JPS63128114A - Method for predicting decarburizing end point in vod process - Google Patents

Method for predicting decarburizing end point in vod process

Info

Publication number
JPS63128114A
JPS63128114A JP27433286A JP27433286A JPS63128114A JP S63128114 A JPS63128114 A JP S63128114A JP 27433286 A JP27433286 A JP 27433286A JP 27433286 A JP27433286 A JP 27433286A JP S63128114 A JPS63128114 A JP S63128114A
Authority
JP
Japan
Prior art keywords
molten steel
parameter
decarburization
end point
blowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27433286A
Other languages
Japanese (ja)
Inventor
Masayoshi Okamura
岡村 正義
Takaharu Arakawa
荒川 高治
Mitsuaki Maeda
光明 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP27433286A priority Critical patent/JPS63128114A/en
Publication of JPS63128114A publication Critical patent/JPS63128114A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To predict the end point of finishing of decarburization in high Cr molten steel by finding the existing carbon concentration from O2 parameter measured at inlet of exhaust tube of VOD furnace, the existing molten steel temp. parameter and Cr concentration parameter in the molten steel. CONSTITUTION:The high Cr molten steel is charged in the VOD furnace in vacuum chamber 1,and blowing is executed by oxygen lance 6 and bottom blowing nozzle 4, to decarburize the molten steel. Then, a sensible part 7 of oxygen gas sensor having a dust removing filter is arranged at the inlet of exhaust tube 3 in the VOD furnace 2, to obtain the O2 parameter. By using this O2 parameter and the existing molten steel temp. parameter assumed from the exhaust temp. near the sensible part 7 and molten steel temp. before blowing oxygen, and the Cr concentration parameter in the molten steel before blowing oxygen, the existing carbon concentration is obtained from the prescribed equation. In this way, the predication of end point of decarburization is simply executed at high accuracy and inexpensive method.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は吹酸による仕上げ脱炭を行なうVODプロセス
における脱炭反応の終点を予測する方法に関し、詳細に
は高Cr溶鋼をVOD炉中で仕上げ脱炭を行なうときの
終点予測精度を向上することのできた終点予測方法に関
するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for predicting the end point of a decarburization reaction in a VOD process that performs final decarburization by blowing acid, and specifically relates to a method for predicting the end point of a decarburization reaction in a VOD process that performs final decarburization by blowing acid. The present invention relates to an end point prediction method that can improve the end point prediction accuracy when performing final decarburization.

[従来の技術] VOD炉はステンレス鋼の精錬における有力な装置とし
て開発されたものであるが、真空機能を持っているとこ
ろから、極低炭素鋼や極低硫鋼の精錬に威力を発揮する
と共に、耐熱・耐食性の高合金鋼をはじめ広範な製鋼分
野に適用されている。高Cr溶鋼の仕上げ脱炭はその一
例であり、鋼浴中に酸素ガスを吹込むか、或は鋼浴を攪
拌しながら溶鋼表面に酸素ガスを吹込み、生成したCO
を真空引きによって系外へ排出し、高度な脱炭を行なっ
ている。この様な真空下の吹酸による溶鋼中の化学反応
は比較的複雑であるが、■溶鋼中のC,St、Cr、■
スラグ浴中の5in2゜Cr 203 、■雰囲気中の
COの間で次式で示す様な反応が進行していると考えら
れている。
[Conventional technology] The VOD furnace was developed as a powerful device for refining stainless steel, and because it has a vacuum function, it is effective in refining ultra-low carbon steel and ultra-low sulfur steel. At the same time, it is applied to a wide range of steel manufacturing fields, including heat-resistant and corrosion-resistant high-alloy steel. One example is the finish decarburization of high Cr molten steel, in which oxygen gas is injected into the steel bath or onto the surface of the molten steel while stirring the steel bath.
is discharged from the system by vacuuming, performing advanced decarburization. The chemical reactions in molten steel caused by blown acid under vacuum are relatively complex, but the following chemical reactions occur: ■C, St, Cr,
It is believed that a reaction as shown in the following equation is proceeding between 5in2°Cr 203 in the slag bath and CO in the atmosphere.

