JPS63129326A - High-speed optical modulator - Google Patents

High-speed optical modulator

Info

Publication number
JPS63129326A
JPS63129326A JP27538686A JP27538686A JPS63129326A JP S63129326 A JPS63129326 A JP S63129326A JP 27538686 A JP27538686 A JP 27538686A JP 27538686 A JP27538686 A JP 27538686A JP S63129326 A JPS63129326 A JP S63129326A
Authority
JP
Japan
Prior art keywords
optical
speed
delay
modulation
optical modulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27538686A
Other languages
Japanese (ja)
Other versions
JP2569314B2 (en
Inventor
Tetsuzo Yoshimura
徹三 吉村
Yasuyuki Todokoro
泰之 外處
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61275386A priority Critical patent/JP2569314B2/en
Publication of JPS63129326A publication Critical patent/JPS63129326A/en
Application granted granted Critical
Publication of JP2569314B2 publication Critical patent/JP2569314B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To increase modulation speed by using the parallelism and high-speed limiter characteristics of an optical bistable element and a delaying and composing means for light pulses. CONSTITUTION:Optical modulating means 31-38 perform high-speed modulation and then all of obtained light signals have rounded waveforms. For the purpose, the optical bistable element 4 is arranged between the optical modulating means 31-38 and delaying and composing means 5 and then the rounded waveforms are all shaped into sharp pulses by the parallelism and high-speed limiter characteristics. Then, plural output pulses of the optical bistable element 4 are delayed differently by the delaying and composing means 5 and then put together, so that a time-series signal which contains all plural pulses in one cycle of the modulation speed of the optical modulating means 31-38 is outputted. Therefore, even if the modulation speed of the optical modulating means is slow, a modulation speed which is increased by the number of light signals in use is obtained finally. Thus, the modulation speed is increased.

Description

【発明の詳細な説明】 〔概   要〕 本発明は光変調器において、光双安定素子の並列性及び
高速リミッタ特性と、光パルスの遅延及び合成技術とを
利用することにより、従来の半導体レーザ或いは光変調
器における個有の変調速度と比較して実効的に一層の高
速化を可能にしたものである。
[Detailed Description of the Invention] [Summary] The present invention utilizes the parallelism and high-speed limiter characteristics of optical bistable elements and optical pulse delay and synthesis technology in optical modulators to improve the performance of conventional semiconductor lasers. Alternatively, the modulation speed can be effectively increased compared to the unique modulation speed of an optical modulator.

〔産業上の利用分野〕[Industrial application field]

本発明は光度m器に係り、特には高速度の光変調が可能
な高速光変調器に関する。
The present invention relates to a light intensity meter, and particularly to a high-speed optical modulator capable of high-speed optical modulation.

〔従 来 の 技 術〕[Traditional techniques]

従来の光変調器としては、半導体レーザを直接に変調し
て変調光を得るようにしたものや、或いはLiNbO3
等の電気光学材料を用いた電気光学光スイッチによって
変調を行うようにしたもの等が知られている。
Conventional optical modulators include those that directly modulate a semiconductor laser to obtain modulated light, or LiNbO3
There are known devices in which modulation is performed by an electro-optic optical switch using an electro-optic material such as.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の光変調器では、高々10 G11z程度
の変調が限界であり、それ以上の変調速度は現状では困
難である。
The conventional optical modulator described above has a limit of modulation of about 10 G11z at most, and it is currently difficult to achieve a modulation speed higher than that.

本発明は、上記問題点に鑑み、従来の光変調器における
個有の変調速度よりも実効的に速い変調速度の得られる
光変調器を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, it is an object of the present invention to provide an optical modulator that can obtain a modulation speed that is effectively faster than the modulation speed unique to conventional optical modulators.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の高速光変調器は、それぞれ独立に変調された複
数の光信号を作成する光変調手段と、ここで得られた光
信号にそれぞれ互いに異なる遅延をかける遅延手段と、
これによって遅延された複数の信号を合成して時経列信
号を出力する合成手段とを備えるとともに、光路上にお
いて上記光変調手段よりも後段に光双安定素子を配置し
たものである。
The high-speed optical modulator of the present invention includes: an optical modulation means for creating a plurality of independently modulated optical signals; a delay means for applying different delays to the optical signals obtained here;
The apparatus includes a combining means for combining a plurality of signals delayed by this and outputting a time series signal, and an optical bistable element is arranged on the optical path after the optical modulating means.

