JPS63129036A - Glass having low melting point - Google Patents

Glass having low melting point

Info

Publication number
JPS63129036A
JPS63129036A JP26981186A JP26981186A JPS63129036A JP S63129036 A JPS63129036 A JP S63129036A JP 26981186 A JP26981186 A JP 26981186A JP 26981186 A JP26981186 A JP 26981186A JP S63129036 A JPS63129036 A JP S63129036A
Authority
JP
Japan
Prior art keywords
glass
melting point
low melting
low
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26981186A
Other languages
Japanese (ja)
Inventor
Ryukichi Matsuo
龍吉 松尾
Kenji Morinaga
健次 森永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP26981186A priority Critical patent/JPS63129036A/en
Publication of JPS63129036A publication Critical patent/JPS63129036A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/122Silica-free oxide glass compositions containing oxides of As, Sb, Bi, Mo, W, V, Te as glass formers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To obtain a glass having low m.p. with low transition point to glass, low softening point and small coefficient of thermal expansion, which is useful for joining the parts of electric and electronic equipments, etc., by incorporating a specified metal oxide to TeO2-Tl2O series oxide glass. CONSTITUTION:A mixed material is obtained by adding >=one kind of monovalent metal oxide among Li2O, Na2O and K2O or >=one kind of bivalent metal oxide among CaO, MgO, ZnO, SrO, CdO, BaO and PbO to the TeO2-Tl2O series oxide glass in order to be in the component ratio expressed by the equation I (MO expresses metal oxide; X, 20, and 80 express mol%) and combining (e.g. the equation II expresses the component ratio in the case where MO is PbO). Then the glass having low m.p. with about 35.3 dielectric constant (epsilonr) is obtained by heating and melting the mixed material.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、低融点ガラスに係り、いわゆる半田ガラスと
して知られ、ガラス、セラミックス或は金属の同種及び
異種接合に用いられると共に、実際には電気・電子部品
の接合や各(1材料の表面被覆或は導電性塗料として広
く用いられる低融点ガラスに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a low melting point glass, which is known as a so-called solder glass, and is used for bonding the same and different types of glass, ceramics, or metals, and is actually used for joining glass, ceramics, or metals. It relates to low-melting glass that is widely used for bonding electrical and electronic parts, as surface coatings for various materials, and as conductive paints.

[従来の技術とその問題点] 従来、低融点ガラスとしてPbO−8203系ノモノヲ
基本にしrPbo−ZnO−8203系(7)モ(F)
ヤPbo−8i 02−8203系のもの等が使用され
ている。而して、種々の特性を向上させるために以下の
ような金属酸化物をこれらの低融点ガラス中に含有させ
ている。すなわち、耐水性と電気特性を向上させる観点
から、上述の低融点ガラスにcao、zno、BaO等
の二価の金属酸化物を含有させることが行われている。
[Conventional technology and its problems] Conventionally, PbO-8203 type glass has been used as a base for low melting point glass, and rPbo-ZnO-8203 type (7) type (F) has been used as a base.
YaPbo-8i 02-8203 series etc. are used. In order to improve various properties, the following metal oxides are contained in these low melting point glasses. That is, from the viewpoint of improving water resistance and electrical properties, divalent metal oxides such as cao, zno, and BaO are incorporated into the above-mentioned low melting point glass.

また、熱膨服係数を大きくする観点からLi2O、Na
zO1K20等のアルカリ金属酸化物を含有させること
が行われている。しかし、この場合、低融点化にはほと
んど効果がなく、しかも、電気的性質を著しく劣化させ
る問題がある。また、表面張力を下げ、ガラスの流動性
を良くする観点からV2 O5を含有させることが行わ
れている。このような種々の金属酸化物の含有による特
性改善が行われているが、基本となるガラス形成酸化物
が8203であるため、吸水性が著しいと言う問題があ
る。また、Al2O2やSiO2が含有されている場合
には、融点の上昇を避けることができない問題がある。
In addition, from the viewpoint of increasing the thermal expansion coefficient, Li2O, Na
Incorporation of alkali metal oxides such as zO1K20 has been carried out. However, in this case, there is a problem in that there is little effect on lowering the melting point, and moreover, the electrical properties are significantly deteriorated. Additionally, V2 O5 is included in the glass from the viewpoint of lowering the surface tension and improving the fluidity of the glass. Although properties have been improved by including various metal oxides, since the basic glass-forming oxide is 8203, there is a problem of significant water absorption. Further, when Al2O2 or SiO2 is contained, there is a problem that the melting point cannot be avoided.