S i +2CO2C+S i 02      (1
)2Cr+3CO:3C+Cr203   (2)上記
(1) 、 (2)は平衡反応であり、吹酸の初期はS
tやCrの酸化反応が優先的に進行する結果、溶鋼中の
StやCrが減少すると共にスラグ中には5i02やC
r、O,が増加してくる。
S i +2CO2C+S i 02 (1
)2Cr+3CO:3C+Cr203 (2) The above (1) and (2) are equilibrium reactions, and the initial stage of blowing acid is S.
As a result of the oxidation reaction of T and Cr proceeding preferentially, St and Cr in the molten steel decrease and 5i02 and C are added to the slag.
r,O, increases.

しかし上記反応は真空下に行なわれるものであるから、
系中のCOがどんどん排気されていき、従って(1) 
、 (2)式の反応は右から左に向けて進行する。この
とき溶鋼の攪拌状況に見合った速度で進行することは言
うまでもない。結局上記反応を整理すると次の様になる
However, since the above reaction is carried out under vacuum,
CO in the system is gradually exhausted, and therefore (1)
, The reaction in equation (2) proceeds from right to left. Needless to say, at this time, the stirring proceeds at a speed commensurate with the stirring state of the molten steel. In the end, the above reaction can be summarized as follows.

(1)SLやCrの酸化による5i02やCr2O,の
形成、 (2)SiO2やCr2O,のCによる還元反応の進行
でStやCrの溶鋼への復帰 (3)同時にCOの発生と排気 この様な一連の反応が持続して進行するため、溶鋼中の
StやCrは見掛1殆んど変化せず、Cのみが優先的に
減少し脱炭が進行するのである[もっとも脱炭反応によ
る温度上昇があるので、(1) 、 (2)式の各反応
における平衡点のずれが発生し、その分わずかにStや
Crが減少するが、ここでは不問とする]、こうして吹
酸による脱炭反応が進行し、しかも吹酸の初期は酸素供
給律速によってC濃度が急激に減少していくが、C:a
度が低くなると脱炭反応はCの拡散律速へ8行していく
。その結果脱炭速度が減少し、やがては(1)。
(1) Formation of 5i02 and Cr2O by oxidation of SL and Cr; (2) Return of St and Cr to molten steel through the progress of the reduction reaction of SiO2 and Cr2O with C; (3) Simultaneous generation and exhaust of CO. As a series of reactions proceed continuously, St and Cr in the molten steel hardly change in appearance, only C preferentially decreases and decarburization progresses. Because of the temperature rise, the equilibrium points of each reaction in equations (1) and (2) will shift, and St and Cr will decrease slightly by that amount, but this is not a concern here.] In this way, decomposition by blowing acid As the charcoal reaction progresses, the C concentration rapidly decreases due to the rate-limiting oxygen supply at the initial stage of acid blowing.
As the temperature decreases, the decarburization reaction becomes rate-limited by C diffusion. As a result, the decarburization rate decreases and eventually (1).

(2)式の平衡が左から右方向へ変わる。即ちSL及び
Crの酸化、特にCrの酸化反応が進行し溶鋼中濃度が
減少する。この様なCrの酸化ロスは高Cr溶鋼の精錬
にとって致命的であるから(還元材の原単位の悪化、成
分調整や温度調整の不安定、品質の変動等)、オーバー
ブローを防止する為にも脱炭終点の判定が非常に重要に
なってくる。
The equilibrium of equation (2) changes from left to right. That is, the oxidation reaction of SL and Cr, especially the oxidation reaction of Cr, progresses and the concentration in the molten steel decreases. Since such oxidation loss of Cr is fatal to the refining of high-Cr molten steel (deterioration of the basic unit of reducing agent, instability of composition adjustment and temperature adjustment, fluctuation of quality, etc.), in order to prevent overblowing, In this case, determining the end point of decarburization becomes very important.

そこで従来においても脱炭の終了点を予測する技術が検
討されており、VOD炉からの排ガス中のCo、co2
.02の各濃度変化(組成変化)を求め、真空度との関
係を考慮して脱炭終点を判定するということが行なわれ
ている。
Therefore, technology to predict the end point of decarburization has been studied in the past, and
.. The decarburization end point is determined by determining each concentration change (composition change) of 02 and considering the relationship with the degree of vacuum.

