JPS63128616A - Manufacture of metallized film - Google Patents

Manufacture of metallized film

Info

Publication number
JPS63128616A
JPS63128616A JP27387086A JP27387086A JPS63128616A JP S63128616 A JPS63128616 A JP S63128616A JP 27387086 A JP27387086 A JP 27387086A JP 27387086 A JP27387086 A JP 27387086A JP S63128616 A JPS63128616 A JP S63128616A
Authority
JP
Japan
Prior art keywords
layer
plated film
resin
producing
metal plated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27387086A
Other languages
Japanese (ja)
Inventor
智幸 南
慶久 金刺
小南 充男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Metallizing Co Ltd
Original Assignee
Toyo Metallizing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Metallizing Co Ltd filed Critical Toyo Metallizing Co Ltd
Priority to JP27387086A priority Critical patent/JPS63128616A/en
Publication of JPS63128616A publication Critical patent/JPS63128616A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/386Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は金属メッキフィルムに関し、さらに詳細には、
ニッケル系および/またはクロム系からなる金属層をメ
ッキにより形成した、とくに金属固定抵抗体あるいはセ
ンサーなどの用途に適した金属メッキフィルムに関する
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a metal plated film, and more specifically,
The present invention relates to a metal plated film, which is particularly suitable for applications such as metal fixed resistors or sensors, in which a metal layer made of nickel and/or chromium is formed by plating.

(従来の技術) プラスチックフィルム(代表例としてポリエチレンテレ
フタレートフィルムおるいはポリイミドフィルム)はそ
のすぐれた機械的、電気的、熱的性質から電気絶縁材料
用途に広く用いられているが、金属被膜固定抵抗体ある
いは金属被膜固定センサーとして使用されている例は少
ない。金属薄膜を抵抗素子とした抵抗器あるいはセンサ
ーなどの用途では、アルミナなどのセラミック基板にニ
ッケル、クロム、チタンなどの高融点金属を蒸着あるい
はスパッタリングなどで表面に金属薄膜を形成したもの
が用いられている。
(Prior art) Plastic films (typically polyethylene terephthalate films or polyimide films) are widely used as electrical insulating materials due to their excellent mechanical, electrical, and thermal properties. There are few examples of it being used as a body or metal coating fixed sensor. For applications such as resistors or sensors that use metal thin films as resistance elements, ceramic substrates such as alumina are used with high melting point metals such as nickel, chromium, and titanium formed on the surface by vapor deposition or sputtering. There is.

しかし、プラスチックフィルムに各種金属薄膜を形成し
たものを抵抗あるいはセンサーとして使用された例は無
く、また仮に、使用したとしてもフィルムと金属膜の密
着性、加工成形時の割れ、断線などのおそれが有り、使
用に耐えるものではなかった。
However, there are no examples of plastic films with various metal thin films formed on them being used as resistors or sensors, and even if they were used, there would be concerns about the adhesion between the film and metal film, cracking during processing and molding, and disconnection. Yes, but it was not usable.

一方、プラスチックフィルム上に真空蒸着ヤスバッタリ
ング法で銅層、ニッケル層、クロム層の金属単体からな
る層を設けたものは知られているが、0.5μ以上の厚
みを有するものは知られていない。
On the other hand, it is known that layers made of simple metals such as a copper layer, a nickel layer, and a chromium layer are provided on a plastic film using a vacuum evaporation and Yasbuttering method, but a film having a thickness of 0.5μ or more is not known. Not yet.

(発明が解決しようとする問題点) プラスチックフィルムにアルミニウム泗、銅箔クロム系
金属筒、ニッケル系金属箔を貼合わせたものは、金属箔
の取り扱い上の制限から、15μ以上の厚い箔を用いな
ければならず、これより薄い厚さの金属層を貼合わせに
より形成することは困難であった。そのため、所望の電
気抵抗値を自由に設定できない、貼合わせ部分の密着性
が悪いなどの問題があった。
(Problems to be Solved by the Invention) For plastic films laminated with aluminum paste, copper foil, chromium-based metal tubes, and nickel-based metal foils, thick foils of 15μ or more are used due to restrictions in handling metal foils. Therefore, it was difficult to form a metal layer thinner than this by bonding. Therefore, there were problems such as not being able to freely set a desired electrical resistance value and poor adhesion of the bonded portion.