本発明は、かかる点に鑑みてなされたものであり、融点
が極めて低く、かつ、低ガラス転移点および低軟化点で
あると共に、熱膨張率の小さい低融点ガラスを提供する
ものである。
The present invention has been made in view of these points, and provides a low melting point glass that has an extremely low melting point, a low glass transition point, a low softening point, and a low coefficient of thermal expansion.

[問題点を解決するための手段1 本発明は、二酸化テルル(TeO2)〜酸化タリフラム
(Tff20)系酸化物ガラスに一価もしくは二価の金
alil!化物を含有してなることを特徴とする低融点
ガラスである。
[Means for Solving the Problems 1] The present invention provides tellurium dioxide (TeO2) to talifram oxide (Tff20) based oxide glass containing monovalent or divalent gold alil! It is a low melting point glass characterized by containing a chemical compound.

ここで、本発明の低融点ガラスの用途は、低融点である
ことから半田ガラス、ガラスシール材にあり、また、誘
電率が30〜35とpbo−8203系ガラスの2〜3
倍であることがら1lIIコンデンサーにあり、また、
比重が大で屈折率が大きいことから光学ガラスにあり、
また、低融点であることからレーザ光照射により容易に
ガラス状態と結晶状態との間の変換ができ3躾ガラスと
して光ディスクのレーザー書き込み材料にあり、更に温
度検知センサー等にあるものである。
Here, the low melting point glass of the present invention is used in solder glass and glass sealing materials due to its low melting point, and has a dielectric constant of 30 to 35, which is 2 to 3 of PBO-8203 glass.
It is twice as large as the 1lII capacitor, and
It is found in optical glass because of its high specific gravity and high refractive index.
In addition, since it has a low melting point, it can be easily converted between a glass state and a crystalline state by laser beam irradiation, and is used as a material for laser writing of optical disks, as well as in temperature detection sensors.

また、本発明における一価の金属゛酸化物は、L 12
0SNa20.に20(7)少なくともイスレか一種で
あり、二価の金T!h酸化物は、CaOlMQO,Zn
O,SrO,CdO,BaO1PbOの少なくともいず
れか一種である。
Furthermore, the monovalent metal oxide in the present invention is L 12
0SNa20. 20 (7) is at least one kind of isle and bivalent gold T! h oxides are CaOlMQO, Zn
It is at least one of O, SrO, CdO, and BaO1PbO.

また、二酸化テルル(TeO2)、 酸化タリ・ラム(
TQ20)及び−画もしくは二価の金arIi化物の組
成比は、金am化物をMOとすると、XMO−20TQ
20−(80−X)Te02の式を満足するように設定
する。ここで、X、20及び80の単位はm01%であ
る。例えば、MOがPbOの場合Xの値は1〜20に設
定し、MOがZnOの場合は1〜15に、MOがMaO
lBad、CdOの場合Xの値は1〜10に、MOがS
rOの場合Xの値は1〜5に、夫々設定する。このよう
な範囲に設定するのは、所定のガラス状態を得るためで
ある。
In addition, tellurium dioxide (TeO2), tali-rum oxide (
The composition ratio of TQ20) and divalent gold arIi compound is XMO-20TQ
20-(80-X)Te02 is set to satisfy the equation. Here, the units of X, 20 and 80 are m01%. For example, if the MO is PbO, set the value of X to 1 to 20, if the MO is ZnO, set it to 1 to 15, and if the MO is MaO
For lBad, CdO, the value of X is 1 to 10, and MO is S.
In the case of rO, the value of X is set to 1 to 5, respectively. The reason for setting it in such a range is to obtain a predetermined glass state.