〔作   用〕[For production]

上記光変調手段において出来るだけ高速度の変調を行え
ば、ここで得られる複数の光信号はいずれもなまった波
形となる。そこで、この光変調手段と遅延手段との間に
光双安定素子を配置すれば、その並列性及び高速リミッ
タ特性により、上記のなまった波形はいずれも幅の狭い
シャープなパルスに整形される。次に、このような光双
安定素子の複数の出力パルスを遅延手段でそれぞれ異な
る遅延をかけた後、合成手段で合成すれば、上記光変調
手段による変調速度の1周期内に上記複数のパルスを全
て含んだ時経列信号が出力される。従って、上記光変調
手段の変調速度が遅くても、最終的にはそこで用いた光
信号の数だけ倍増された変調速度が得られることになる
If the optical modulation means performs modulation at the highest possible speed, all of the plurality of optical signals obtained here will have distorted waveforms. Therefore, if an optical bistable element is placed between the optical modulation means and the delay means, the above-mentioned rounded waveform can be shaped into a narrow and sharp pulse due to its parallelism and high-speed limiter characteristics. Next, if a plurality of output pulses of such an optical bistable element are delayed by a delay means and then synthesized by a synthesis means, the plurality of pulses are synthesized within one cycle of the modulation speed by the optical modulation means. A time sequence signal containing all of the above is output. Therefore, even if the modulation speed of the optical modulation means is slow, the modulation speed will ultimately be doubled by the number of optical signals used therein.

なお、光双安定素子を遅延手段と合成手段の間、或いは
合成手段の後に配置した場合であっても、上記と同様に
なまった波形がシャープなパルスに整形されるので、最
終的には高速度に変調された時経列信号が得られる。
Note that even if an optical bistable element is placed between the delay means and the synthesis means, or after the synthesis means, the rounded waveform will be shaped into a sharp pulse in the same way as above, so the final result will be A velocity-modulated time series signal is obtained.

〔実  施  例〕〔Example〕

以下、本発明の実施例について、図面を参照しながら説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

第1図は、本発明の一実施例を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

同図においては、光変調手段として、連続発振の半導体
レーザ1と、その出力光を複数(同図では8個)の光に
分岐する分岐導波路2と、その分岐光を並列してそれぞ
れ独立に変調する8個の電気光学変調器(例えばLtN
b03変鋼器)31〜38とを備えている。また、これ
ら電気光学変調器I器31〜38の次には、光双安定素
子4を介してパルス遅延及び合成部5が設けられている
In the same figure, as an optical modulation means, a continuous wave semiconductor laser 1, a branching waveguide 2 that branches its output light into a plurality of lights (eight in the figure), and the branched lights are arranged in parallel and each becomes independent. Eight electro-optic modulators (e.g. LtN
b03 steel transformer) 31 to 38. Further, a pulse delay and synthesis unit 5 is provided next to the electro-optic modulators I 31 to 38 via an optical bistable element 4.

上記光双安定素子4は、入力信号が所定の闇値を越える
とオンし、上記闇値以下になるとオフする素子であり、
並列性及び高速リミンタ特性を有している。光双安定素
子4としては、例えばポリジアセチレン等の有機物を非
線形光学材料として用いたものや、m−v及びn−IV
化合物の多重量子井戸の飽和吸収を利用したもの等が知
られている。
The optical bistable element 4 is an element that turns on when the input signal exceeds a predetermined darkness value, and turns off when the input signal falls below the darkness value,
It has parallelism and high-speed liminter characteristics. As the optical bistable element 4, for example, one using an organic substance such as polydiacetylene as a nonlinear optical material, m-v and n-IV
There are known methods that utilize the saturated absorption of multiple quantum wells of compounds.

上記パルス遅延及び合成部5の具体的な構成は、例えば
第2図(a)もしくは(b)のようになっている。
The specific configuration of the pulse delay and synthesis section 5 is as shown in FIG. 2(a) or (b), for example.