[発明が解決しようとする問題点] 従来から行なわれているVOD炉の排ガス分析では、排
ガス中に多量のダストが含まれていることから、分析器
のセンサ一部を真空タンクの出口部近傍に設置すること
ができない。そこで真空装置の排ガス出口側の最終段で
ダストをフィルタリングしてからサンプルガスを採取す
るか、またはタンク出口部近傍で排ガスをサンプリング
した後フィルターによりダストを除去するといった必要
がある。従って分析装置以外に真空下での排ガスサンプ
リング装置や除塵装置が必要となり、装置が大がかりで
複雑になるばかりでなく非常に高価であり保守にも多大
の労力と費用を要する。さらに現在の分析技術では、取
鍋内で発生した排ガスが、真空タンクからサンプリング
位置そして分析装置へと移動して分析結果が判明する迄
に20〜30秒以上要している。この為、脱炭反応に変
化が生じても、それを検知できるまでに20〜30秒以
上かかることになる為この間のCrの酸化ロスは防止で
きない。
[Problems to be solved by the invention] In conventional VOD furnace exhaust gas analysis, since the exhaust gas contains a large amount of dust, it is necessary to place part of the analyzer's sensor near the outlet of the vacuum tank. cannot be installed. Therefore, it is necessary to filter the dust at the final stage on the exhaust gas outlet side of the vacuum device before collecting the sample gas, or to sample the exhaust gas near the tank outlet and then remove the dust with a filter. Therefore, in addition to the analyzer, an exhaust gas sampling device under vacuum and a dust removal device are required, and the device is not only large-scale and complicated, but also very expensive and requires a great deal of effort and expense to maintain. Furthermore, with current analysis techniques, it takes 20 to 30 seconds or more for the exhaust gas generated in the ladle to travel from the vacuum tank to the sampling position and to the analyzer, and for the analysis results to be obtained. For this reason, even if a change occurs in the decarburization reaction, it will take 20 to 30 seconds or more before it can be detected, and oxidation loss of Cr during this time cannot be prevented.

本発明は、上記のような複雑で高価な装置を使用しなく
とも非常に簡便で安価なしかも即応性が良好でCrの酸
化ロスの少ない高精度の終点予測方法を提供しようとす
るものである。
The present invention aims to provide a highly accurate end point prediction method that does not require the use of the above-mentioned complicated and expensive equipment, is very simple and inexpensive, has good quick response, and has little Cr oxidation loss. .

[問題点を解決する為の手段] 本発明に係るVODプロセスの終点予測方法とは、除塵
フィルターを有する酸素ガスセンサーの感応部をVOD
炉の排気管入口近傍(真空タンク出口部)に配置するこ
とによって求められる0□パラメータ、上記感応部付近
の排ガス温度と吹酸前の溶鋼温度から推定される現在溶
鋼温度パラメータ、並びに吹酸前の溶鋼中Cr濃度パラ
メータを用い、上記3つのパラメータと炭素濃度との関
係式を解くことによって現在炭素濃度を求め脱炭終了点
を予測する点に要旨が存在するものである。
[Means for solving the problem] The method for predicting the end point of the VOD process according to the present invention is to
The 0□ parameter obtained by placing the furnace near the exhaust pipe inlet (vacuum tank outlet), the current molten steel temperature parameter estimated from the exhaust gas temperature near the sensitive part and the molten steel temperature before blowing acid, and the molten steel temperature parameter before blowing acid. The gist of this method is to calculate the current carbon concentration and predict the end point of decarburization by solving the relational expression between the above three parameters and carbon concentration using the Cr concentration parameter in molten steel.

[作用及び実施例] 第1図は本発明の実施状況を示す説明図であり、排気管
3が接続された真空室1内にはVOD炉2が配置されて
いる。尚排気管3に記入された矢印は排気方向を示し、
図示しておらない真空ポンプによって真空室1内が真空
に保たれている。
[Operations and Examples] FIG. 1 is an explanatory diagram showing the implementation status of the present invention, in which a VOD furnace 2 is arranged in a vacuum chamber 1 to which an exhaust pipe 3 is connected. The arrow drawn on the exhaust pipe 3 indicates the exhaust direction.
The inside of the vacuum chamber 1 is maintained at a vacuum by a vacuum pump (not shown).

