JPS63128545A - Quadrupole type mass spectrometer - Google Patents

Quadrupole type mass spectrometer

Info

Publication number
JPS63128545A
JPS63128545A JP61274114A JP27411486A JPS63128545A JP S63128545 A JPS63128545 A JP S63128545A JP 61274114 A JP61274114 A JP 61274114A JP 27411486 A JP27411486 A JP 27411486A JP S63128545 A JPS63128545 A JP S63128545A
Authority
JP
Japan
Prior art keywords
frequency
section
output transformer
analysis tube
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61274114A
Other languages
Japanese (ja)
Other versions
JPH0750597B2 (en
Inventor
Megumi Nakazato
中里 恵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP61274114A priority Critical patent/JPH0750597B2/en
Publication of JPS63128545A publication Critical patent/JPS63128545A/en
Publication of JPH0750597B2 publication Critical patent/JPH0750597B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electron Tubes For Measurement (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

PURPOSE:To reduce the loss of high-frequency power in a high-frequency transmission cable, by separating the position of a high-frequency oscillator from an analysis tube, connecting directly a high-frequency amplifier and a high-frequency output transformer to the analysis tube, and connecting the high-frequency oscillator and the high-frequency amplifier with a high-frequency cable. CONSTITUTION:In a quadrupole type mass spectrometer, which is furnished with a high-frequency output circuit consisting of a high-frequency oscillator 1, a high-frequency amplifier 2, and a high-frequency output transformer 3, and to whose quadrupole electrode, the output of the high-frequency output transformer 3 is applied, the high-frequency oscillator 1, the high-frequency amplifier 2, and the high-frequency output transformer 3 connected to the amplifier 2, are positioned separately each other, and moreover, connected each other with a high-frequency cable 6, while the high-frequency amplifier 2 and the high-frequency output transformer 3 are connected directly to an analysis tube 4. Therefore, a high-frequency voltage generated at the high-frequency oscillator 1 is delivered to the high-frequency amplifier 2 at a low voltage as it is, amplified there, and the amplified high-frequency voltage is boosted at the high-frequency output transformer 3, and at the same time, superposed on a DC voltage to be fed to the quadrupole electrode of the analysis tube 4. Therefore, the loss of high-frequency power can be reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は化学物質の組成や雰囲気ガス等のガスの分析に
用いられる四重型質量分析計に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a quadruple mass spectrometer used for analyzing the composition of chemical substances and gases such as atmospheric gases.

(従来の技術) 四重型質量分析計は、イオンを生成するイオンソース部
、四重極電極部及びイオン検出部から構成される分析管
を備えている。
(Prior Art) A quadruple mass spectrometer includes an analysis tube that includes an ion source section that generates ions, a quadrupole electrode section, and an ion detection section.

該四重極電極は、互いに、対称の位置に配置された4本
のロッドで構成され、2対のロッドには、それぞれ高周
波電圧と直流電圧を重畳した電圧すなわちU+V co
swtと−u−v■盲tなる電圧が印加されており、イ
オンソース部で生成され該電極中に入射したイオンのう
ち、該電極に印加された電圧の大きさに応じた電荷対質
ω比のみが四重極電極を通過し、イオンコレクタ又は2
次電子増培管から成るイオン検出器で検出される。この
イオン検出器の出力は直流増幅器で増幅され、オシロス
コープ又はペンレコーダに加えられ、質量スペクトルが
得られる。
The quadrupole electrode is composed of four rods arranged symmetrically to each other, and each of the two pairs of rods receives a voltage that is a superimposition of a high frequency voltage and a DC voltage, that is, U+V co
A voltage of swt and -u-v■blind t is applied, and among the ions generated in the ion source and incident on the electrode, the charge-to-mass ω ratio is determined according to the magnitude of the voltage applied to the electrode. Only the quadrupole electrode passes through the ion collector or two
It is detected by an ion detector consisting of a secondary electron multiplier. The output of this ion detector is amplified with a DC amplifier and applied to an oscilloscope or pen recorder to obtain a mass spectrum.