一方、プラスチックフィルム上に真空蒸着ヤスバッタリ
ング法で銅、ニッケル系、クロム系などの金属薄層を設
けたものは、該金属薄層の膜厚が薄いため、小電流回路
以外には適用できず、また、耐湿性や密着性が劣るなど
問題が多い。
On the other hand, thin metal layers of copper, nickel, chromium, etc. are formed on plastic films by vacuum evaporation and Yasbuttering, and because the thin metal layers are thin, they cannot be applied to circuits other than small current circuits. Furthermore, there are many problems such as poor moisture resistance and adhesion.

特公昭61−16620号で開示されたように、蒸着に
よって銅層を比較的厚く設けても、密着性が劣り、小電
流回路以外には適用できないなど用途面で限られている
As disclosed in Japanese Patent Publication No. 61-16620, even if a relatively thick copper layer is formed by vapor deposition, the adhesion is poor and the application is limited to applications other than small current circuits.

また、従来からプラスチックフィルムの上に真空蒸着法
やスパッタリング法によって薄い銅層を形成し、しかる
後に電解処理法によって銅層の厚さを増すことは知られ
ているが、電解処理によって銅層が溶出したり、はがれ
たり、または銅層が形成されても密着性が劣り、実用的
に使用可能なものは1市されるに到っていない。
Furthermore, it has been known that a thin copper layer is formed on a plastic film by vacuum evaporation or sputtering, and then the thickness of the copper layer is increased by electrolytic treatment. Even if the copper layer is eluted or peeled off, the adhesion is poor, and so far no product that can be used for practical purposes has been produced.

(問題点を解決するための手段) 本発明は、これら従来技術の問題点を解決せんとするも
のであり、とくにフィルムを基板とした金属固定抵抗体
あるいはセンサーなどの用途に適した金属メッキフィル
ムを提供することを目的とするものである。
(Means for Solving the Problems) The present invention aims to solve the problems of these conventional techniques, and is particularly directed to a metal plated film suitable for applications such as fixed metal resistors or sensors using a film as a substrate. The purpose is to provide the following.

本発明は上記目的を達成するために、次の構成を有する
。すなわち、 プラスチックフィルムの少なくとも片面に樹脂層を設け
た後、該樹脂層上に100〜3000人の銅層を蒸着し
、さらに該銅層上に0.5〜35μのニッケル系および
/またはクロム系からなる金属層を電気メッキ法によっ
て形成する金属メッキフィルムの製造法において、該樹
脂層を設けた後いずれかの工程において熱処理を施し、
実質的無緊張下150’C,30分間加熱時の熱収縮率
を0.5%以下とすることを特徴とする金属メッキフィ
ルムの製造法、である。
In order to achieve the above object, the present invention has the following configuration. That is, after providing a resin layer on at least one side of the plastic film, a 100 to 3000 copper layer is deposited on the resin layer, and a 0.5 to 35μ nickel-based and/or chromium-based layer is further deposited on the copper layer. In a method for producing a metal plated film in which a metal layer consisting of is formed by an electroplating method, heat treatment is performed in one of the steps after providing the resin layer,
This is a method for producing a metal plated film, characterized in that the heat shrinkage rate when heated at 150'C for 30 minutes under substantially no tension is 0.5% or less.

本発明で用いる基材のプラスチックフィルムを例示する
と、ポリエチレンテレフタレート、ポリエチレン−2,
6−ナフタレート、ポリエチレン−α、β−ビス(2−
クロルフェノキシエタン−4,4′−ジカルボキシレー
ト)などのポリエステル、ポリフェニレンサルフフイド
、ポリエーテルエーテルケトン、芳香族ポリアミド、ポ
リアリレート、ポリイミド、ポリアミドイミド、ポリエ
ーテルイミド、ポリオキサジアゾールおよびこれらのハ
ロゲン基あるいはメチル基置換体が挙げられる。また、
これらの共重合体や、他の有機重合体を含有するもので
あっても良い。これらのプラスチックに公知の添加剤、
例えば、滑剤、可塑剤などが添加されていても良い。
Examples of the base plastic film used in the present invention include polyethylene terephthalate, polyethylene-2,
6-naphthalate, polyethylene-α, β-bis(2-
chlorphenoxyethane-4,4'-dicarboxylate), polyphenylene sulfide, polyetheretherketone, aromatic polyamide, polyarylate, polyimide, polyamideimide, polyetherimide, polyoxadiazole, and these Examples include halogen group or methyl group substituted products. Also,
It may contain these copolymers or other organic polymers. Additives known to these plastics,
For example, a lubricant, a plasticizer, etc. may be added.