5は成分調整の為に添加される金属の貯蔵タンクであり
、6は吹酸用のランスを示す。尚図示したVODO2O
3部にはAr等を底吹きするための底吹きノズル4が設
けられている。そして本発明の第1の特徴点は排気管3
の人口に酸素ガスセンサーの感応部7を配置している点
に存在し、VODO2O3排出されてきた排ガス中の酸
素濃度を排出直後に検出できるので、VOD炉内で進行
する脱炭反応と酸素濃度検出の間の時刻差は極めて少な
く、従来の技術の問題点であった遅れ時間の発生はほぼ
完全に解消された。また本発明では酸素濃度を測定する
だけであるから、市販の安価な酸素ガスセンサーを使用
することができ、ガスサンプラーや個々のガス分析装置
を使用する必要がなくなり、コスト高を防止できる様に
なフた。
5 is a storage tank for metal added for component adjustment, and 6 is a lance for blowing acid. The VODO2O shown in the diagram
A bottom blow nozzle 4 for bottom blowing Ar or the like is provided in the third part. The first feature of the present invention is that the exhaust pipe 3
Since the sensing part 7 of the oxygen gas sensor is placed in the population of VODO2O3, the oxygen concentration in the exhaust gas discharged from VODO2O3 can be detected immediately after discharge, so the decarburization reaction progressing inside the VOD furnace and the oxygen concentration can be detected. The time difference between detections is extremely small, and the delay time that was a problem with conventional technology has been almost completely eliminated. In addition, since the present invention only measures oxygen concentration, a commercially available inexpensive oxygen gas sensor can be used, eliminating the need for a gas sampler or individual gas analyzer, which can prevent high costs. No futa.

本発明で使用される酸素ガスセンサーについては除座フ
ィルターを有するものである限り格別の制限を設ける必
要がなく、例えば金属酸化物半導体ガスセンサー、固体
電解質酸素センサー(例えばジルコニア酸素センサー等
)、ガルバニ電池酸素センサー、磁気式ガスセンサー等
を非限定的に例示することができる。そして酸素ガスセ
ンサーの種類に応じて排気管への取付方式等を設計変更
し得ることは当然であり、酸素ガスセンサーの種類や感
応部の取付方式によって本発明の技術的範囲を逸脱する
ことはできない。
There is no need to place any special restrictions on the oxygen gas sensor used in the present invention as long as it has a removal filter, such as a metal oxide semiconductor gas sensor, a solid electrolyte oxygen sensor (such as a zirconia oxygen sensor), a galvanic oxygen sensor, etc. Non-limiting examples include battery oxygen sensors and magnetic gas sensors. It goes without saying that the design of the mounting method to the exhaust pipe can be changed depending on the type of oxygen gas sensor, and the technical scope of the present invention may not be deviated from depending on the type of oxygen gas sensor or the mounting method of the sensing part. Can not.

次に固体電解質酸素センサーを使用する場合についてよ
り詳細に説明する。上述の遅れ時間を少しでもわずかな
ものにしようとするならば、第1図に示した真空室1内
またはその出口に感応部7を設ければ良いことになるが
、現実問題としては排ガス中に含まれているダスト並び
に真空ブレーク時の逆流大気に随伴されてくるダストが
感応部7を汚染し測定精度を低下させるという問題があ
る。これを防止する為にセラミック製フィルター(第2
図の8)を設けるという手段もあり、勿論本発明におい
ても採用可能であるが、フィルター8の目詰まりが激し
くなって耐用回数が低下するのも不都合な問題である。
Next, the case of using a solid electrolyte oxygen sensor will be explained in more detail. In order to minimize the above-mentioned delay time, it would be sufficient to provide the sensing section 7 within the vacuum chamber 1 shown in Fig. 1 or at its outlet, but as a practical matter, There is a problem in that the dust contained in the sensor and the dust entrained in the backflowing atmosphere at the time of vacuum break contaminate the sensitive section 7 and reduce measurement accuracy. To prevent this, a ceramic filter (second
There is also a method of providing 8) in the figure, which can of course be adopted in the present invention, but it is also an inconvenient problem that the filter 8 becomes severely clogged and the service life decreases.

