JPS6312950B2 - - Google Patents
Info
- Publication number
- JPS6312950B2 JPS6312950B2 JP10572281A JP10572281A JPS6312950B2 JP S6312950 B2 JPS6312950 B2 JP S6312950B2 JP 10572281 A JP10572281 A JP 10572281A JP 10572281 A JP10572281 A JP 10572281A JP S6312950 B2 JPS6312950 B2 JP S6312950B2
- Authority
- JP
- Japan
- Prior art keywords
- electroforming
- electrode
- pipe
- shaped electrode
- mold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000005323 electroforming Methods 0.000 claims description 54
- 238000004070 electrodeposition Methods 0.000 claims description 8
- 239000011521 glass Substances 0.000 claims description 7
- 238000012545 processing Methods 0.000 claims description 5
- 239000007788 liquid Substances 0.000 claims description 4
- 230000005611 electricity Effects 0.000 claims description 3
- 230000001678 irradiating effect Effects 0.000 claims 1
- 230000003287 optical effect Effects 0.000 description 7
- 238000003754 machining Methods 0.000 description 6
- 239000002659 electrodeposit Substances 0.000 description 5
- 239000000835 fiber Substances 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000000151 deposition Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 229920003002 synthetic resin Polymers 0.000 description 3
- 239000000057 synthetic resin Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Manufacturing Optical Record Carriers (AREA)
- Electroplating Methods And Accessories (AREA)
Description
【発明の詳細な説明】 本発明は電鋳装置に関する。[Detailed description of the invention] The present invention relates to an electroforming device.
電鋳は、機械加工が困難な形状の部品や金型等
を製造する際広く利用されている。 Electroforming is widely used to manufacture parts and molds with shapes that are difficult to machine.
一般に、電鋳殻を電着させる電型の形状は複雑
であり、電着面は緩急、深浅さまざまな起伏、凹
凸に富んでいる。 Generally, the shape of the electrode mold on which the electroformed shell is electrodeposited is complex, and the electrodeposition surface is rich in undulations and irregularities of varying degrees of slope and depth.
而して、電鋳では一般的に電型の転写精度が最
重要視されており、電鋳殻の厚みについては、特
殊な機械物品を除きあまり高い精度は要求されて
いなかつた。 Generally, in electroforming, the most important thing is the transfer precision of the electroform, and the thickness of the electroform shell is not required to have very high precision except for special mechanical products.
然しながら、電鋳殻としては均一な厚みまたは
所望の厚み分布を持つことが望ましいのは云うま
でもないことである。 However, it goes without saying that it is desirable for the electroformed shell to have a uniform thickness or a desired thickness distribution.
即ち、電鋳殻が薄すぎる部分があると、その強
度や耐用命数が減殺され、また逆に厚すぎる部分
があると、資材、電力および作業時間等が浪費さ
れることになる。また、これらの問題点は、電鋳
殻をさらに機械加工して機械部品等に仕上げる場
合には、さらに深刻なものとなる。 That is, if the electroformed shell has a part that is too thin, its strength and service life will be reduced, and if the electroformed shell has a part that is too thick, materials, electricity, working time, etc. will be wasted. Moreover, these problems become even more serious when the electroformed shell is further machined to be finished into a mechanical part or the like.
而して、従来は電鋳殻の各部を所望の厚みとす
るために、多数の電極を使用し、それらの電着面
に適宜分散して配置して、それぞれの電極に略特
定局部の電鋳を行なわせると共に、全体的には所
望の厚み分布が得られるようにするという方法が
採用されている。 Conventionally, in order to make each part of the electroformed shell a desired thickness, a large number of electrodes were used and distributed appropriately on the electrodeposited surface, and each electrode was charged with approximately a specific local area. A method is adopted in which casting is carried out and a desired overall thickness distribution is obtained.
然しながら、この方法では、高度の熟練者でも
通常は数回の試験加工にもとづく修正を経なけれ
ば、所望の精度を実現し難いものであり、従つ
て、同一形状の部品を多数個繰り返し電鋳するよ
うな場合にはよいが、各種用途の電鋳殻金型等を
少数宛製造する場合やキヤビテイ状金型等の一部
又は全部の表面メツキ被覆処理等の場合には極め
て不都合なものであつた。 However, with this method, it is difficult for even a highly skilled person to achieve the desired accuracy without making corrections based on several test machinings. Therefore, it is difficult to repeatedly electroform many parts of the same shape. However, it is extremely inconvenient when manufacturing electroformed shell molds for various purposes in small quantities, or when coating part or all of the surface of cavity-shaped molds, etc. It was hot.