上記四重電極の2対のロッドに高周波電圧及び直流電圧
を供給する高周波出力回路は、高周波発振部、高周波増
幅部及び高周波出力トランス部から成っており、従来、
第3図示のように、高周波発振部a、高周波増幅部す及
び高周波出力トランス部Cをボックスdに収納して分析
管eの近傍に配画し、長さ601111位の同軸テーブ
ルhによって分析管eの四重極電極へ直流電圧及び高周
波電圧を供給するように方式のものが多い。
The high-frequency output circuit that supplies high-frequency voltage and DC voltage to the two pairs of rods of the quadruple electrode is composed of a high-frequency oscillation section, a high-frequency amplification section, and a high-frequency output transformer section.
As shown in Figure 3, a high-frequency oscillation section a, a high-frequency amplification section, and a high-frequency output transformer section C are housed in a box d and arranged near the analysis tube e, and the analysis tube is connected to a coaxial table h having a length of about 601111. There are many systems that supply DC voltage and high frequency voltage to the quadrupole electrodes of e.

この方式の伯に、第4図示のように、同軸ケーブルを用
いず、前記ボックスdを分析管eに直結する方式も知ら
れている。
An alternative to this method is also known, as shown in Figure 4, in which the box d is directly connected to the analysis tube e without using a coaxial cable.

また、第5図示のように、分析管eに高周波出力トラン
ス部Cを直結し、高周波発振部a及び高周波増幅部すを
分析管eから分離配置し、該高周波増幅部すと高周波出
力トランス部Cを例えば3TrL位の同軸ケーブルhで
接続したものも考えられる。
Further, as shown in Figure 5, a high frequency output transformer section C is directly connected to the analysis tube e, a high frequency oscillation section a and a high frequency amplification section are arranged separately from the analysis tube e, and the high frequency amplification section and the high frequency output transformer section are arranged separately. It is also possible to connect C with a coaxial cable h of about 3TrL, for example.

尚、上記各図において、9はコントロール部である。Note that in each of the above figures, 9 is a control section.

(発明が解決しようとする問題点) 第3図示の方式において、高周波出力トランス部Cと分
析管Cを接続する同軸ケーブルhの訓電要領は、高周波
出力トランス部C(タンク回路)の共振周波数fを決め
るf = 1/(2πLC)なる式中のCに含まれるた
め、同軸テーブルhの長さを伸ばすと、共振周波数fは
2〜38H2の間の適当な値で固定されているため、高
周波出力トランス部CのインダクタンスLを小さくしな
ければならない。該りを小さくすると高周波電圧が下が
り、そのため分析できる質量範囲が狭くなる。したがっ
て従来の第3図示の方式では、同軸ケーブルhの長さを
長くできず、1m位に制限されるので、測定のために分
析管eを取付ける真空容器にボックスdを置くための台
を設けなければならず、分析管の取付場所に制限を与え
ていた。
(Problem to be Solved by the Invention) In the method shown in Figure 3, the instruction point for the coaxial cable h connecting the high frequency output transformer section C and the analysis tube C is the resonant frequency of the high frequency output transformer section C (tank circuit). Since it is included in C in the formula f = 1/(2πLC) that determines f, if the length of the coaxial table h is increased, the resonant frequency f is fixed at an appropriate value between 2 and 38H2, so The inductance L of the high frequency output transformer section C must be made small. Reducing the spread will lower the high frequency voltage, which will narrow the mass range that can be analyzed. Therefore, in the conventional method shown in Figure 3, the length of the coaxial cable h cannot be increased and is limited to about 1 m, so a stand is provided to place the box d in the vacuum container in which the analysis tube e is attached for measurement. This placed restrictions on where the analysis tube could be installed.

従来の第4図示の方式でも同じで、分析管の回りにボッ
クスを配置するためのスペースが必要で、近くに配管な
どがあるとそれ等が邪魔になり希望する場所に取付けら
れないという不便があった。また第5図示の方式では、
小さな高周波出力トランス部Cを分析管eに直結するの
で、分析管を測定の対象となる真空装置に付は易くなる
が、高周波電力損失が比較的大きく、また、イオンソー
ス等に接続するケーブルに高周波ノイズを誘導しやすい
不都合があった。
The same is true for the conventional method shown in Figure 4, which requires space to place the box around the analysis tube, and if there are pipes nearby, they will get in the way and cause the inconvenience of not being able to install the box in the desired location. there were. Furthermore, in the method shown in Figure 5,
Since the small high-frequency output transformer C is directly connected to the analysis tube e, it is easier to connect the analysis tube to the vacuum equipment that is the object of measurement, but the high-frequency power loss is relatively large, and the cable connecting to the ion source etc. This has the disadvantage of easily inducing high-frequency noise.