而して、第1図の示す誘電率(Sr)と各成分のm01
%の特性図から明らかなように、MOの添加not%の
増加に伴いPbO系では誘電率のIU ハ上昇シテオリ
、20PbO−20Tn20−60Te02 r5r−
3!5.3.20PbO−25WOi−55TeOzで
Sr−38,7という各県での夫々最高値を示している
。その反面他の〜10の添加では、誘電率の値は、直線
的に減少し、その中かでもMo2N加の場合は、最高の
減少率を示し、l Qmo 1%MQOの場合Tl12
0組成でSr−33,5から25.9(減少率22.7
%)に、WO3組成でSr−35,3hkら29.5(
減少率16.4%)と大きく減少している。
Therefore, the dielectric constant (Sr) shown in Fig. 1 and m01 of each component
As is clear from the characteristic diagram of 20PbO-20Tn20-60Te02 r5r-
3!5.3.20PbO-25WOi-55TeOz and Sr-38 and 7, respectively, are the highest values in each prefecture. On the other hand, for the other ~10 additions, the dielectric constant value decreases linearly, among which the addition of Mo2N shows the highest rate of decrease, and in the case of lQmo 1%MQO, Tl12
0 composition, Sr-33.5 to 25.9 (reduction rate 22.7
%), Sr-35,3hk et al.29.5(
This is a significant decrease (decrease rate of 16.4%).

また、第2因は、密度と各成分のm01%の関係を示し
ている。Pboのような重い元素を添加すれば当然密度
は大きくなり、PbOを添加した本発明の低融点ガラス
の場合、6.3〜7.0と極めて高い値となっている。
Moreover, the second factor shows the relationship between density and m01% of each component. Naturally, if a heavy element such as Pbo is added, the density increases, and in the case of the low melting point glass of the present invention to which PbO is added, it has an extremely high value of 6.3 to 7.0.

このように密度が高いので屈折率も大きくなり、光学ガ
ラスとしての用途に適するものである。
Since the density is thus high, the refractive index is also high, making it suitable for use as optical glass.

また、本発明の低融点ガラスは、第3図に示す融点と各
MOの添加mo1%の特性図から明らかなように、添加
MOの融点に左右されずに低融点となっていることが分
る。すなわち、第3図は20Tj2rO−80TeO2
(液相線温度<TL>−337℃)におけるTe0zを
、所定mo1%づつ各種二価元素酸化物(MO)で置換
したときの液相PJ温度の変化を示している。同図から
明らかなように5rO(融点−2430℃、以下単に2
430℃のように記す)、Cd0(>900℃)、Ba
d(1820℃)の添加により液相線温度は大きく増加
する。Mg0(2800℃)、ZnO(>1800℃)
の添加では5m01%でわずかに極大を示しそのIIや
かに減少している。また、PbO(890℃)の添加で
はi omo +%で極大であり、15mo 1%で(
へ小値をとなっている。このように各MOの融点を比較
しても分るように、その大小が20Ta2O−80Te
O2に及ぼす一般的な傾向はみられないが、必ずし5も
添加MOの融点が高くても本発明の低融点ガラスの融点
は高くなっていない。例えばMqo、ZnO,PbO添
加の組成では、全置換範囲で液相線温度が400℃以下
と言う低い値を示している。特にMQO,ZnOは、そ
の融点が穫めて高いにも拘らず、置換凹が多くなっても
あまり液相線温度を上昇させることがなく、低い液相線
温度の値を保っている。
Furthermore, as is clear from the characteristic diagram of the melting point and the added mo1% of each MO shown in Figure 3, the low melting point glass of the present invention has a low melting point independent of the melting point of the added MO. Ru. That is, Fig. 3 shows 20Tj2rO-80TeO2
It shows the change in liquid phase PJ temperature when Te0z at (liquidus temperature <TL> -337° C.) is replaced with various divalent element oxides (MO) at a predetermined mole % of 1%. As is clear from the figure, 5rO (melting point -2430℃, hereinafter simply 2
430℃), Cd0 (>900℃), Ba
The addition of d (1820°C) significantly increases the liquidus temperature. Mg0 (2800℃), ZnO (>1800℃)
In the case of addition of , it shows a slight maximum at 5m01% and then decreases rapidly. In addition, when adding PbO (890°C), it reaches a maximum at i omo +%, and at 15mo 1% (
It has become a small value. As can be seen by comparing the melting points of each MO, the magnitude is 20Ta2O-80Te.
Although there is no general tendency to affect O2, the melting point of the low melting point glass of the present invention does not necessarily increase even if the melting point of the added MO is as high as 5. For example, in a composition with additions of Mqo, ZnO, and PbO, the liquidus temperature shows a low value of 400° C. or less over the entire substitution range. In particular, MQO and ZnO, although their melting points are extremely high, do not increase the liquidus temperature much even when the number of substitution cavities increases, and maintain a low liquidus temperature value.