また、一般的に、電鋳殻を金属や電気加工用電
極として使用する場合には、電鋳の凸部では薄
く、凹部では厚く電着を行なうことが望ましいも
のであるが、これは電着における自然的傾向に逆
らう要求であり、このような電着量制御は困難で
あつた。 Additionally, when using an electroformed shell as an electrode for metal or electrical machining, it is generally desirable to deposit thinly on the convex parts of the electroforming and thickly on the concave parts; This requirement goes against the natural tendency of electrodeposition, and it has been difficult to control the amount of electrodeposition.
昨今、これらの問題点を解決する手段として電
型に熱線を照射し、その部分の析出効率を高めて
電鋳殻を電着させる装置が開発され使用されつゝ
ある。 Recently, as a means to solve these problems, devices have been developed and are being used that irradiate the electroform with hot rays to increase the deposition efficiency in that area and electrodeposit the electroformed shell.
然しながら、上記の装置は熱線を電鋳槽の上方
より電鋳浴を介して電型に照射するものであつた
ため、熱線の到達深度が浅く、特に凹部や凹部内
角部や隅部等の適宜の位置に電鋳殻を電着させる
場合には支障が出るという問題点があつた。 However, since the above-mentioned device irradiates the hot rays onto the electroforming mold from above the electroforming bath through the electroforming bath, the depth at which the hot rays reach is shallow, particularly in the recesses, inner corners and corners of the recesses, etc. There was a problem in that it was difficult to electrodeposit the electroformed shell on the position.
本発明は叙上の観点に立つてなされたものであ
つて、その目的とするところは、電型の凹部、ま
たは複雑な形状を有していて析出しにくい部分に
レーザ光またはクセノン光、若しくは赤外線等の
実質上の熱線を近接して照射して、当該照射領域
に対する析出の効率を当該部分の活性化により高
めつゝ電鋳殻を電着させる電鋳装置を提供しよう
とするものである。 The present invention has been made based on the above-mentioned viewpoints, and its purpose is to apply laser light, xenon light, or The object of the present invention is to provide an electroforming device that irradiates substantially hot rays such as infrared rays in close proximity to increase the efficiency of deposition on the irradiated area by activating the area and electrodeposit an electroformed shell. .
以下、図面により本発明の詳細を具体的に説明
する。 Hereinafter, the details of the present invention will be specifically explained with reference to the drawings.
第1図は本発明にかゝる電鋳装置の一実施例を
示す一部破断正面図、第2図および第3図はそれ
ぞれ第1図の電鋳装置に使用される電極の一部拡
大断面図、第4図は電鋳装置の他の実施例を示す
一部破断正面図、第5図は第4図の電鋳装置に使
用される電極の他の実施例を示す一部拡大断面図
である。 FIG. 1 is a partially cutaway front view showing an embodiment of an electroforming device according to the present invention, and FIGS. 2 and 3 are partially enlarged views of electrodes used in the electroforming device shown in FIG. 1. 4 is a partially broken front view showing another embodiment of the electroforming device, and FIG. 5 is a partially enlarged cross section showing another embodiment of the electrode used in the electroforming device shown in FIG. It is a diagram.
まず、最初に第1図、第2図および第3図につ
いて説明する。 First, FIGS. 1, 2, and 3 will be explained.