上記プラスチックの中、下式の繰り返し単位を85モル
%以上含むポリマを溶融押出しして得られる未延伸フィ
ルムを、二軸方向に延伸配向して機械特性を向上せしめ
たフィルムが特に好ましく使用される。
Among the above plastics, particularly preferably used is a film obtained by biaxially stretching orienting an unstretched film obtained by melt-extruding a polymer containing 85 mol% or more of repeating units of the following formula to improve mechanical properties. .

(但し、XはH,CH3,F、CI基ヲ示ス。)また、
下式の繰り返し単位を50モル%以上含むポリマからな
り、湿式あるいは乾湿式製膜したフィルム、あるいは該
フィルムを二軸延伸および/または熱処理せしめたフィ
ルムも好ましく使用される。
(However, X represents H, CH3, F, CI group.) Also,
A film made of a polymer containing 50 mol % or more of the repeating unit of the following formula and produced by a wet or dry process, or a film obtained by biaxially stretching and/or heat treating the film is also preferably used.

(ここで、XはH,CH3,F、CI基、m、nはO〜
3の整数を示す。) 本発明で用いる基材のプラスチックフィルムは、そのま
までもよいが、さらに接着性を向上させるためにコロナ
放電処理、その他の化学的、物理的表面処理など通常知
られている表面処理を行なってもよい。
(Here, X is H, CH3, F, CI group, m, n are O~
Indicates an integer of 3. ) The plastic film as the base material used in the present invention may be used as is, but it may also be subjected to commonly known surface treatments such as corona discharge treatment and other chemical and physical surface treatments to further improve adhesion. good.

ついでプラスチックフィルムの少なくとも片面に樹脂層
を設ける。この樹脂層の素材は、プラスチックフィルム
にも金属層にも密着性が良く、かつエツチングなどの後
加工に耐える必要があるために熱硬化性樹脂またはポリ
イミド系樹脂の中から選択される。熱硬化性樹脂として
は、接着性の良い飽和ポリエステル樹脂にエポキシおよ
び/またはメラミン樹脂を加えたものが好ましい。また
ポリエステルポリオールやアクリルポリオールにイソシ
アネートを添加したものや、変性アクリル樹脂に硬化剤
を添加したもの、エポキシ樹脂に硬化剤を添加したもの
も適している。また、ポリイミド系樹脂としては、ポリ
イミド、ポリアミドイミド、付加重合型ポリイミドなど
が挙げられる。
A resin layer is then provided on at least one side of the plastic film. The material for this resin layer is selected from thermosetting resins and polyimide resins because it needs to have good adhesion to both the plastic film and the metal layer and to withstand post-processing such as etching. The thermosetting resin is preferably a saturated polyester resin with good adhesiveness and an epoxy and/or melamine resin added thereto. Also suitable are polyester polyols or acrylic polyols to which isocyanate is added, modified acrylic resins to which a curing agent is added, and epoxy resins to which a curing agent is added. Further, examples of the polyimide resin include polyimide, polyamideimide, addition polymerization type polyimide, and the like.

プラスチックフィルムの種類と樹脂層の種類については
、たとえば、接着ハンドブックや工業材料臨時増刊号(
vol、33.No、13.1985 >に記載された
組み合わゼの中から適宜選択される。
For information on types of plastic films and types of resin layers, please refer to the Adhesive Handbook or Special Issue of Industrial Materials (
vol, 33. No. 13.1985>.

これらの樹脂層は蒸着またはスパッタ法によって銅薄層
を設けたときも塗膜と銅薄層の密着性が良く、その後の
金属メッキ処理、エツチングやハンダ付けによってもは
がれや溶出が起こらない。
Even when a thin copper layer is provided by vapor deposition or sputtering, these resin layers have good adhesion between the coating film and the thin copper layer, and will not peel off or elute during subsequent metal plating, etching, or soldering.