そこで第2図(^) 、 (B)[第2図(B)は第2
図(A)のB−B線断面図]に示す樺に感応部7を内蔵
するプローブ17の先端をスリット9付きの防塵筒10
で覆い、しかもガスの流れ方向[第2図(A) 、 (
B)中の上下方向]を考慮して上下にダストリフレクタ
−118゜11bを取付けるという構造が推奨される。
Therefore, Figure 2 (^), (B) [Figure 2 (B) is the second
A dust-proof tube 10 with a slit 9 is attached to the tip of the probe 17 which has a built-in sensitive part 7 in birch shown in the sectional view taken along the line B-B in Figure (A).
In addition, the gas flow direction [Fig. 2 (A), (
B) A structure in which dust reflectors 118° 11b are installed at the top and bottom is recommended, taking into account the vertical direction in the inside.

即ち第2図(A) 、 (B)の上から下へ、または下
から上へ流れるガスはスリット9を通して防塵筒10に
入り、セラミック製フィルター8を通して感応部7に接
触する。
That is, the gas flowing from the top to the bottom or from the bottom to the top as shown in FIGS. 2A and 2B enters the dustproof cylinder 10 through the slit 9, passes through the ceramic filter 8, and comes into contact with the sensitive part 7.

一方大部分のガスはスリット9を通して再び排気管3方
向へ流れていくが1.、排ガス中のダストは、第1次的
には防塵筒10で、第2次的にはダストリフレクタ−1
1a、llbで排除されるので、フィルター8の表面に
当たる量はかなり少なくなっており、従ってフィルター
8が短期間のうちに目詰まりを起こすという問題は解消
される。
On the other hand, most of the gas flows back toward the exhaust pipe 3 through the slit 9; , the dust in the exhaust gas is collected primarily by the dustproof tube 10 and secondarily by the dust reflector 1.
1a and llb, the amount hitting the surface of the filter 8 is considerably reduced, and the problem of the filter 8 becoming clogged in a short period of time is solved.

南国では排ガスの流れ方向及び真空ブレーク時の逆流方
向を考慮した設計を示したが、真空ブレーク時の逆流に
ついては排気管3そのものの工夫によるダスト対策を講
じることも可能であるから、その場合はダストリフレク
タ−11a、llbの一方を省略しても差支えない。い
ずれにしてもフィルター8の防塵対策自体は本発明の要
旨ではなく、状況に応じた任意の設計変更を施すことが
できる。
In the southern countries, we have shown a design that takes into consideration the flow direction of exhaust gas and the backflow direction at the time of vacuum break, but it is also possible to take dust countermeasures by devising the exhaust pipe 3 itself for backflow at the time of vacuum break, so in that case, One of the dust reflectors 11a and llb may be omitted. In any case, the dustproof measures for the filter 8 itself are not the gist of the present invention, and any design changes can be made depending on the situation.

上記の如き酸素センサーの感応部を排気管1の入口に設
けておけば、VOD炉内における脱炭反応の進行状況と
の間の遅れ時間を実質的に無視し得る程迅速に脱炭状況
(ここでは02パラメータ)をキャッチすることができ
る。尚固体電解質酸素センサーを使用したときの02パ
ラメータは、次に示すNernStの式に従って起電力
から求め、且つ圧力補正を行なうものとする。
If the sensing part of the oxygen sensor as described above is installed at the entrance of the exhaust pipe 1, the decarburization state ( Here, the 02 parameter) can be caught. It is assumed that the 02 parameter when a solid electrolyte oxygen sensor is used is determined from the electromotive force according to the NernSt equation shown below, and the pressure is corrected.