図中1は導電性のパイプ状の電極で、必ずしも
中空状である必要はなく、1本以上のオプテイカ
ルフアイバを挿設したもので良く、従つて全体と
して柱状で、又可撓性が必要な場合もある。2a
はパイプ状電極1の先端等適宜の位置に取り付け
られた透明若しくは半透明の凸レンズ、又は素通
しのガラス等の光学素子で、電極1がパイプ体の
場合で、該パイプ体内部への電鋳浴24の侵入を
防止する必要がある場合には、上記光学素子を兼
用して、又は液侵入防止の密封用素通しガラス等
が設けられ、後述照射熱線がパイプ体内浴に吸収
等されるのを防止し、所定位置に損失なく有効に
照射させる。3は電型、4は図では省略された電
鋳装置の加工ヘツドからZ軸方向に昇降自在に伸
長した主軸、5は主軸4を昇降駆動するモータ、
6は主軸4の下端に固定され、且つその内部に電
極軸方向変更機構を収容する第1の筐体、7は上
記第1の筐体6の側壁を貫通して取り付けられて
いる第1の回転軸8および9により回動自在に支
承された第2の筐体、10は第2の筐体7にワツ
シヤー11および12を介して固定された第1の
ウオームホイール、13は第1のウオームホイー
ル10と噛み合う第1のウオームギヤ、14は第
1のウオームギヤ13を回転させる第1のモー
タ、15は第2の筐体7の側壁を貫通して取り付
けられている第2の回転軸16により回動自在に
支承された第2のウオームホイール、17は第2
のウオームホール15と噛み合う第2のウオーム
ギヤ、18は第2のウオームギヤ17を回転させ
る第2のモータ、19は熱線源20を支承するた
め第2のウオームホイール15の側面上に固定し
て設けられた支持体、21は熱線源20の下端に
固定して設けられた電極ホルダ、22は電型3と
電極1間に所定の極性の直流電圧、またはパルス
電圧を供給する電源回路、23はそれぞれの駆動
条件を制御することにより、電鋳浴供給装置と電
型3の相対加工送り(但し、双方とも図では省
略。)の速度や電極1の方向変更、ビームスポツ
トの大きさ、照射エネルギーまたは間歇発光の条
件等および電源回路22の通電条件等のうち、少
くとも上記相対加工送りをあらかじめ定められた
プログラムに従つて制御し、また必要に応じてシ
ーケンスコントローラ等が付設可能な数値制御装
置、24は電鋳浴である。 In the figure, 1 is a conductive pipe-shaped electrode, which does not necessarily have to be hollow, and may have one or more optical fibers inserted therein, so it must be columnar as a whole and flexible. In some cases. 2a
is an optical element such as a transparent or semi-transparent convex lens or transparent glass attached to an appropriate position such as the tip of the pipe-shaped electrode 1, and when the electrode 1 is a pipe body, an electroforming bath is placed inside the pipe body. If it is necessary to prevent the intrusion of 24, the above-mentioned optical element may also be used, or a transparent glass for sealing to prevent liquid intrusion may be provided to prevent the irradiated heat rays from being absorbed into the internal bath of the pipe as described below. and effectively irradiates a predetermined position without loss. 3 is an electroforming mold; 4 is a main shaft extending from the processing head of the electroforming device (not shown in the figure) so as to be able to move up and down in the Z-axis direction; 5 is a motor that drives the main shaft 4 up and down;
A first housing 6 is fixed to the lower end of the main shaft 4 and houses an electrode axis direction changing mechanism therein, and a first housing 7 is attached through the side wall of the first housing 6. A second casing rotatably supported by rotating shafts 8 and 9, 10 a first worm wheel fixed to the second casing 7 via washers 11 and 12, and 13 a first worm wheel. A first worm gear meshing with the wheel 10; 14 a first motor rotating the first worm gear 13; a second movably supported worm wheel; 17 is a second worm wheel;
18 is a second motor that rotates the second worm gear 17; 19 is fixedly provided on the side surface of the second worm wheel 15 for supporting the hot ray source 20; 21 is an electrode holder fixedly provided at the lower end of the hot ray source 20, 22 is a power supply circuit that supplies a DC voltage or a pulse voltage of a predetermined polarity between the electrode mold 3 and the electrode 1, and 23 is a power supply circuit, respectively. By controlling the driving conditions of the electroforming bath supply device and the electroforming mold 3, the speed of the relative machining feed (however, both are omitted in the figure), the direction change of the electrode 1, the size of the beam spot, the irradiation energy, or A numerical control device that controls at least the above-mentioned relative machining feed according to a predetermined program among the intermittent light emission conditions and the energization conditions of the power supply circuit 22, and can be attached with a sequence controller etc. as necessary; 24 is an electroforming bath.
