2015-04-22 | 南京工业大学 | Durable wood-plastic laminated plate for wood building in high-humidity environment and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH0753318B2 (en) | 1995-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3210840A (en) | Stainless steel clad aluminum and methods of making same | |
US3350772A (en) | Methods of cladding stainless steel to aluminum | |
EP1365910B1 (en) | Method of manufacturing metallic composite material | |
JPS63130285A (en) | Manufacture of high damping material | |
JP3296271B2 (en) | Titanium clad steel sheet and its manufacturing method | |
JPS6142498A (en) | Production of aluminum-stainless steel clad plate for forming | |
JP3168836B2 (en) | Manufacturing method of stainless steel and aluminum clad material | |
JPS63140782A (en) | Production of multi-layered clad plate | |
JPS6376706A (en) | Production of thin sheet made of alpha+beta type alloy titanium | |
JPS5841688A (en) | Production of titanium clad steel plate | |
JPH0419298B2 (en) | ||
JPS5935664A (en) | Production of hot-rolled alpha+beta type titanium alloy sheet having excellent suitability to cold rolling | |
JPH01266981A (en) | Manufacture of composite material consisting of aluminum or aluminum alloy and stainless steel | |
JPH0135915B2 (en) | ||
JPH01166891A (en) | Manufacture of intermetallic compound material | |
JPS5942102A (en) | Production of alpha+beta type hot rolled titanium alloy sheet having good suitability to cold rolling | |
JPS58151459A (en) | Manufacture of hot rolled and annealed pure titanium material having satisfactory bendability | |
JPH05169283A (en) | Manufacture of clad steel sheet | |
JP2002206116A (en) | METHOD FOR MANUFACTURING Fe-Ni-TYPE PLATE MATERIAL | |
CN111604399A (en) | Hot press forming method for aluminum alloy plate | |
JPH03204185A (en) | Manufacture of aluminum clad steel plate | |
JP3256360B2 (en) | Ni alloy clad stainless steel sheet | |
JPH0569161A (en) | Production of composite metallic plate | |
JPH01222037A (en) | Cold rolling method for ti-6al-4v sheet | |
JPS5825421A (en) | Manufacture of titanium alloy rolling material having satisfactory texture |