銅薄層、金属層を設けて後に施す処理においても銅薄層
、金属層、樹脂層、フィルム各層間の密着性を十分保つ
ためには、樹脂層を塗布した後および/または銅薄層を
設けた後および/または金属メッキ後に熱処理すること
によって、実質的に無緊張で150℃、 30分間加熱
した際の熱収縮率が0.5%以下になるようにする。熱
処理は、通常、乾熱でioo〜300’C,2秒〜10
分および/または40〜100℃、 10分〜48時間
の条件で行なうと、熱収縮率を上述の範囲内とすること
が可能となる。
In order to maintain sufficient adhesion between the copper thin layer, metal layer, resin layer, and film layers even in the treatment performed after the copper thin layer and metal layer are applied, it is necessary to apply the resin layer and/or the copper thin layer. Heat treatment is performed after installation and/or after metal plating so that the heat shrinkage rate when heated at 150° C. for 30 minutes with virtually no tension is 0.5% or less. Heat treatment is usually dry heat at ioo~300'C, 2 seconds~10
If the heat shrinkage is carried out under the conditions of 10 minutes to 48 hours and/or 40 to 100° C., the heat shrinkage rate can be within the above range.

また、この熱処理は、銅薄層を設けた後いずれかの工程
において行なう方が該銅薄層の湿度や酸化による劣化を
防ぐ意味で好ましい。
Further, it is preferable to carry out this heat treatment in any step after the formation of the thin copper layer in order to prevent deterioration of the thin copper layer due to humidity or oxidation.

エツチングに供するまでに、実質的無緊張下150’C
,30分間加熱時の熱収縮率が0.5%以下好ましくは
0.3%以下に保持されたフィルムは、電気メッキ処理
加工後設けられた金属層と支持フィルム基材との熱変形
差が少ないため、エツチング加工で形成された細線が基
材から浮き上がったり切断したりする問題が発生しない
。また電気メッキ工程で銅薄層が部分的に溶出すること
がない。
150'C under virtually no tension before etching
A film whose thermal shrinkage rate when heated for 30 minutes is kept at 0.5% or less, preferably 0.3% or less, has a thermal deformation difference between the metal layer provided after electroplating and the support film base material. Since the number of the thin lines formed by etching is small, there is no problem of the thin wires formed by etching being lifted from the base material or being cut. Further, the copper thin layer is not partially eluted during the electroplating process.

蒸着またはスパッタ法によって設けられる銅薄層の厚さ
は100〜3ooo2 、好ましくは300〜1200
人、さらに好ましくは400〜1000人である。膜厚
が100人よりも薄い場合は、電気メッキ工程で膜が溶
出しやすく、3000人よりも厚い場合は、電気メッキ
工程後に膜がはがれやすい。
The thickness of the thin copper layer provided by vapor deposition or sputtering is 100-3002, preferably 300-1200.
number of people, more preferably 400 to 1000 people. If the film thickness is less than 100 mm, the film is likely to be eluted during the electroplating process, and if it is thicker than 3000 mm, the film is likely to peel off after the electroplating process.

本発明において、銅層の蒸着および金属のメッキは片面
9両面のいづれにも施すことができる。
In the present invention, the vapor deposition of the copper layer and the metal plating can be performed on either one side or both sides.

銅薄層が形成されたフィルムでて実質的無緊張下150
°C,30分間加熱した際の熱収縮率を0.5%以下と
したものは、電気メッキによりニッケル系および/また
はクロム系の金属メッキ層を形成することが可能となる
。ニッケル系としては、Ni以外にNi−Fe、Ni−
Zn、Ni−Co、N1−Co−)1  ()i:各種
金属)。
A film with a thin copper layer formed under virtually no tension at 150°C
If the thermal shrinkage rate is 0.5% or less when heated at °C for 30 minutes, it is possible to form a nickel-based and/or chromium-based metal plating layer by electroplating. In addition to Ni, nickel-based materials include Ni-Fe, Ni-
Zn, Ni-Co, N1-Co-)1 ()i: various metals).

N1−P (Pニリン化合物) 、N1−B、Ni−酊
、 N i −W、 N i −Crなどの合金も好ま
しく使用される。
Alloys such as N1-P (Pniline compound), N1-B, Ni-Ni-Ni, Ni-W, and Ni-Cr are also preferably used.

電気メッキ工程は、密着性を向上させるための脱脂およ
び酸活性処理、ストライク、メッキの各工程から成る。
The electroplating process consists of degreasing and acid activation treatment, striking, and plating steps to improve adhesion.