而して、この実施例装置においては、上記8な
いし14および15ないし18で示した構成要素
から成る電極軸方向変更機構によつて、電極1を
図中XおよびZ軸を含む平面内とZ及びY軸を含
む平面内で自由にその角度を調節し得るようにな
つている。即ち、第1のモータ14により第1の
ウオームギヤ13を回転させて第1のウオームホ
イール10をその第1の回転軸8,9を中心に回
動させ、また、第2のモータ18により第2のウ
オームギヤ17を回転させて第2のウオームホイ
ール15をその第2の回転軸16を中心に回動さ
せることにより、電極1をX−Z軸平面内および
Z−Y軸平面内で所望の角度に調節することがで
きるのである。 In this embodiment, the electrode 1 is moved between the plane including the X and Z axes in the figure and the The angle can be freely adjusted within a plane including the Y-axis and the Y-axis. That is, the first motor 14 rotates the first worm gear 13 to rotate the first worm wheel 10 about its first rotation shafts 8 and 9, and the second motor 18 rotates the By rotating the worm gear 17 and rotating the second worm wheel 15 about its second rotation axis 16, the electrode 1 can be moved at a desired angle in the X-Z axis plane and the Z-Y axis plane. It can be adjusted to
電極1は導電性の材質でパイプ状に製作された
ものが使用され、その先端部分及び手前の適宜の
位置には所望により透明若しくは半透明な浴浸入
防止密封体を兼用する凸レンズ等の光学素子2a
が取り付けられ、該光学素子は、電型3の適宜の
位置、図示の場合電型3に形成された凹部内適宜
の所望位置に熱線を適宜集中、拡散、或いは更に
適宜指向等させて照射させられる。そして、電極
1は熱線源20の下端に固定された電極ホルダ2
1に取り付けられている。而して、熱線源20か
らの光線はパイプ状の電極1の内部を通過して凸
レンズ2aで焦点が絞られ、電型3の電鋳殻が電
着される所望部分に照射される。 The electrode 1 is made of a conductive material and made in the shape of a pipe, and an optical element such as a convex lens, which also serves as a transparent or translucent bath infiltration prevention seal, is installed at the tip and at an appropriate position in front, if desired. 2a
is attached, and the optical element irradiates the heat rays to an appropriate position of the electric mold 3, or in the case shown in the figure, to an appropriate desired position within the recess formed in the electric mold 3, by appropriately concentrating, diffusing, or further appropriately directing the heat rays. It will be done. The electrode 1 is attached to an electrode holder 2 fixed to the lower end of the hot ray source 20.
It is attached to 1. The light beam from the heat ray source 20 passes through the inside of the pipe-shaped electrode 1, is focused by the convex lens 2a, and is irradiated onto a desired portion of the electroform 3 where the electroformed shell is to be electrodeposited.
また、電極1と電型3間の加工送りは、X−Y
軸方向の加工送りを図示されていないクロススラ
イドテーブルにより、X−Y平面内における回転
運動を図示されていないターンテーブルによりそ
れぞれ与えられるようになつている。そして、こ
れらのすべての加工送りは、電型3の形状等に合
わせて予じめ作成されたプログラムに従つて数値
制御装置23から発せられる制御信号に基づいて
実行される。 In addition, the processing feed between the electrode 1 and the mold 3 is X-Y
Machining feed in the axial direction is provided by a cross slide table (not shown), and rotational movement in the X-Y plane is provided by a turntable (not shown). All of these machining feeds are executed based on control signals issued from the numerical control device 23 according to a program created in advance according to the shape of the electric mold 3 and the like.
而して、この実施例装置により加工が行なわれ
る場合には、室温またはこれ以下の温度に電鋳浴
24を保つておくと共に、電源回路22の電圧も
従来慣用の条件における電圧前後以下に設定し
て、電着が極めて遅い速度か、または殆ど電着が
進行しないようにしておく。また、この時、電型
3の電鋳殻を電着させる部分には熱線源20から
の光線が電極1の内部を通過して凸レンズ2aで
焦点が絞られてその部分に照射されるので、その
表面または表面近くの電鋳浴温度は例えばNi電
着で約45〜60℃の如く電着に最適な温度に加熱さ
れ、従つて、当該部分が局部的に活性化されて析
出効率が向上し、当該光線照射部分のみにほゞ選
択的に電鋳殻が電着される。また、凸レンズ2a
やパイプ状電極1の途中の適宜の位置に設けた凹
凸レンズ等の光学素子を適宜調節してビームスポ
ツトの大きさ集中、または拡散度等を決定すれ
ば、そのビームスポツトの大きさ等に応じた領域
に限定して電鋳殻を電着することも可能である。 When processing is carried out using the apparatus of this embodiment, the electroforming bath 24 is kept at room temperature or lower, and the voltage of the power supply circuit 22 is set to be around or below the voltage under conventional conditions. The rate of electrodeposition is very slow, or the electrodeposition is not progressed at all. Also, at this time, the light rays from the heat ray source 20 pass through the inside of the electrode 1 and are focused by the convex lens 2a and irradiated onto the part of the electroform 3 where the electroformed shell is to be electrodeposited. The temperature of the electroforming bath on or near the surface is heated to the optimal temperature for electrodeposition, for example, approximately 45 to 60°C for Ni electrodeposition, and therefore, the area is locally activated and the deposition efficiency is improved. However, the electroformed shell is almost selectively electrodeposited only on the portions irradiated with the light. In addition, the convex lens 2a
By adjusting optical elements such as concave and convex lenses installed at appropriate positions in the middle of the pipe-shaped electrode 1 to determine the concentration of the beam spot, the degree of diffusion, etc., it is possible to It is also possible to electrodeposit the electroformed shell in limited areas.