同図(alでは、互いに長さが少しずつ異なる8本の導
波路51〜58からなる遅延部5aと、これらの導波路
が1本の導波路50に合流する合成部5bとからなって
いる。また同図(b)では、互いに長さが少しずつ異な
る8本の光ファイバ51′〜58′からなる遅延部5a
′と、これらの光ファイバが1本の光ファイバ50’に
合流する合成部5b′とからなっている。ここで、上記
導波路51〜58もしくは光ファイバ51’〜58′に
、互いに約111の光路差を設けておけば、これに対応
して約10p3の遅延を生じさせることができる。
In the figure (al), it consists of a delay section 5a consisting of eight waveguides 51 to 58 with slightly different lengths, and a combining section 5b where these waveguides merge into one waveguide 50. In addition, in the same figure (b), a delay section 5a consisting of eight optical fibers 51' to 58' having slightly different lengths is shown.
', and a combining section 5b' where these optical fibers merge into one optical fiber 50'. Here, if the waveguides 51 to 58 or the optical fibers 51' to 58' are provided with an optical path difference of about 111 from each other, a corresponding delay of about 10p3 can be generated.

上記構成において、各電気光学変調器31〜38で出来
るだけ高速度の変調を行うことによって得られる変調光
は、例えば第3図(alに示すようななまった波形とな
る。同図には、周期100 ps (動作周波数10 
G11z )で変調した場合における、例えば1つの電
気光学変調器31から順次得られる光信号S + r 
 S + ’ +  S + ’ +  ・・・につい
て示した。このようになまった波形の光信号S l *
 S l ’ 。
In the above configuration, the modulated light obtained by performing modulation at the highest possible speed in each of the electro-optic modulators 31 to 38 has a distorted waveform, for example, as shown in FIG. 3 (al). Period 100 ps (operating frequency 10
For example, the optical signal S + r sequentially obtained from one electro-optic modulator 31 when modulated by G11z)
S+'+S+'+... is shown. The optical signal S l * with such a distorted waveform
S l'.

81″、・・・を光双安定素子4に入射させると、その
リミソク特性により、第3図(b)に示すような幅の狭
いシャープなパルスに整形される。すなわち、上記光信
号S +、S+ ’、S+ ’+  ・・・が閾値(第
3図(al中の破線)を越えると光双安定素子4がオン
し、パルスP+、P+’、P+1.・・・が得られる。
81'', . , S+', S+'+, .

これと同様にして、他の電気光学変調器32〜38から
出力された光信号も光双安定素子4に入射すると、その
並列性及び上記リミック特性により、上記のようなシャ
ープな複数のパルスが並列して同時に得られる。
In the same way, when the optical signals output from the other electro-optic modulators 32 to 38 also enter the optical bistable element 4, due to their parallelism and the above-mentioned Rimic characteristic, a plurality of sharp pulses as mentioned above are generated. can be obtained simultaneously in parallel.

光双安定素子4から出力された上記複数のパルスはパル
ス遅延及び合成部5に入射する。すると、このパルス遅
延及び合成部5は第2図(alもしくは山)に示したよ
うに導波路長もしくは光ファイバ長が51. 52. 
53.  ・・・58もしくは51′。
The plurality of pulses output from the optical bistable element 4 enter a pulse delay and synthesis section 5. Then, this pulse delay and synthesis unit 5 has a waveguide length or optical fiber length of 51.5 mm as shown in FIG. 2 (al or mountain). 52.
53. ...58 or 51'.

52’、53’、  ・・・58′の順に約1鶴程度ず
つ長くなっているので、入射した各パルス(Pl。
52', 53', . . . 58' are each about one crane longer in the order, so each input pulse (Pl.

P2.P3.・・・Peとする)は第3図(C)に示す
ようにP+ 、P 21  P 31  ・・・Peの
順に約10 pg毎に時経列に並んで出力される。すな
わち、電気光学変調器31〜38による変調速度の1周
期(第3図では100 pg)内に8個のパルス、P+
〜P6を全て含んだ時経列信号が得られる。
P2. P3. . . . Pe) are outputted in the order of P+, P 21 P 31 . That is, 8 pulses, P +
A time series signal including all of the steps .about.P6 is obtained.

従って本実施例では、電気光学変調器31〜38の動作
周波数が10 G11zであるにもかかわらず、最終的
にはその8倍の89 G11zの変調を行うことができ
る。
Therefore, in this embodiment, although the operating frequency of the electro-optic modulators 31 to 38 is 10 G11z, it is possible to ultimately perform modulation of 89 G11z, which is eight times that frequency.