Nernstの式(固体電解質のセル出力)式中 em
f :酸素プローブの起電力(mV)R:ガス定数 C:クーロン当量 Po:基準ガスの酸素分圧 (atm又は torr) PS:サンプルガスの酸素分圧 (atm又は torr) 02パラメータの圧力補正 (サンプルガスと基準ガスの圧力補正式)式中 P。イ
。□1:基準ガスの全圧 PS−Total:サンブルガスの全圧(真空度) 、 次に第2のパラメータである現在溶鋼温度パラメー
タについて説明する。(1) 、 (2)式で示したS
t及びCi・の酸化反応における平衡式は次の様に表わ
すことができ、現在溶鋼温度は脱炭反応の終点を予測す
る上で重要な因子になっているということができる。
In Nernst's equation (cell output of solid electrolyte), em
f: Electromotive force of oxygen probe (mV) R: Gas constant C: Coulomb equivalent Po: Oxygen partial pressure of reference gas (ATM or TORR) PS: Oxygen partial pressure of sample gas (ATM or TORR) 02 Parameter pressure correction ( Pressure correction formula for sample gas and reference gas) P in the formula. stomach. □1: Total pressure of reference gas PS-Total: Total pressure of sample gas (degree of vacuum) Next, the second parameter, the current molten steel temperature parameter, will be explained. S shown in equations (1) and (2)
The equilibrium equation for the oxidation reaction of t and Ci can be expressed as follows, and it can be said that the molten steel temperature is currently an important factor in predicting the end point of the decarburization reaction.

(1)式の平衡式 (2)式の平衡式 式中 K、、に2 :平衡定数 a:活量 P:分圧 T:現在溶鋼温度 そこで現在溶鋼温度を知ることが重要になるのであるが
、VOD炉内の溶鋼温度を直接測定することはできない
ので何らかの手段で推定することにならざるを得ない。
Equation (1) Equation Equilibrium Equation (2) Equation Equation K, 2: Equilibrium constant a: Activity P: Partial pressure T: Current molten steel temperature Therefore, it is important to know the current molten steel temperature. However, since the temperature of molten steel in the VOD furnace cannot be directly measured, it must be estimated by some means.

本発明における当該推定とは、上記感応部設置点付近の
排ガス温度と吹酸前の溶鋼温度を用いて算出するもので
ある。この2つのデータから現在溶鋼温度が正確に推定
できるというのは、第1図の底吹きノズル4からのAr
吹込流量、真空ポンプによる排気量、及びランス6から
の吹酸量はVODプロセス中変中口化いからであり、排
ガスの温度上昇量を知ることができれば吹酸前の溶鋼温
度が吹酸によってどの程度上昇したかを次式によって推
定することができるのである。但し下記算定式は本願発
明を制限するものではなく、別の算定式を用いるもので
あっても本発明の技術的範囲に包含される。
The estimation in the present invention is calculated using the exhaust gas temperature near the point where the sensitive section is installed and the molten steel temperature before acid blowing. The fact that the current molten steel temperature can be accurately estimated from these two data means that the Ar
The blowing flow rate, the exhaust volume by the vacuum pump, and the amount of blown acid from the lance 6 change during the VOD process, and if the amount of temperature rise in the exhaust gas can be known, the temperature of the molten steel before blowing acid will change due to the blowing acid. The extent to which it has increased can be estimated using the following equation. However, the following calculation formula does not limit the present invention, and even if another calculation formula is used, it is included within the technical scope of the present invention.

式中ΔT:吹酸中の温度上昇(1) (吹酸中溶鋼温度−初期温度) Ti:溶鋼初期温度(吹酸前) ΔTg:排出ガスの温度上昇(ΔTg =Tg−T、、Tg :排ガス 温度、T、;吹酸開始時の排 ガス温度) t:吹酸経過時間 最後に吹酸性溶鋼中のCra度は、実測によって求める
ことができる。ところで脱炭終了点の溶鋼中[C]及び
[Cr]については、その時点の00分圧と溶鋼温度に
よって次の様に整理できることが知られている(Hil
tyの式)。
In the formula, ΔT: Temperature rise during blowing acid (1) (Temperature of molten steel in blowing acid - initial temperature) Ti: Initial temperature of molten steel (before blowing acid) ΔTg: Temperature rise of exhaust gas (ΔTg = Tg - T,, Tg: Exhaust gas temperature, T; Exhaust gas temperature at the start of acid blowing) t: Elapsed time of acid blowing Finally, the degree of Cra in the acid blowing molten steel can be determined by actual measurement. By the way, it is known that [C] and [Cr] in molten steel at the end point of decarburization can be organized as follows depending on the 00 partial pressure and molten steel temperature at that point (Hil
ty formula).