電極1の先端部分に取り付けられる透明若しく
は半透明の凸レンズ2a等の光学素子は、照射部
分の形状があまり複雑でなくビームスポツトの調
節等を必要としないとか、単に電鋳浴24の侵入
封止のみを行なう場合には素通しのガラス2b等
に変更できること勿論である。 An optical element such as a transparent or semi-transparent convex lens 2a attached to the tip of the electrode 1 is used because the shape of the irradiated part is not very complicated and does not require adjustment of the beam spot, or is simply used to seal the intrusion of the electroforming bath 24. Of course, if only the glass 2b is to be used, the glass 2b can be changed to a transparent glass 2b.
次に、第4図および第5図について説明する。
第4図は先端部分が開放されている導電性の中空
又はフアイバオプテイツクスを挿設したパイプ状
の電極中へ電鋳浴が侵入するのを防止するために
圧縮空気を用いた実施例を示しており、電極の駆
動方法、電圧供給方法等は第1図に示したものと
同様であつて、第4図で第1図と同一な番号を付
したものは同一な構成要素を示し、図中1′は両
先端部分が開放されているパイプ状の電極、1″
は電極、25は絞り、26は調圧弁、27はコン
プレツサー、28は圧力その他により電極1′お
よび1″の電鋳浴下の長さを検知して数値制御装
置23に伝えるセンサー、29は合成樹脂等で製
作される不溶性のパイプ、30はパイプ29の先
端周壁部分に取り付けられる金属性電極部材であ
る。 Next, FIGS. 4 and 5 will be explained.
Figure 4 shows an example in which compressed air is used to prevent the electroforming bath from penetrating into a conductive hollow or pipe-shaped electrode in which fiber optics is inserted, the tip of which is open. The electrode driving method, voltage supply method, etc. are the same as those shown in FIG. 1, and the same numbers in FIG. 4 as in FIG. 1 indicate the same components. In the figure, 1' is a pipe-shaped electrode with both ends open, and 1''
25 is an electrode, 25 is a throttle, 26 is a pressure regulating valve, 27 is a compressor, 28 is a sensor that detects the length of electrodes 1' and 1'' under the electroforming bath by pressure etc. and transmits it to the numerical controller 23, 29 is a composite An insoluble pipe 30 made of resin or the like is a metal electrode member attached to the peripheral wall at the tip of the pipe 29 .
なお、パイプ状電極1′の圧縮空気が供給され
る手前の熱線源20側の適宜の位置に、光線を適
宜、集中、拡散させる光学素子2a,2bを設け
ることができ、この光学素子2a,2bの両側に
は、中空でもフアイバオプテイツクスを挿設して
も良く、また圧縮空気に代え例えばアルゴン、窒
素等の酸化防止の圧力ガスを供給することもでき
る。 Note that optical elements 2a and 2b for concentrating and diffusing light beams can be provided at appropriate positions on the heat ray source 20 side of the pipe-shaped electrode 1' before the compressed air is supplied. Fiber optics may be inserted into both sides of 2b even if it is hollow, and instead of compressed air, a pressure gas for preventing oxidation such as argon or nitrogen may be supplied.