銅層を蒸着した直後に金属電気メッキ工程に入る場合に
は、脱脂および酸活性処理、ストライクを省いても良い
。銅薄層に給電する電流密度は、好ましくは0.2〜I
OA/dm2、さらに好ましくは0.5〜2A/dm2
である。また、該電気メッキは電解メッキ、無電解メッ
キのいずれの方法でも採用できる。形成されるメッキ厚
さは0.1〜15μ、好ましくは0.5〜13μ、さら
に好ましくは1.5〜10μである。0.1μ以下では
メッキ膜の信頼性が十分とはいえない。15μ以上では
膜形成に時間がかかり経済性が劣る他、エツチング加工
時に回路パターンの端部エツチングが進行しやすく、ま
た、折り曲げによる断線のおそれがあるなど品質面でも
好ましくない。目的の抵抗体あるいはセンサーが必要と
する抵抗値によっても異なるが、加工作業性、品質の面
から1.5〜10μ程度が特に好ましい。
If the metal electroplating process is performed immediately after depositing the copper layer, the degreasing and acid activation treatments and strikes may be omitted. The current density feeding the copper thin layer is preferably 0.2 to I
OA/dm2, more preferably 0.5-2A/dm2
It is. Further, the electroplating can be performed by either electrolytic plating or electroless plating. The thickness of the formed plating is 0.1-15μ, preferably 0.5-13μ, more preferably 1.5-10μ. If it is less than 0.1μ, the reliability of the plating film cannot be said to be sufficient. If it is more than 15 μm, it takes time to form a film, which is poor in economical efficiency, and it is also unfavorable in terms of quality, as etching tends to occur at the edges of the circuit pattern during etching, and there is a risk of wire breakage due to bending. Although it varies depending on the resistance value required by the target resistor or sensor, it is particularly preferably about 1.5 to 10 μm from the viewpoint of workability and quality.

なお、本発明で、ニッケル系および/またはクロム系メ
ッキ層上に更に銅、銀、金などの良伝導性金属メッキ層
を形成しても良い。
In the present invention, a highly conductive metal plating layer such as copper, silver, or gold may be further formed on the nickel-based and/or chromium-based plating layer.

(実施例) 以下実施例を挙げて本発明をさらに説明する。(Example) The present invention will be further explained below with reference to Examples.

実施例1〜8 厚さ50μのポリイミドフィルム″カプトン゛′(登録
商標)に表1に示す塗材を厚さ0.5μになるように塗
布し、150℃、1分の熱処理を行なった。ついで5X
 io−’rorrで銅を膜厚200〜2000人の範
囲で水準を選び真空蒸着した。さらに180℃。
Examples 1 to 8 The coating materials shown in Table 1 were applied to a polyimide film "Kapton" (registered trademark) having a thickness of 50 .mu.m to a thickness of 0.5 .mu.m, and heat-treated at 150.degree. C. for 1 minute. Then 5X
Copper was vacuum-deposited using IO-'RORR, with the film thickness selected from a range of 200 to 2,000. Further 180℃.

1分の熱処理を行なった。その後、表2に示す条件で厚
さ4〜10μの厚さの範囲で水準を選びニッケルメッキ
を行なった。ニッケルメッキ後の銅層と基材との密着性
、エツチング性(エツチング速度)、寸法安定性および
寸法変化率を測定し、結果を表3にまとめて示した。後
述の比較例1〜6にくらべてニッケル層の膜の安定性が
すぐれていることが認められた。
Heat treatment was performed for 1 minute. Thereafter, nickel plating was performed under the conditions shown in Table 2, with a thickness selected within the range of 4 to 10 microns. The adhesion between the copper layer and the base material after nickel plating, etching property (etching rate), dimensional stability, and dimensional change rate were measured, and the results are summarized in Table 3. It was found that the stability of the nickel layer was superior to that of Comparative Examples 1 to 6, which will be described later.

比較例1〜6 厚さ50μのポリイミドフィルムに実施例と同様にアン
カーコートを施したもの、およびアンカーコートしない
ものについて、熱処理を行ない、または行なわずにメッ
キ加工に供した(これらの結果は表1の中に比較例とし
て示した)。
Comparative Examples 1 to 6 Polyimide films with a thickness of 50μ were coated with an anchor coating in the same manner as in the examples, and those without an anchor coating were subjected to plating processing with or without heat treatment (these results are shown in Table 1). 1 as a comparative example).

ついで表2の条件でメッキ時間を変えてメッキ加工を行
なった。表3に示すようにメッキ加工時に金属薄膜層か
はがれたり溶出したりして所定の電気メッキ加工ができ
なかった。
Next, plating was carried out under the conditions shown in Table 2 while changing the plating time. As shown in Table 3, the metal thin film layer peeled off or eluted during the plating process, making it impossible to perform the desired electroplating process.