式中 [C96] :脱炭終点の0% [Cr利 :脱炭終点のCr% T:脱炭終点の溶鋼温度 Pco C脱炭終点のCO分圧 真空タンク中の取鍋内気相中では、CO,O7゜CO2
間で以下の平衡関係が成立すると考えられる。
In the formula, [C96]: 0% of the decarburization end point [Cr profit: Cr% of the decarburization end point T: Molten steel temperature at the decarburization end point Pco Partial pressure of CO at the C decarburization end point In the gas phase in the ladle in the vacuum tank, CO, O7゜CO2
It is thought that the following equilibrium relationship holds between

CO+  02  CO2,ΔG    (6−1)2
  ← 式中 K : (8−1)式の平衡定数ΔG:反応自由
エネルギー ΔG=RTunに R:ガス定数 T:気相温度 一方、酸素センサー感応部の排ガス中では以下の平衡関
係が成立すると考えられる。
CO+ 02 CO2,ΔG (6-1)2
← In the formula, K: Equation (8-1) equilibrium constant ΔG: Reaction free energy ΔG=RTun R: Gas constant T: Gas phase temperature On the other hand, the following equilibrium relationship is considered to hold in the exhaust gas of the oxygen sensor sensitive part. It will be done.

C+CO2″2CO,AG■■   (6−5)式中 
K1.に、□: (6−3)、(6−51式の平衡定数
II    IIIPll ” ” PO2” Go’  Go2 。
C+CO2″2CO,AG■■ (6-5) In the formula
K1. , □: (6-3), (Equilibrium constant II IIIPll ""PO2"Go' Go2 of equation 6-51.

co    co□ 排ガスの(:0.Go2.02の分圧 ΔG1.ΔG1.:反応の自由エネルギーここて、排ガ
ス中のGo、Go2.02の間には平衡が成I    
 II     I       II立するのでP 
平P、P=P   が成立すCo   Co   Go
2   CO2る。
co co□ Partial pressure of exhaust gas (:0.
II I II stands so P
Co Co Go where P=P holds
2 CO2.

、’、 (6−6)式より (6−7) 、 (6−4)式より I           13A P   =K   −K   ・ (P   ’)  
    (6−8)Co   I   II    O
2 が導かれる。
,', From equation (6-6), (6-7), From equation (6-4), I 13A P =K -K ・(P')
(6-8) Co I II O
2 is derived.

■ 一方Pcoは、関数関係にあると仮定すると(6−2)
式と(6−8)式より ■ PCo=F(Pco)          (6−9)
が成立するので、(6−9)式の逆関数として次式が求
まる。
■ On the other hand, assuming that Pco is in a functional relationship (6-2)
From formula and formula (6-8) ■ PCo=F(Pco) (6-9)
holds, the following equation can be found as an inverse function of equation (6-9).

P co= F ’−’ (P co)(8−10)(
6−10)式と(It−8)式より以下の関係式が得ら
れる。
P co= F '-' (P co) (8-10) (
The following relational expression can be obtained from equation 6-10) and equation (It-8).

として表現できる。(6)式中の[Cr%]は、Crの
酸化ロスをミニマムにおあさえるようにコントロールす
ることが本発明の目的であるので、脱炭開始前のCr含
有量に近似的に等価と考えることができる。従って、(
6)式で溶鋼温度が予測できれば、0%の値を予測でき
ることになる。酸素吹精末期溶鋼中C%の予測式を上記
関係式から一般化すると(6−12)式で表わせる。
It can be expressed as [Cr%] in formula (6) is approximately equivalent to the Cr content before the start of decarburization, since the purpose of the present invention is to control the oxidation loss of Cr to a minimum. I can think. Therefore, (
If the molten steel temperature can be predicted using equation 6), a value of 0% can be predicted. A prediction formula for C% in molten steel at the final stage of oxygen blowing can be generalized from the above relational formula and can be expressed by formula (6-12).