而して、電極1′は電極ホルダ21に取り付け
られていて、熱線源20からの光線は電極1′中
を通過して電型3の電鋳殻を電着させる部分に照
射される。然しながら、第4図に示した実施例装
置においては、電極1′の先端部分が開放されて
いるので電極1′内へ電鋳浴24が侵入すること
がないような構造となつている。即ち、電極1′
の側壁には電極1′中にコンプレツサー27から
の圧縮空気を送り込むための小穴が設けられ、ま
た、電極1′の近傍には電極1′の電鋳浴下の長さ
を検出するセンサー28が設けられている。而し
て、センサー28により電極1′の電鋳浴下の長
さが検出されて数値制御回路23に送られると、
数値制御回路23ではその検出値から電極1′先
端の電鋳浴の液圧を算出し、この液圧よりやゝ高
い圧縮空気を調圧弁26を制御して電極1′中に
送り込む。従つて、電極1′中には電鋳浴24が
侵入することがなく、また電極1′解放端部分の
電鋳浴24を噴出気体で大きく乱すことなく、従
つて光を大きく散乱させないので、光線源20か
らの光線を電型3に直接投光せしめること可能と
なるのである。 Thus, the electrode 1' is attached to an electrode holder 21, and the light beam from the heat ray source 20 passes through the electrode 1' and is irradiated onto the part of the electroform 3 where the electroformed shell is to be electrodeposited. However, in the embodiment shown in FIG. 4, the tip of the electrode 1' is open, so that the electroforming bath 24 does not enter into the electrode 1'. That is, electrode 1'
A small hole is provided in the side wall of the electrode 1' for feeding compressed air from a compressor 27 into the electrode 1', and a sensor 28 is provided near the electrode 1' to detect the length of the electrode 1' under the electroforming bath. It is provided. Then, when the length of the electrode 1' under the electroforming bath is detected by the sensor 28 and sent to the numerical control circuit 23,
The numerical control circuit 23 calculates the liquid pressure of the electroforming bath at the tip of the electrode 1' from the detected value, and controls the pressure regulating valve 26 to send compressed air slightly higher than this liquid pressure into the electrode 1'. Therefore, the electroforming bath 24 does not enter into the electrode 1', and the electroforming bath 24 at the open end of the electrode 1' is not greatly disturbed by the ejected gas, so that light is not greatly scattered. This makes it possible to project the light beam from the light source 20 directly onto the electric mold 3.
また、電極としては導電性のパイプ状の電極
1′に限定されず、第5図に示した如き合成樹脂
等の不溶性パイプ29の先端周壁部分に金属性電
極部材30を取り付けて電極1″としたものをも
使用でき、また電極1′,1″を可撓性としてフア
イバオプテイツクスを挿設するとか、1本又は複
数本のフアイバオプテイツクスの周りに導電性被
覆を形成したもの等を使用すれば、例えば曲り孔
の内底部等に光を誘導することができ、また光照
射の指向性を選択調整し得る所から有用である。 Further, the electrode is not limited to the conductive pipe-shaped electrode 1', but the electrode 1'' can be formed by attaching a metal electrode member 30 to the peripheral wall at the tip of an insoluble pipe 29 made of synthetic resin or the like as shown in FIG. In addition, electrodes 1' and 1'' may be made flexible and fiber optics inserted therein, or a conductive coating may be formed around one or more fiber optics. If used, it is possible to guide light to, for example, the inner bottom of a curved hole, and it is also useful because the directivity of light irradiation can be selectively adjusted.
本発明は叙上の如く構成されるので、本発明装
置によるときは、光線源からの光線を直接的に電
型に照射させることが可能となるので、極めて簡
単に且つ高精度に電鋳殻の厚みを制御できると共
に、複雑な形状の電型にも確実に電鋳殻を電着さ
せることが可能となる。例えば、凹状部の全体を
2次元的にまたは3次元的に電極の位置を制御し
て1度又は繰り返し走査せしめ、その走査の際の
速度を位置的に制御して全体的に均一に電鋳する
とか、電鋳の難しい微小凹部や角部を電鋳処理し
た後、全体を常法で電鋳する等の手法で実施可能
であり、他方部分又は局部電鋳にも容易に適用で
きる。 Since the present invention is constructed as described above, when using the device of the present invention, it is possible to directly irradiate the electroforming mold with the light rays from the light source. In addition to being able to control the thickness of the electroformed shell, it is also possible to reliably electrodeposit the electroformed shell even on complex-shaped electrode molds. For example, by controlling the position of the electrode two-dimensionally or three-dimensionally, the entire concave part is scanned once or repeatedly, and the speed of the scanning is controlled positionally to uniformly electroform the entire concave part. Alternatively, after electroforming minute recesses and corners that are difficult to electroform, the whole can be electroformed using a conventional method, and can be easily applied to other parts or local electroforming.