本発明は、従来の上述のような不都合を解消する四重極
型質吊分析計を提供することをその目的とするものであ
る。
An object of the present invention is to provide a quadrupole quality suspension analyzer that eliminates the above-mentioned conventional problems.

(問題点を解決するための手段) 本発明は、上述の目的を達成するために、高周波発振部
、高周波増幅部及び高周波出力トランス部から成る高周
波出力回路を備え、該高周波出力トランス部の出力が四
重極電極に印加される四重型質量分析計において、高周
波発振部と高周波増幅部及び該増幅部に接続された高周
波出力トランス部とを分離配置すると共に高周波伝送ケ
ーブルで互いに接続し、該高周波増幅部及び高周波出力
トランスを分析管に直結したことを特徴とする。
(Means for Solving the Problems) In order to achieve the above-mentioned object, the present invention includes a high-frequency output circuit consisting of a high-frequency oscillation section, a high-frequency amplification section, and a high-frequency output transformer section, and the output of the high-frequency output transformer section. In a quadruple mass spectrometer in which a high-frequency oscillator is applied to a quadrupole electrode, a high-frequency oscillation section, a high-frequency amplification section, and a high-frequency output transformer section connected to the amplification section are arranged separately and connected to each other with a high-frequency transmission cable. It is characterized in that the high frequency amplification section and high frequency output transformer are directly connected to the analysis tube.

(作 用) 高周波発振部で発生した8周波電圧は、低電圧のまま高
周波電装ケーブルにより分離配置された高周波増幅部へ
送られ、該高周波増幅部で増幅される。増幅された高周
波電圧に高周波出力トランス部で昇圧されると共に直流
電圧に重畳されて分析管の四重極電極に供給される。
(Function) The 8-frequency voltage generated in the high-frequency oscillation section is sent as a low voltage to the separately arranged high-frequency amplification section via a high-frequency electrical equipment cable, and is amplified in the high-frequency amplification section. The amplified high-frequency voltage is boosted by the high-frequency output transformer, superimposed on the DC voltage, and supplied to the quadrupole electrodes of the analysis tube.

(実施例) 本発明の実施例を添付図面につき説明する。(Example) Embodiments of the invention will be described with reference to the accompanying drawings.

第1図において(1)は高周波発振部、(2)は高周波
増幅部、(3)は高周波出力トランス部で、これ等高周
波発振部(1)、高周波増幅部(2)及び高周波出力ト
ランス部(3)は、分析管(4)の四重極電極に高周波
電圧と直流電圧を供給する高周波出力回路を構成する。
In Figure 1, (1) is a high-frequency oscillation section, (2) is a high-frequency amplification section, and (3) is a high-frequency output transformer section. (3) constitutes a high frequency output circuit that supplies high frequency voltage and DC voltage to the quadrupole electrode of the analysis tube (4).

高周波増幅部(2)及び高周波出力トランス部(3)は
、ケース(5)に収容して分析管(4)に取付けられ、
該高周波増幅部(hは分離して配置した高周波発振部(
1)と例えば50〜75Ωのインピーダンスを有し、例
えば3mの長さの高周波伝送ケーブル(6)により接続
される。
The high frequency amplification section (2) and the high frequency output transformer section (3) are housed in a case (5) and attached to the analysis tube (4),
The high frequency amplification section (h is a separately arranged high frequency oscillation section (
1) and is connected by a high frequency transmission cable (6) having an impedance of, for example, 50 to 75 Ω and having a length of, for example, 3 m.

高周波発振部(1)は水晶発掘式のものや、自動発振(
LC発振)式のものがよく使われており、10aRX1
0CrR位の基板上に構成される。
The high frequency oscillator (1) may be of the excavated crystal type or automatic oscillation (
LC oscillation) type is often used, and 10aRX1
It is constructed on a substrate of 0CrR.