また、本発明の低融点ガラスは、次ぎのようにして製造
することができる。低融点ガラスを製造するための試薬
としては、TeO2(99%)を始め各種の所定の酸化
物試薬を使用することができる。先ず、各試薬を目的の
組成に秤量混合した後、白金ルツボを用いて電気炉中で
溶融し、短時間の保持と強い撹拌後、リング状のステン
レス金型に流し出し、ガラス試料とする。しかし、この
ままの状態では試料に内部応力歪みが残留していて破裂
の可能性があるので、予めfvlo以下の低温に加熱し
た別の電気炉に直ちに投入し、応力除去焼鈍しを行なう
。得られたガラスは全て淡い〜濃黄色を呈している。
Moreover, the low melting point glass of the present invention can be manufactured as follows. As a reagent for producing low melting point glass, various predetermined oxide reagents including TeO2 (99%) can be used. First, each reagent is weighed and mixed to the desired composition, then melted in an electric furnace using a platinum crucible, held for a short time and stirred strongly, and then poured into a ring-shaped stainless steel mold to form a glass sample. However, if left as is, internal stress strain remains in the sample and there is a possibility of it bursting, so it is immediately placed in another electric furnace preheated to a low temperature below fvlo to perform stress relief annealing. All of the obtained glasses exhibit a pale to deep yellow color.

ところで、TeO2(n点=725°C)自体は、比較
的蒸発し易く、融点以上の極度の高温での溶融は、揮発
による組成変動が十分に考えられる。
By the way, TeO2 (n point = 725°C) itself is relatively easy to evaporate, and melting at an extremely high temperature above the melting point is highly likely to result in compositional fluctuations due to volatilization.

しかし、本発明の低融点ガラスの場合、予め行なった質
量分析によると、融点+50℃〜150℃にて試料を溶
融させても全く組成変動は見られないことが確認されて
いる。従って、このような融点温度の範囲で試料の溶解
を行なう。
However, in the case of the low melting point glass of the present invention, according to mass spectrometry conducted in advance, it has been confirmed that no compositional change is observed even when the sample is melted at a temperature of +50°C to 150°C. Therefore, the sample is melted within such a melting point temperature range.

[作用] 本発明にかかる低1点ガラスによれば、二酸化テルル(
TeO2)〜酸化タリウム(Tり20)系酸化物ガラス
に、−圃の金属酸化物としてL i 20%Na20S
K20(lVl:t<と6いずれか一種を、また、二価
の金ti1M化物としてCaOlMob、ZnO,Sr
O,CdO,BaO1PbOの少なくともいずれか一種
を含有させているので、融点、ガラス転移点及び軟化点
のいずれもが低く、しかも、熱膨張係数(α)を2.1
5XIO41,、’deg以下に下げることができる。
[Function] According to the low point glass according to the present invention, tellurium dioxide (
TeO2) to thallium oxide (T20)-based oxide glass, Li 20% Na20S as a field metal oxide
K20 (lVl:t
Since it contains at least one of O, CdO, and BaO1PbO, the melting point, glass transition point, and softening point are all low, and the coefficient of thermal expansion (α) is 2.1.
It can be lowered to 5XIO41,,'deg or less.

更に含有させる前記金属酸化物の種類、量を調整するこ
とにより、被封止材料とのマツチングも制DOできるも
のでる。また、誘電率(Sr)は、30以上(測定周波
数100KH2)であり、高誘電率ガラスとして使用で
きるものである。また、密度(ρ)は、6.0〜7.0
 (9/cm3)を越すものであり、高屈折率を有して
光学ガラスとして利用できるものである。
Furthermore, by adjusting the type and amount of the metal oxide to be contained, it is possible to control DO matching with the material to be sealed. Further, the dielectric constant (Sr) is 30 or more (measurement frequency 100KH2), and it can be used as a high dielectric constant glass. In addition, the density (ρ) is 6.0 to 7.0
(9/cm3), has a high refractive index, and can be used as an optical glass.