なお、本発明の構成は叙上の実施例に限定され
るものではない。即ち、例えば、本実施例におい
ては導電性のパイプ状の電極または合成樹脂等の
不溶性パイプの先端周壁部分に金属性電極部材を
取り付けて電極としたものを使用したが、合成樹
脂中に金属粉を混入してパイプ状の電極としたも
のでもよく、本発明はその目的の範囲内で自由に
設計変更できるものであり、本発明はそれらの全
てを包摂するものである。 Note that the configuration of the present invention is not limited to the above-mentioned embodiments. That is, for example, in this example, a conductive pipe-shaped electrode or an insoluble pipe made of synthetic resin or the like was used as an electrode by attaching a metallic electrode member to the peripheral wall at the tip, but metal powder in the synthetic resin was used. It is also possible to form a pipe-shaped electrode by mixing the above electrodes, and the design of the present invention can be changed freely within the scope of its purpose, and the present invention encompasses all of them.
第1図は本発明にかゝる電鋳装置の一実施例を
示す一部破断正面図、第2図および第3図はそれ
ぞれ第1図の電鋳装置に使用される電極の一部拡
大断面図、第4図は電鋳装置の他の実施例を示す
一部破断正面図、第5図は第4図の電鋳装置に使
用される電極の他の実施例を示す一部拡大断面図
である。
1,1′,1″……電極、2a……凸レンズ、2
b……素通しのガラス、3……電型、20……熱
線源、21……電極ホルダ、22……電源回路、
23……数値制御装置、24……電鋳浴、29…
…パイプ、30……金属性電極部材。
FIG. 1 is a partially cutaway front view showing an embodiment of an electroforming device according to the present invention, and FIGS. 2 and 3 are partially enlarged views of electrodes used in the electroforming device shown in FIG. 1. 4 is a partially broken front view showing another embodiment of the electroforming device, and FIG. 5 is a partially enlarged cross section showing another embodiment of the electrode used in the electroforming device shown in FIG. It is a diagram. 1, 1', 1''...electrode, 2a...convex lens, 2
b... Transparent glass, 3... Electric type, 20... Heat ray source, 21... Electrode holder, 22... Power supply circuit,
23... Numerical control device, 24... Electroforming bath, 29...
...pipe, 30...metallic electrode member.
Claims (1)
と上記電極間に所定の極性の通電を行なうと共
に、上記電型の電鋳殻を電着させる部分に光線源
からの光線を照射しつゝ加工を行なう電鋳装置に
おいて、上記電極をパイプ状の電極とすると共
に、上記パイプ状の電極の一端を上記光線源に接
続し、上記光線源からの光線が上記パイプ状の電
極中を通過して電型に投光せしめられるよう上記
パイプ状の電極先端部分に透明若しくは半透明の
部材を取り付けたことを特徴とする電着装置。 2 上記透明若しくは半透明の部材が凸レンズで
ある特許請求の範囲第1項記載の電鋳装置。 3 上記透明若しくは半透明の部材が素通しのガ
ラスである特許請求の範囲第1項記載の電鋳装
置。 4 電型と電極間に電鋳浴を供給させ、上記電型
と上記電極間に所定の極性の通電を行なうと共
に、上記電型の電鋳殻を電着させる部分に光線源
からの光線を照射しつゝ加工を行なう電鋳装置に
おいて、上記電極をパイプ状の電極とすると共
に、上記パイプ状の電極の一端を上記光線源に接
続し、上記光線源からの光線が上記パイプ状の電
極中を通過して電型に投光せしめられ、且つ、上
記パイプ状の電極中に電鋳浴が侵入するのを防止
するため上記パイプ状の電極中に所望の圧力の圧
縮ガスを供給する圧縮ガス供給装置を設けたこと
を特徴とする電鋳装置。 5 上記パイプ状の電極先端の電鋳浴液圧に応じ
て上記圧縮ガス供給装置からのガス圧を調整する
制御装置を設けたことを特徴とする特許請求の範
囲第4項項記載の電鋳装置。[Scope of Claims] 1. Supplying an electroforming bath between the electroforming mold and the electrodes, applying electricity of a predetermined polarity between the electroforming mold and the electrodes, and supplying an electroforming bath to the part of the electroforming mold where the electroformed shell is to be electrodeposited. In an electroforming apparatus that performs processing while being irradiated with light from a light source, the electrode is a pipe-shaped electrode, one end of the pipe-shaped electrode is connected to the light source, and the light from the light source is An electrodeposition apparatus characterized in that a transparent or translucent member is attached to the tip of the pipe-shaped electrode so that light passes through the pipe-shaped electrode and is projected onto the electrode mold. 2. The electroforming apparatus according to claim 1, wherein the transparent or semitransparent member is a convex lens. 3. The electroforming apparatus according to claim 1, wherein the transparent or translucent member is transparent glass. 