高周波増幅部(2)は、第2図示のように例えばトラン
ジスタ(7>から成り、そのエミッタ及びベースは高周
波伝送ケーブル(6)に接続されている。
The high frequency amplifying section (2) is made up of, for example, a transistor (7) as shown in the second diagram, and its emitter and base are connected to the high frequency transmission cable (6).

高周波出カドランス部(3)は、高周波出カドランス(
8)を含むタンク回路(9)から成っている。これを更
に詳細に説明すると、高周波トランス(8)の1次コイ
ル(1(h)は直流電源及び上記トランジスタ(7)の
コレクタに接続され、2次コイル(102)及び2次コ
イル(10a)の各1端はそれぞれ+U電圧直流電源及
び−〇電圧直流電源に接続され、その他端は分析管の各
1対の四重極電極a111に接続されている。(12+
) (122)はタンク回路(9)を構成する同調用コ
ンデンサで、該コンデンサ(121) (122)の調
整により高周波出カドランス(8)の1次コイル(10
dに入力する高周波の周波数に2次コイル(102) 
(1G 3)を含む2次回路が共娠するように調整する
もので、その調整の結果、四重極電極av avへ印加
される高周波電圧が分割用コンデンサ(13a3で分割
され、この電圧はダイオード(l@a@で整流され、接
続線a9を介して高周波発振部(1)にフィードバック
されて高周波電圧の安定化を行っている。この電圧は質
昂数の表示にも用いられる。aeはアース線である。
The high frequency output portion (3) is a high frequency output portion (3).
It consists of a tank circuit (9) including: To explain this in more detail, the primary coil (1 (h) of the high frequency transformer (8) is connected to the DC power supply and the collector of the transistor (7), and the secondary coil (102) and the secondary coil (10a) One end of each is connected to a +U voltage DC power supply and a -○ voltage DC power supply, respectively, and the other end is connected to each pair of quadrupole electrodes a111 of the analysis tube. (12+
) (122) is a tuning capacitor that constitutes the tank circuit (9), and by adjusting the capacitors (121) and (122), the primary coil (10
A secondary coil (102) is connected to the high frequency input to d.
(1G 3) is adjusted so that the secondary circuit including It is rectified by the diode (l@a@) and is fed back to the high frequency oscillation unit (1) via the connection line a9 to stabilize the high frequency voltage. This voltage is also used to display the quality number. ae is the ground wire.

上記高周波出カドランス(8)の1次コイル(?Od及
び2次コイル(102) (103)はそれぞれトロイ
ダルコア(17+に巻回され、1次コイル(1(h)と
2次コイル(102) (103)の巻数比は2:50
程度で、2次コイ)Lt (102) (103) ニ
ハ最高1000V p−p高周波電圧が取り出せるよう
になっている。
The primary coil (?Od) and secondary coils (102) (103) of the high frequency output transformer (8) are each wound around a toroidal core (17+), and the primary coil (1 (h) and secondary coil (102) The turns ratio of (103) is 2:50
It is possible to extract a maximum high frequency voltage of 1000V p-p at a secondary carp) Lt (102) (103).

以上の高周波増幅部(2)及び高周波出カドランス部(
3)を構成する部品は例えばφ50x 1100()位
の筒状の小型のケース(5)に収容することができる。
The above high frequency amplification section (2) and high frequency output section (
The parts constituting 3) can be housed in a small cylindrical case (5) with a diameter of about 50 x 1100 mm, for example.

このケース(5)は分析管(4)に直接取付けられる。This case (5) is attached directly to the analysis tube (4).

第1図において、(’1gは電源を有し制御信号を発生
するコントロール部で、該コントロール部■はイオンソ
ース部へ行く線など多数の1束のケーブルによって分析
管(4)に接続されており、上記高周波伝送ケーブル(
6)もこの1束のケーブル(図示しない)と−緒になっ
ている。
In Fig. 1, ('1g is a control section that has a power source and generates control signals, and this control section (2) is connected to the analysis tube (4) by a bundle of cables such as wires going to the ion source section. The above high frequency transmission cable (
6) is also connected to this bundle of cables (not shown).