(以下余白) 表1 ポリイミド樹脂 (発明の効果) 以上本発明によれば、プラスチックフィルムのフィルム
の上にニッケル系およびクロム系の金属層を0.5〜1
5μの厚みに形成することができ、パターン形成、エツ
チング、配線、組込みなどの工程を経ても、また、さら
に厳しい環境試験を経ても剥離が発生しない密着性に優
れた金属メッキ基板が生産できる。さらに、従来のクロ
ム箔、ニラクル箔などのラミネートでは得られない薄い
金属層を形成でき、より高密度な回路パターンに適用す
ることができる。本発明の基板は、高品質で安価な抵抗
体やセンサーとして有用である以外に、IC,LSIな
どの微細パターン配線基板、プリント配線基板、積層基
板などの用途に使用することも可能である。
(Margin below) Table 1 Polyimide resin (effects of the invention) According to the present invention, a nickel-based and chromium-based metal layer of 0.5 to 1
It can be formed to a thickness of 5 μm, and can produce metal plated substrates with excellent adhesion that do not peel off even after processes such as pattern formation, etching, wiring, and assembly, as well as even after severe environmental tests. Furthermore, it is possible to form a thin metal layer that cannot be obtained with conventional laminates such as chrome foil and Niracle foil, and it can be applied to higher-density circuit patterns. The substrate of the present invention is useful as a high-quality and inexpensive resistor or sensor, and can also be used for fine pattern wiring boards such as ICs and LSIs, printed wiring boards, and laminated boards.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は本発明による、樹脂層、銅蒸着層、ニッケルメッ
キ層を片面に設けた場合のニッケルメッキフィルムの模
式化した断面図、図2は本発明による、樹脂層、銅蒸着
層、ニッケルメッキ層を両面に設けた場合のニッケルメ
ッキフィルムの模式化した断面図である。 図中、 1ニブラスチツクフイルム 2:樹脂層 3:銅蒸着層 4:ニッケルメッキ層 5:金属層
FIG. 1 is a schematic cross-sectional view of a nickel-plated film in which a resin layer, a copper vapor deposition layer, and a nickel plating layer are provided on one side according to the present invention, and FIG. FIG. 2 is a schematic cross-sectional view of a nickel-plated film in which layers are provided on both sides. In the figure, 1: Niblast film 2: Resin layer 3: Copper deposited layer 4: Nickel plating layer 5: Metal layer

Claims (7)

【特許請求の範囲】[Claims] (1)プラスチックフィルムの少なくとも片面に樹脂層
を設けた後、該樹脂層上に100〜3000Åの銅層を
蒸着し、さらに該銅層上に0.5〜35μのニッケル系
および/またはクロム系からなる金属層を電気メッキ法
によつて形成する金属メッキフィルムの製造法において
、該樹脂層を設けた後いずれかの工程において熱処理を
施し、実質的無緊張下150℃、30分間加熱時の熱収
縮率を0.5%以下とすることを特徴とする金属メッキ
フィルムの製造法。
(1) After providing a resin layer on at least one side of the plastic film, a 100-3000 Å copper layer is vapor-deposited on the resin layer, and a 0.5-35 μ nickel-based and/or chromium-based copper layer is further deposited on the copper layer. In a method for manufacturing a metal plated film in which a metal layer consisting of is formed by electroplating, heat treatment is performed in one of the steps after the resin layer is provided, and when heated at 150 ° C. for 30 minutes under substantially no tension. A method for producing a metal plated film characterized by having a heat shrinkage rate of 0.5% or less.
(2)プラスチックフィルムが、ポリエステル、ポリフ
ェニレンサルファイド、ポリエーテルエーテルケトン、
芳香族ポリアミド、ポリイミド、ポリオキサジアゾール
およびこれらのハロゲン基あるいはメチル基置換体から
選ばれたものからなることを特徴とする特許請求の範囲
第1項に記載の金属メッキフィルムの製造法。
(2) The plastic film is polyester, polyphenylene sulfide, polyether ether ketone,
2. The method for producing a metal plated film according to claim 1, wherein the film is made of a material selected from aromatic polyamide, polyimide, polyoxadiazole, and halogen group- or methyl group-substituted products thereof.
(3)樹脂層が飽和ポリエステル樹脂とエポキシ樹脂お
よび/またはメラミン樹脂からなることを特徴とする特
許請求の範囲第1項に記載の金属メッキフィルムの製造
法。
(3) The method for producing a metal plated film according to claim 1, wherein the resin layer is made of a saturated polyester resin, an epoxy resin, and/or a melamine resin.
(4)樹脂層がポリエステルポリオールおよび/または
アクリルポリオールとイソシアネートの反応生成物から
なることを特徴とする特許請求の範囲第1項に記載の金
属メッキフィルムの製造法。
(4) The method for producing a metal plated film according to claim 1, wherein the resin layer is made of a reaction product of polyester polyol and/or acrylic polyol and isocyanate.
(5)樹脂層が変性ポリアクリル樹脂と硬化剤からなる
ことを特徴とする特許請求の範囲第1項に記載の金属メ
ッキフィルムの製造法。
(5) The method for producing a metal plated film according to claim 1, wherein the resin layer is made of a modified polyacrylic resin and a curing agent.
(6)樹脂層がエポキシ樹脂と硬化剤からなることを特
徴とする特許請求の範囲第1項に記載の金属メッキフィ
ルムの製造法。
(6) The method for producing a metal plated film according to claim 1, wherein the resin layer is made of an epoxy resin and a curing agent.
(7)樹脂層がポリイミド、ポリアミドイミド、付加重
合型ポリイミドから選ばれたものからなることを特徴と
する特許請求の範囲第1項に記載の金属メッキフィルム
の製造法。
(7) The method for producing a metal plated film according to claim 1, wherein the resin layer is made of one selected from polyimide, polyamideimide, and addition polymerized polyimide.
JP27387086A 1986-11-19 1986-11-19 Manufacture of metallized film Pending JPS63128616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27387086A JPS63128616A (en) 1986-11-19 1986-11-19 Manufacture of metallized film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27387086A JPS63128616A (en) 1986-11-19 1986-11-19 Manufacture of metallized film