4 An electroforming bath is supplied between the electroforming mold and the electrode, and electricity of a predetermined polarity is applied between the electroforming mold and the electrode, and a light beam from a light source is applied to the part of the electroforming mold where the electroformed shell is to be electrodeposited. In an electroforming device that performs processing while irradiating, the electrode is a pipe-shaped electrode, one end of the pipe-shaped electrode is connected to the light source, and the light beam from the light source is directed to the pipe-shaped electrode. A compressor that supplies compressed gas at a desired pressure into the pipe-shaped electrode to prevent the electroforming bath from entering the pipe-shaped electrode. An electroforming device characterized by being equipped with a gas supply device. 5. The electroforming device according to claim 4, further comprising a control device that adjusts the gas pressure from the compressed gas supply device in accordance with the electroforming bath liquid pressure at the tip of the pipe-shaped electrode. Device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10572281A JPS589995A (en) | 1981-07-08 | 1981-07-08 | Electroforming device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10572281A JPS589995A (en) | 1981-07-08 | 1981-07-08 | Electroforming device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS589995A JPS589995A (en) | 1983-01-20 |
JPS6312950B2 true JPS6312950B2 (en) | 1988-03-23 |
Family
ID=14415210
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10572281A Granted JPS589995A (en) | 1981-07-08 | 1981-07-08 | Electroforming device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS589995A (en) |
-
1981
- 1981-07-08 JP JP10572281A patent/JPS589995A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS589995A (en) | 1983-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0077207B1 (en) | Laser-activated chemical-depositing method and apparatus | |
US4212900A (en) | Surface alloying method and apparatus using high energy beam | |
JP2800937B2 (en) | Equipment for manufacturing parts by selective sintering | |
RU2086378C1 (en) | Process of laser treatment and device for its realization | |
CN104907704B (en) | A kind of zoom laser precision machining deep trouth device for Deep Hole | |
CN110312584B (en) | Laser-operated machine for additive manufacturing by laser heat treatment, in particular by fusion, and corresponding method | |
CN110312583B (en) | Laser-operated machine for additive manufacturing by laser heat treatment, in particular by fusion, and corresponding method | |
JP2004514053A (en) | Apparatus for sintering, material removal and / or labeling with electromagnetic radiation flux and method of operating the apparatus | |
WO2006073805A1 (en) | Method and apparatus for laser welding incorporating galvanometer delivery | |
US4430165A (en) | Laser-activated electrodepositing method and apparatus | |
JPH054898B2 (en) | ||
JPS5921491A (en) | Laser working robot | |
CN108342728B (en) | A kind of coaxial powder feeding system being directed to dissimilar materials | |
JPS6312950B2 (en) | ||
JP6355702B2 (en) | Fine hole composite processing apparatus and processing method | |
US20210387265A1 (en) | Surface processing device and method, and three-dimensional deposition device | |
US20220097142A1 (en) | Three-dimensional deposition device and method | |
JP2003260580A (en) | Laser beam machining apparatus | |
JPS6312951B2 (en) | ||
JPH0557470A (en) | Laser beam processing method and device | |
CN218874162U (en) | Positioning mechanism for laser welding machine | |
CN215316315U (en) | Device for improving single-beam laser welding quality through vibrating mirror | |
JPH0352789A (en) | Method and device for laser welding | |
CN221235660U (en) | Rotary laser cladding head | |
CN107904595B (en) | A kind of cladding apparatus and its application method with Microwave-assisted firing device |