以上の実施例の構成によれば、分析管(4)から分離配
置された高周波発振部(1)で発生した低圧の高周波が
高周波伝送ケーブル(6)により伝送され、分析管(4
)の近くに配置されたトランジスタ(7)で増幅され、
その高周波電圧は^周波出力トランス部(3)で直流電
圧に重畳されて四重極電極(1つに印加される。
According to the configuration of the above embodiment, the low voltage high frequency generated by the high frequency oscillator (1) separated from the analysis tube (4) is transmitted by the high frequency transmission cable (6), and
) is amplified by a transistor (7) placed near the
The high frequency voltage is superimposed on the DC voltage in the frequency output transformer section (3) and applied to one quadrupole electrode.

尚、上記高周波主カドランス(8)はトロイダルコアを
用いたが空芯でもよい。
Note that although a toroidal core is used for the high frequency main quadrance (8), an air core may be used.

(発明の効果) 以上説明したように、本発明によれば、高周波発振部を
分析管から分離配置し、該分析管に高周波増幅部を及び
高周波出カドランス部を直結し、高周波発振部と高周波
増幅部とを高周波伝送ケーブルで接続したので、高周波
伝送ケーブルにおける高周波電力損失は第5図示の方式
に比して少なくてすむ。また高周波発振部の消費電力は
高周波伝送ケーブルが3mのとき約172になり、ケー
ブル長が長くなればその差がもっと大きくなる。
(Effects of the Invention) As explained above, according to the present invention, the high-frequency oscillation section is arranged separately from the analysis tube, the high-frequency amplification section and the high-frequency output cadence section are directly connected to the analysis tube, and the high-frequency oscillation section and the high-frequency Since the amplification section is connected with the high frequency transmission cable, the high frequency power loss in the high frequency transmission cable can be reduced compared to the system shown in FIG. Furthermore, the power consumption of the high frequency oscillator is approximately 172 when the high frequency transmission cable is 3 m long, and the difference becomes larger as the cable length becomes longer.

更に第3図の方式や第4図の方式のように分析管の近く
に高周波出力回路を置くための台を設ける必要がなく、
分析管の回りに高周波出力回路部品を置く大きなスペー
スも要しない効果があり、また高周波伝送ケーブルの高
周波が他のケーブルに誘導することによって生ずる高周
波ノイズの影響も少ない効果がある。
Furthermore, there is no need to provide a stand for placing the high-frequency output circuit near the analysis tube, unlike in the methods shown in Figures 3 and 4.
This has the effect of not requiring a large space for placing high-frequency output circuit parts around the analysis tube, and also has the effect of reducing the effects of high-frequency noise caused by the high-frequency waves of the high-frequency transmission cable being guided to other cables.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のブロック図、第2図はその高周波増幅
部及び高周波出カドランス部の回路図、第3図及び第4
図及び第5図はいずれも従来例のブロック図である。 (1)・・・高周波発振部  (り・・・高周波増幅部
(3)・・・高周波出カドランス部 (4)・・・分析管     (6)・・・高周波伝送
ケーブル手続補正口
Figure 1 is a block diagram of the present invention, Figure 2 is a circuit diagram of its high frequency amplification section and high frequency output unit, and Figures 3 and 4.
Both FIG. 5 and FIG. 5 are block diagrams of conventional examples. (1)...High frequency oscillation section (Ri...High frequency amplification section (3)...High frequency output section (4)...Analysis tube (6)...High frequency transmission cable procedure correction port

Claims (1)