Publications (1)

Publication Number Publication Date
JPS63128616A true JPS63128616A (en) 1988-06-01

Family

ID=17533711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27387086A Pending JPS63128616A (en) 1986-11-19 1986-11-19 Manufacture of metallized film

Country Status (1)

Country Link
JP (1) JPS63128616A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109511217A (en) * 2019-01-07 2019-03-22 深圳市顺荣昌电路有限公司 A kind of high reflectance energy conservation double-face backlight wiring board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109511217A (en) * 2019-01-07 2019-03-22 深圳市顺荣昌电路有限公司 A kind of high reflectance energy conservation double-face backlight wiring board

Similar Documents

Publication Publication Date Title
CA2595302C (en) Method of making multilayered construction for use in resistors and capacitors
JP5392732B2 (en) Copper surface-to-resin adhesive layer, wiring board, and adhesive layer forming method
US4917963A (en) Graded composition primer layer
JP3061670B2 (en) Injection molded printed circuit board manufacturing method
JPS63286580A (en) Metal coated laminate product formed from polyimide film having surface pattern
JP2001277424A (en) Metallized polyimide film and method for manufacturing the same
KR20060129965A (en) Copper-clad laminated and manufacturing method thereof
JPS63107088A (en) Manufacture of copper-plated film
JP2004031588A (en) Flexible printed wiring board
JPS63128616A (en) Manufacture of metallized film
JP2004009357A (en) Metal vapor-deposited/metal plated laminated film and electronic part using the same
JP3265027B2 (en) Polyimide film with metal film
JPH02141233A (en) Laminated transfer film for printed wiring board
KR101012919B1 (en) flexible metal clad laminate without adhesion and method of manufacturing flexible metal clad laminate without adhesion
JP4228405B2 (en) Metal thin film laminate film and flexible printed wiring board using the film
JPH01321687A (en) Flexible printed wiring board
KR20170071205A (en) Flexible copper clad laminate fim and method of manufacturing the same
JP3305770B2 (en) Polyimide film with metal film
JPH0777778B2 (en) Metallized film and its manufacturing method
JPH0360192A (en) Copper wired ceramic board and manufacture thereof
McClure et al. A low-cost flexible circuit on a polyester substrate
JP3861432B2 (en) Metal foil laminated film and flexible printed wiring board using the film
JP2003001756A (en) Copper thin film laminate
JP3201489B2 (en) Heat-resistant synthetic resin film having composite metal layer and its manufacturing method
JPH0287589A (en) Manufacture of flexible double-sided printed circuit board