次に、本発明の他の実施例を第4図に示す。本実施例は
、光変調手段として、それぞれ変調可能な複数(同図で
は9個)の半導体レーザ11〜19を一列に配置した半
導体レーザアレイ10を用いたものであり、他の構成は
第1図に示したものと同様である(ただし、信号の数が
1個多くなっており、これに対応した構成となっている
)。このような構成であっても半導体レーザアレイ10
の動作周波数が10 G11z程度にしかならないにも
かかわらず、光双安定素子4の並列性及びリミッタ特性
とパルス遅延及び合成部5の作用により、最終的には上
記実施例と同様に9倍の900IIZの変調を行うこと
ができる。
Next, another embodiment of the present invention is shown in FIG. In this embodiment, a semiconductor laser array 10 in which a plurality of (nine in the figure) semiconductor lasers 11 to 19, each of which can be modulated, is arranged in a row is used as the optical modulation means. It is the same as that shown in the figure (however, the number of signals is increased by one, and the configuration is adapted to this). Even with such a configuration, the semiconductor laser array 10
Although the operating frequency is only about 10G11z, due to the parallelism and limiter characteristics of the optical bistable element 4 and the action of the pulse delay and synthesis section 5, the final result is 9 times as high as in the above embodiment. 900IIZ modulation can be performed.

なお、光双安定素子4の配置位置は、光路上において上
記光変調手段よりも後段であればどこでもよく、上記と
同様な効果が得られる。例えばパルス遅延及び合成部5
を遅延部5aもしくは5a′と合成部5bもしくは5b
’とに分離し、その間に光双安定素子4を配置すること
により、遅延部5aもしくは5a′で得られた複数の信
号を並列に光双安定素子4に入射させ、その出力パルス
を合成部5bもしくは5b’で合成するようにしても良
い。また、パルス遅延及び合成部5の後段に光双安定素
子4を配置することにより、パルス遅延及び合成部5で
順次得られるなまった波形の出力信号を光双安定素子4
でシャープなパルスに整形し、これを最終的な時経列信
号として用いるようにしてもよい。
Note that the optical bistable element 4 may be placed anywhere on the optical path as long as it is downstream of the optical modulation means, and the same effect as described above can be obtained. For example, the pulse delay and synthesis section 5
delay section 5a or 5a' and combining section 5b or 5b.
By separating the optical bistable element 4 into two parts and placing the optical bistable element 4 between them, a plurality of signals obtained at the delay section 5a or 5a' are input to the optical bistable element 4 in parallel, and the output pulses are sent to the combining section. 5b or 5b' may be used for synthesis. Furthermore, by arranging the optical bistable element 4 after the pulse delay and synthesis section 5, the output signal with the distorted waveform sequentially obtained in the pulse delay and synthesis section 5 can be transferred to the optical bistable element 4.
It is also possible to shape the pulse into a sharp pulse and use it as the final time series signal.

また、光変調手段で並列に作成する光信号の数は上述し
た8個や9個に限定されることはなく、例えばたった2
個であっても従来の2倍の変調速度が得られ、更に最終
的に時経列に得られる個々のパルスが互いに分離可能な
範囲内で光信号の数をもっと増加すれば、より一層の高
速度変調が可能になる。
Further, the number of optical signals created in parallel by the optical modulation means is not limited to the above-mentioned 8 or 9, but is, for example, only 2.
If the number of optical signals is increased within the range where the individual pulses finally obtained in a time series can be separated from each other, even more optical signals can be obtained. High-speed modulation becomes possible.

〔発明の効果〕〔Effect of the invention〕

本発明の光変調器によれば、光双安定素子の並列性及び
高速リミッタ特性、それに光パルスの遅延及び合成技術
とを利用することにより、光変調の一層の高速化が可能
になった。
According to the optical modulator of the present invention, by utilizing the parallelism and high-speed limiter characteristics of an optical bistable element, as well as optical pulse delay and synthesis technology, it has become possible to further increase the speed of optical modulation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す構成図、第2図(a)
及び(b)は同実施例に係るパルス遅延及び合成部5の
具体的な構成の一例を示す図、第3図fa)〜(C)は
同実施例の各箇所における信号波形を示す波形図、 第4図は本発明の他の実施例を示す構成図である。 1・・・半導体レーザ、 2・・・分岐導波路、 31〜38・・・電気光学変調器、 4・・・光双安定素子、 5・・・パルス遅延及び合成部、 5a、5a’・・・遅延部、 5b、5b’ ・・・合成部、 51〜58・・・導波路、 51′〜58′・・・光ファイバ、 10・・・半導体レーザアレイ、 11〜19・・・半導体レーザ。
Fig. 1 is a configuration diagram showing an embodiment of the present invention, Fig. 2(a)
3(b) is a diagram showing an example of a specific configuration of the pulse delay and synthesis unit 5 according to the same embodiment, and FIGS. 3fa) to (C) are waveform diagrams showing signal waveforms at various points in the same embodiment. , FIG. 4 is a block diagram showing another embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Semiconductor laser, 2... Branching waveguide, 31-38... Electro-optic modulator, 4... Optical bistable element, 5... Pulse delay and synthesis part, 5a, 5a'. ... Delay section, 5b, 5b'... Synthesis section, 51-58... Waveguide, 51'-58'... Optical fiber, 10... Semiconductor laser array, 11-19... Semiconductor laser.