[実施例] 以下、本発明の実施例について図面を参照して説明する
[Examples] Examples of the present invention will be described below with reference to the drawings.

市販の酸化テルル、酸化鉛、炭酸タリウムの各試薬を酸
化テルル50〜98mo1%、酸化鉛O〜45m01%
、炭酸タリウムO〜45m01%の組成範囲内で精秤、
混合した。ここで、酸化タリウムの試薬として炭酸タリ
ウム(Tn2CO2)を使用したのは、これを加熱する
ことによって炭酸ガスをとばし、酸化タリウムを得るか
らである。
Commercially available tellurium oxide, lead oxide, and thallium carbonate reagents were mixed with tellurium oxide 50 to 98 mo1% and lead oxide O to 45 mo1%.
, accurately weighed within the composition range of thallium carbonate O ~ 45m01%,
Mixed. Here, thallium carbonate (Tn2CO2) was used as a reagent for thallium oxide because by heating it, carbon dioxide gas is evaporated and thallium oxide is obtained.

次ぎに、混合した試薬を白金ルツボに入れ、電気炉内で
加熱、溶融した。加熱温度は、rli点よりも50〜1
00℃高い温度とした。加熱温度は、必要に応じて20
0〜250℃高くしても良い。試薬が溶融した後、短時
間の保持と撹拌を行なった。
Next, the mixed reagents were placed in a platinum crucible and heated and melted in an electric furnace. The heating temperature is 50~1 higher than the rli point.
The temperature was set to 00°C higher. The heating temperature can be adjusted to 20°C as necessary.
The temperature may be increased by 0 to 250°C. After the reagents were melted, a brief hold and stirring was performed.

これによって均一な融液とし、金型(白金皿でも良い)
に流しだし急冷した。このようにして60Tffi20
−25PbO−15TeO2からなる低融点ガラスを製
造した。ここで、60は、T(120の低融点ガラス中
に占るmo1%であり、25は、PbOのnot%、1
5は、TeO2のmo1%である。この低融点ガラスの
液相I!j温度(TL−280℃)、ガラス転移点(T
O−145℃)、結晶化温度(TC−173℃)、誘電
率(Sr−33,1)、密度(、c+−7,00)及び
熱膨張係数(α−2,50X10ろ)を調べたところ以
下の通りであった。
This makes the melt uniform, and molds it into a mold (a platinum plate is fine).
Pour it into the water and cool it down quickly. In this way 60Tffi20
A low melting point glass consisting of -25PbO-15TeO2 was produced. Here, 60 is mo1% in the low melting point glass of T (120), 25 is not% of PbO, 1
5 is mo1% of TeO2. Liquid phase I of this low melting point glass! jTemperature (TL-280℃), glass transition point (T
O-145℃), crystallization temperature (TC-173℃), dielectric constant (Sr-33,1), density (c+-7,00) and thermal expansion coefficient (α-2,50X10) were investigated. The situation was as follows.

先ず、第4図は、この低融点ガラスの等液相線湯度特性
を示している。図中XXXで囲まれた領域は、ガラス化
範囲を示している。この領域から図中左下に向かう程、
すなわち、1℃20゜PbOのm01%が増加する方向
に従って、また、等Te02m1%(図中左右方向)で
はTa2Oのm01%が多い程、液相m温度は減少して
いることが分る。そして、ガラス化範囲境界付近の30
TM20−5PbO−65TeOz、25Tρ20−1
5PbO−60TeO2では、それぞれ293℃、28
1℃と遂に300℃を下回り、酸化物系ガラスとしては
特別低い値が得られている。
First, FIG. 4 shows the isoliquidus temperature characteristics of this low melting point glass. The area surrounded by XXX in the figure indicates the vitrification range. From this area towards the bottom left of the figure,
That is, it can be seen that the liquidus m temperature decreases as m01% of Ta2O increases in the direction in which m01% of PbO increases at 1° C. 20°, and at equal Te02m1% (left and right direction in the figure). And 30 near the vitrification range boundary
TM20-5PbO-65TeOz, 25Tρ20-1
For 5PbO-60TeO2, 293℃ and 28℃, respectively.
1°C, which is finally below 300°C, which is an especially low value for an oxide glass.