【特許請求の範囲】[Claims] 高周波発振部、高周波増幅部及び高周波出力トランス部
から成る高周波出力回路を備え、該高周波出力トランス
部の出力が四重極電極に印加される四重型質量分析計に
おいて、高周波発振部と高周波増幅部及び該増幅部に接
続された高周波出力トランス部とを分離配置すると共に
高周波伝送ケーブルで互いに接続し、該高周波増幅部及
び高周波出力トランスを分析管に直結したことを特徴と
する四重極型質量分析計。
A quadruple mass spectrometer is equipped with a high-frequency output circuit consisting of a high-frequency oscillation section, a high-frequency amplification section, and a high-frequency output transformer section, and the output of the high-frequency output transformer section is applied to a quadrupole electrode. and a high-frequency output transformer connected to the amplification section are arranged separately and connected to each other by a high-frequency transmission cable, and the high-frequency amplification section and the high-frequency output transformer are directly connected to an analysis tube. Analyzer.
JP61274114A 1986-11-19 1986-11-19 Quadrupole mass spectrometer Expired - Lifetime JPH0750597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61274114A JPH0750597B2 (en) 1986-11-19 1986-11-19 Quadrupole mass spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61274114A JPH0750597B2 (en) 1986-11-19 1986-11-19 Quadrupole mass spectrometer

Publications (2)

Publication Number Publication Date
JPS63128545A true JPS63128545A (en) 1988-06-01
JPH0750597B2 JPH0750597B2 (en) 1995-05-31

Family

ID=17537206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61274114A Expired - Lifetime JPH0750597B2 (en) 1986-11-19 1986-11-19 Quadrupole mass spectrometer

Country Status (1)

Country Link
JP (1) JPH0750597B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10600628B1 (en) 2018-11-15 2020-03-24 Mks Instruments, Inc. Resonant transmission line to deliver precision RF voltage
GB2587442A (en) * 2019-03-04 2021-03-31 Micromass Ltd Transformer for applying an AC voltage to electrodes

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59128748A (en) * 1983-01-13 1984-07-24 Mitsubishi Electric Corp Accelerating voltage power supply for electron beam welding
JPS61140049A (en) * 1984-12-12 1986-06-27 Fumio Watanabe Quadrupole type mass spectrometer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59128748A (en) * 1983-01-13 1984-07-24 Mitsubishi Electric Corp Accelerating voltage power supply for electron beam welding
JPS61140049A (en) * 1984-12-12 1986-06-27 Fumio Watanabe Quadrupole type mass spectrometer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10600628B1 (en) 2018-11-15 2020-03-24 Mks Instruments, Inc. Resonant transmission line to deliver precision RF voltage
WO2020102029A1 (en) * 2018-11-15 2020-05-22 Mks Instruments, Inc. Resonant transmission line to deliver precision rf voltage
GB2587442A (en) * 2019-03-04 2021-03-31 Micromass Ltd Transformer for applying an AC voltage to electrodes
GB2587442B (en) * 2019-03-04 2022-02-16 Micromass Ltd Transformer for applying an AC voltage to electrodes

Also Published As

Publication number Publication date
JPH0750597B2 (en) 1995-05-31

Similar Documents

Publication Publication Date Title
JP2811632B2 (en) Separation path amplification and insulation apparatus and method
US3771055A (en) Double nuclear magnetic resonance coil
US11817301B2 (en) Method and device for crosstalk compensation
US5194731A (en) Inductively coupled plasma spectroscopy
US3129062A (en) Flame ionization detector
US4725780A (en) RF field generator and detector
JPS63128545A (en) Quadrupole type mass spectrometer
US4703190A (en) Power supply system for a quadrupole mass spectrometer
GB904260A (en) Method and apparatus for measuring magnetic fields
EP0312586B1 (en) Spurious resonance control for nmr observe coils
JPH056799A (en) Rf power supply device for icp
JPH0358142B2 (en)
USH1217H (en) Easily tunable detector for covering discontinuities in buried energized antenna ground wipes
JP2529219B2 (en) Circuit used with mass spectrometer quadrupole mass filter
WO2022123895A1 (en) Quadrupole mass spectrometer and residual gas analysis method
JPS62213056A (en) Analyzer using high frequency inductive coupling plasma
SU1308904A1 (en) Cathode-ray oscillograph
CN117059469A (en) Self-excitation type radio frequency power supply for multipole rod ion transmission
JPH0342617Y2 (en)
JPS6264043A (en) Inductively coupled plasma mass spectrometer
Borer et al. A new method for feedback stabilization of a microwave power supply
Jones et al. Beam transport system for the IUCF high intensity polarized ion source
JP2001229864A (en) Electron beam apparatus
JPH0216633B2 (en)
KR20010051455A (en) Control of emission in a video display