Claims (1)

【特許請求の範囲】 1)それぞれ独立に変調された複数の光信号を並列に出
力する光変調手段(1、2、31〜38;10)と、 該光変調手段から出力された前記複数の光信号にそれぞ
れ互いに異なる遅延をかける遅延手段(5a、5a′)
と、 該遅延手段で得られた複数の信号を合成して時経列信号
を出力する合成手段(5b、5b′)とを備えるととも
に、 光路上において前記光変調手段よりも後段に光沢安定素
子(4)を配置したことを特徴とする高速光変調器。 2)前記光変調手段から出力された前記複数の光信号を
並列に前記光双安定素子に入射させ、その出力パルスの
それぞれに前記遅延手段で互いに異なる遅延をかけるこ
とを特徴とする特許請求の範囲第1項記載の高速光変調
器。 3)前記遅延手段で得られた前記複数の信号を並列に前
記光双安定素子に入射させ、その出力パルスを前記合成
手段で合成することを特徴とする特許請求の範囲第1項
記載の高速光変調器。 4)前記合成手段の出力信号を前記光双安定素子に入射
させ、その出力パルスを前記時経列信号とすることを特
徴とする特許請求の範囲第1項記載の高速光変調器。 5)前記光変調手段は、連続発振の半導体レーザ(1)
と、該半導体レーザの出力光を複数の光に分岐する分岐
導波路(2)と、該分岐導波路で分岐された光を並列し
てそれぞれ独立に変調する複数の電気光学変調器(31
〜38)とからなることを特徴とする特許請求の範囲第
1項乃至第4項のいずれか1つに記載の高速光変調器。 6)前記光変調手段は、それぞれ変調可能な複数の半導
体レーザ(11〜19)を一列に配置した半導体レーザ
アレイ(10)であることを特徴とする特許請求の範囲
第1項乃至第4項のいずれか1つに記載の高速光変調器
。 7)前記遅延手段(5a)は、互いに長さの異なる複数
の導波路(51〜58)からなり、該導波路長に応じた
遅延を生じさせることを特徴とする特許請求の範囲第1
項乃至第6項のいずれか1つに記載の高速光変調器。 8)前記遅延手段(5a′)は、互いに長さの異なる複
数の光ファイバ(51′〜58′)からなり、該光ファ
イバ長に応じた遅延を生じさせることを特徴とする特許
請求の範囲第1項乃至第6項のいずれか1つに記載の高
速光変調器。 9)前記光双安定素子は、有機物の非線形光学材料を用
いたものであることを特徴とする特許請求の範囲第1項
乃至第8項のいずれか1つに記載の高速光変調器。 10)前記有機物はポリジアセチレンであることを特徴
とする特許請求の範囲第9項記載の高速光変調器。 11)前記光双安定素子は、III−V及びII−IV化合物
の多重量子井戸の飽和吸収を利用したものであることを
特徴とする特許請求の範囲第1項乃至第8項のいずれか
1つに記載の高速光変調器。
[Scope of Claims] 1) Optical modulation means (1, 2, 31 to 38; 10) that outputs a plurality of independently modulated optical signals in parallel; Delay means (5a, 5a') that apply different delays to the optical signals
and a synthesizing means (5b, 5b') for synthesizing a plurality of signals obtained by the delaying means and outputting a time series signal, and a gloss stabilizing element provided on the optical path after the light modulating means. A high-speed optical modulator characterized in that (4) is arranged. 2) The plurality of optical signals outputted from the optical modulation means are made to enter the optical bistable element in parallel, and each of the output pulses is subjected to a different delay by the delay means. A high-speed optical modulator according to range 1. 3) The high-speed method according to claim 1, characterized in that the plurality of signals obtained by the delay means are made to enter the optical bistable element in parallel, and the output pulses thereof are synthesized by the synthesis means. light modulator. 4) The high-speed optical modulator according to claim 1, wherein the output signal of the combining means is input to the optical bistable element, and its output pulse is used as the time series signal. 5) The optical modulation means is a continuous wave semiconductor laser (1)
, a branching waveguide (2) that branches the output light of the semiconductor laser into a plurality of lights, and a plurality of electro-optic modulators (31) that independently modulate the lights branched by the branching waveguide in parallel.
38). The high-speed optical modulator according to any one of claims 1 to 4, characterized by comprising: 6) Claims 1 to 4, wherein the light modulation means is a semiconductor laser array (10) in which a plurality of semiconductor lasers (11 to 19) each capable of modulation is arranged in a line. The high-speed optical modulator according to any one of the above. 7) The delay means (5a) is composed of a plurality of waveguides (51 to 58) having different lengths, and produces a delay according to the length of the waveguides.
7. The high-speed optical modulator according to any one of items 6 to 6. 8) Claims characterized in that the delay means (5a') is composed of a plurality of optical fibers (51' to 58') having different lengths, and causes a delay according to the length of the optical fibers. The high-speed optical modulator according to any one of items 1 to 6. 9) The high-speed optical modulator according to any one of claims 1 to 8, wherein the optical bistable element uses an organic nonlinear optical material. 10) The high-speed optical modulator according to claim 9, wherein the organic substance is polydiacetylene. 11) Any one of claims 1 to 8, wherein the optical bistable element utilizes saturated absorption of multiple quantum wells of III-V and II-IV compounds. High-speed optical modulator described in .
JP61275386A 1986-11-20 1986-11-20 High-speed optical modulator Expired - Lifetime JP2569314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61275386A JP2569314B2 (en) 1986-11-20 1986-11-20 High-speed optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61275386A JP2569314B2 (en) 1986-11-20 1986-11-20 High-speed optical modulator