次ぎに、第5図はこの低融点ガラスの等ガラス転移点の
特性を示し、第6図は、等結晶化温度特)生を夫々示し
ている。これらの特性の傾向も前述の等液相11温度特
性と同様であり、Tl2O。
Next, FIG. 5 shows the characteristics of the iso-glass transition point of this low melting point glass, and FIG. 6 shows the characteristics of the iso-crystallization temperature. The trends of these characteristics are also similar to the temperature characteristics of the isoliquid phase 11 described above, and Tl2O.

PbOのm01%が増加するにつれ、また、等TeQ2
mO1%では、Tl2Oのm01%が多い程、ガラス転
移点及び結晶化温度は低下していることが分る。また、
ガラス転移点については、Tg<150℃の範囲が、T
a2Oの高濃度側でvA測されている。
As m01% of PbO increases, also the same TeQ2
It can be seen that at mO1%, the glass transition point and crystallization temperature decrease as the m01% of Tl2O increases. Also,
Regarding the glass transition point, the range of Tg<150°C is T
vA is measured on the high concentration side of a2O.

次ぎに、第7図は、この低融点ガラスの等誘電率t1性
(at100H2)を示している。誘電率の変化は、P
bOの含有伍が増加するに従って、つまり図中では左か
ら右へ行くに従って誘電率の値が増加していることが分
る。この低融点ガラスの誘電率の値は、32〜36と従
来の低融点ガラスとして用いられている8203系のも
のに比べて2〜3倍以上の高い値であることが分る。つ
まり、このTl2O−PbO−TeO2系のものは、低
融点高誘電率のガラスとみなすことができ、複合機能性
を生かしたニーズに対応できるものと考えられる。
Next, FIG. 7 shows the isoelectric constant t1 property (at100H2) of this low melting point glass. The change in dielectric constant is P
It can be seen that the dielectric constant value increases as the content of bO increases, that is, as one goes from left to right in the figure. It can be seen that the dielectric constant value of this low melting point glass is 32 to 36, which is 2 to 3 times higher than that of the 8203 series glass used as a conventional low melting point glass. In other words, this Tl2O--PbO--TeO2-based glass can be regarded as a glass with a low melting point and high dielectric constant, and is considered to be able to meet the needs of making use of its composite functionality.

第8図は、この低融点ガラスの密度の変化を示している
。密度は、Tl2O,PbOのm01%が増加するにつ
れ増す傾向にある。そして、Ta2O、PbOの高濃度
領域では、ρが7.0(9/cm3)程度の高密度を持
ったガラスか領域が存在し、これらはまた高屈折率を示
すと考えられ、光学ガラスとして有用なものである。
FIG. 8 shows the change in density of this low melting point glass. The density tends to increase as m01% of Tl2O and PbO increases. In the high concentration region of Ta2O and PbO, there is a glass region with a high density of ρ of about 7.0 (9/cm3), which is also thought to exhibit a high refractive index, and is used as an optical glass. It is useful.

[発明の効果] 以上説明した如く、本発明にかかる低融点ガラスによれ
ば、融点が極めて低く、かつ、低ガラス転移点および低
軟化点であると共に、熱膨張率の小さい特性を有するも
のである。
[Effects of the Invention] As explained above, the low melting point glass of the present invention has an extremely low melting point, a low glass transition point, a low softening point, and a low coefficient of thermal expansion. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、誘電率と添加成分のm01%との関係を示す
特性図、第2図は、密度と添加成分のm01%との関係
を示す特性図、第3図は、融点と添加成分のm01%と
の関係を示す特性図、第4図は、実施例の低融点ガラス
の等液相温度特性を示す特性図、第5図は、同の低融点
ガラスの等ガラス転移点の特性を示す特性図、第6図は
、同の低融点ガラスの等結晶化温度特性を示す特性図、
第7図は、同の低融点ガラスの等誘電率特性を示す特性
図、第8図は、同の低融点ガラスの密度の変化を示す特
性図である。 出願人代理人 弁理士 鈴江武彦 ’A2FOA ’i a  mo9 % (X )第3
図 適 み Density、ア (g/cm3) −@ へ穿 Dielectric constant 、εr (
100kHz )10oTeO2 第4図 第5図 +0OTeOz 第6図 第7図
Figure 1 is a characteristic diagram showing the relationship between dielectric constant and m01% of additive components, Figure 2 is a characteristic diagram showing the relationship between density and m01% of additive components, and Figure 3 is a characteristic diagram showing the relationship between density and m01% of additive components. Figure 4 is a characteristic diagram showing the iso-liquidus temperature characteristics of the low melting point glass of the example, and Figure 5 is the characteristic of the equal glass transition point of the same low melting point glass. FIG. 6 is a characteristic diagram showing the equal crystallization temperature characteristics of the same low melting point glass.
FIG. 7 is a characteristic diagram showing the isoelectric constant characteristics of the same low melting point glass, and FIG. 8 is a characteristic diagram showing changes in density of the same low melting point glass. Applicant's representative Patent attorney Takehiko Suzue 'A2FOA'i a mo9% (X) No. 3
Dielectric constant, εr (
100kHz) 10oTeO2 Fig. 4 Fig. 5 +0OTeOz Fig. 6 Fig. 7

Claims (2)

【特許請求の範囲】[Claims] (1)二酸化テルル(TeO_2)〜酸化タリウム(T
l2_O)系酸化物ガラスに一価もしくは二価の金属酸
化物を含有してなることを特徴とする低融点ガラス。
(1) Tellurium dioxide (TeO_2) ~ thallium oxide (T
12_O)-based oxide glass containing a monovalent or divalent metal oxide.
(2)一価の金属酸化物が、Li_2O、Na_2O、
K_2Oの少なくともいずれか一種であり、二価の金属
酸化物が、CaO、MgO、ZnO、SrO、CdO、
BaO、PbOの少なくともいずれか一種であることを
特徴とする特許請求の範囲第1項記載の低融点ガラス。
(2) The monovalent metal oxide is Li_2O, Na_2O,
K_2O, and the divalent metal oxide is CaO, MgO, ZnO, SrO, CdO,
The low melting point glass according to claim 1, characterized in that it is at least one of BaO and PbO.
JP26981186A 1986-11-14 1986-11-14 Glass having low melting point Pending JPS63129036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26981186A JPS63129036A (en) 1986-11-14 1986-11-14 Glass having low melting point

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26981186A JPS63129036A (en) 1986-11-14 1986-11-14 Glass having low melting point

Publications (1)

Publication Number Publication Date
JPS63129036A true JPS63129036A (en) 1988-06-01

Family

ID=17477499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26981186A Pending JPS63129036A (en) 1986-11-14 1986-11-14 Glass having low melting point

Country Status (1)

Country Link
JP (1) JPS63129036A (en)

Similar Documents

Publication Publication Date Title
US7968380B2 (en) Semiconductor encapsulation material and method for encapsulating semiconductor using the same
US5196381A (en) Metaphosphate glass composition
EP1156020B1 (en) Glass and glass tube for encapsulating semiconductors
US4405722A (en) Sealing glass compositions
EP1826187A1 (en) Glass for semiconductor sealing, sheath tube for semiconductor sealing and semiconductor electronic part
JPH09278483A (en) Bismuth based glass composition
KR20080106027A (en) Low-melting lead-free solder glass and uses thereof
JPH1059741A (en) Non-alkali glass and its production
JPH10130034A (en) Alkali-free glass and its production
JP3339647B2 (en) Lead-free low melting glass and sealing glass composition
JPH10114538A (en) Alkali-free glass and its production
JP2000159541A (en) Non-alkali glass and its production
KR20090110337A (en) Method for producing alkali?free glass
JPH1143350A (en) Non-alkali glass and its production
JPS61236631A (en) Refractory and heat resistant glass
JPH08290939A (en) Glass for substrate
JP3096136B2 (en) Glass composition for low-temperature fired substrate and substrate obtained therefrom
CN109890771A (en) Alkali-free glass and its manufacturing method
JPH10231139A (en) Non-alkali glass and its production
JPH11100226A (en) Substrate glass for display device
JPS63129036A (en) Glass having low melting point
JPH0446908B2 (en)
US3598620A (en) Alkali-free molybdenum sealing hard glass
US2929727A (en) Glass compositions and glass-to-metal seals
US4193807A (en) Optical glass