Publications (2)

Publication Number Publication Date
JPS63129326A true JPS63129326A (en) 1988-06-01
JP2569314B2 JP2569314B2 (en) 1997-01-08

Family

ID=17554767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61275386A Expired - Lifetime JP2569314B2 (en) 1986-11-20 1986-11-20 High-speed optical modulator

Country Status (1)

Country Link
JP (1) JP2569314B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02106718A (en) * 1988-10-17 1990-04-18 Hitachi Ltd Optical information processor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52107704A (en) * 1976-03-06 1977-09-09 Fujitsu Ltd Time division multiple system of light pulse

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52107704A (en) * 1976-03-06 1977-09-09 Fujitsu Ltd Time division multiple system of light pulse

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02106718A (en) * 1988-10-17 1990-04-18 Hitachi Ltd Optical information processor

Also Published As

Publication number Publication date
JP2569314B2 (en) 1997-01-08

Similar Documents

Publication Publication Date Title
WO2022016894A1 (en) Photonic neural network
US8009995B2 (en) Method and apparatus for photonic digital-to-analog conversion
CA2047220C (en) Apparatus for generating a comb of optical teeth of different wavelengths
JP2003255283A (en) Mach-zehnder type optical modulator
US6404366B1 (en) Photonic analog-to-digital converter utilizing wavelength division multiplexing and distributed optical phase modulation
CN102866876A (en) Single chip integrated optical matrix-vector multiplier
JP2719397B2 (en) Ultrashort optical pulse modulation circuit
CA2483237C (en) Optical digital-to-analog converter
US7982645B2 (en) Method and device for generating an electrical signal with a wide band arbitrary waveform
CN102664343B (en) High-pulse-repetition-frequency ultra-short laser pulse system
EP1780593A1 (en) Multiple wavelength light source, and generation method for multiple wavelength light
JPS63129326A (en) High-speed optical modulator
US4306771A (en) Optical pulse shaping device and method
JP5485496B2 (en) Semiconductor test equipment
CN104901653B (en) A kind of any time domain waveform generator of generation Gao Zhongying subnanosecond pulsewidth
CA2352351A1 (en) Multiwavelength light source device employing annular optical delay circuit
JPS56149838A (en) Light wave length multiplexing equipment
JP2007094143A (en) Multi-wavelength light source
US20030025975A1 (en) Optical signal time-scaling arrangement
JP4463707B2 (en) Optical pulse generator
JPH01291213A (en) Fast optical modulator
JP2738097B2 (en) Multiplexed light modulator
FR2328213A1 (en) Light modulation technique for display device - uses modulator, two polarizers and optical waveguides forming light paths to create display of controlled intensity
JP2023137770A (en) Speckle generation circuit and optical neural network device
JPH10336117A (en) Optical signal generating device