C!に=f+ (Crk) 十f2 (Poz)+f3
(T)         (6−12)式中  Pa、
:O,パラメータ T:溶鋼温度パラメータ C「%:脱炭開始前の溶鋼中Cr含有 量 本発明はこの考え方を応用展開し、前記の様にして求め
られるVODプロセス進行中の02パラメータ、溶鋼温
度パラメータ並びに吹酸開始前のCr濃度パラメータを
用い、これらパラメータと現在溶鋼中のCvA度の関係
式を解くこととしたのである。ここで上記関係式は本発
明を制御するものではないが、代表的な式としては次の
(7)式を挙げることができる。
C! ni=f+ (Crk) 10f2 (Poz)+f3
(T) (6-12) where Pa,
:O, Parameter T: Temperature parameter of molten steel C "%: Cr content in molten steel before the start of decarburization The present invention applies and develops this idea, and calculates the 02 parameter during the VOD process, which is determined as described above, and the temperature of molten steel. We decided to solve the relational expression between these parameters and the degree of CvA in the current molten steel by using the parameters and the Cr concentration parameter before the start of acid blowing.Here, although the above relational expression does not control the present invention, it is a representative As a practical formula, the following formula (7) can be cited.

IJ−Ao”A1 + (Pa2)”+A2・(T)”
+A、−(Cr¥)(7)式中 0%:脱炭末期の0% A、、A、、A2:係数 m、 n : PO2,Tの指数(一定値)PO2:酸
素プローブにより測定した 02パラメータ T : (5)式から予測した溶鋼温度尚、m極毎に予
測式を与える場合は、A3=0とおくことができる。
IJ-Ao”A1 + (Pa2)”+A2・(T)”
+A, -(Cr\) (7) In formula 0%: 0% at the final stage of decarburization A,, A,, A2: Coefficient m, n: Index of PO2, T (constant value) PO2: Measured with an oxygen probe 02 Parameter T: Molten steel temperature predicted from equation (5) If a prediction equation is given for each m pole, A3=0 can be set.

火A週 (i)吹酸終了時の溶鋼中C%の予測試験電気炉で溶製
した高Cr溶鋼(SO5316゜321.304)をV
OD炉に装入し、第1図に示す如く、酸素プローブ(酸
素センサーの感応部7)を真空室1近くの煙道(排気管
3)に設置する。吹酸を行ないその間の排ガスの温度、
圧力、排ガス中の酸素プローブのセル出力を連続的に測
定した。測定例を第3図に示す。吹酸前後に測温、サン
プリングを行ない化学成分を確認した。これらの実測デ
ータから、02パラメータを計算しく5) 、 (7)
式により、それぞれの予測式の係数を統計解析により求
め、溶鋼温度の上昇量、吹酸終点の0%を予測し、実績
データと比較した。
Tuesday A week (i) Prediction test of C% in molten steel at the end of acid blowing High Cr molten steel (SO5316°321.304) melted in an electric furnace was
The OD furnace is loaded, and as shown in FIG. 1, an oxygen probe (sensing part 7 of the oxygen sensor) is installed in the flue (exhaust pipe 3) near the vacuum chamber 1. The temperature of the exhaust gas during acid blowing,
The pressure and cell output of the oxygen probe in the exhaust gas were continuously measured. An example of measurement is shown in Figure 3. Temperature measurements and sampling were conducted before and after acid blowing to confirm chemical composition. From these measured data, calculate the 02 parameters5), (7)
Based on the formula, the coefficients of each prediction formula were determined by statistical analysis, the amount of rise in molten steel temperature and the blown acid end point of 0% were predicted, and the results were compared with actual data.

尚(7)式の計算は次の様に行なった。Note that the calculation of equation (7) was performed as follows.

C02−+Jtop = Ao”A+  ’ PO2+
 ’A2 ・T   (8)Ao”0.0004 ^1−2X 10−’ A2−8.295851  X 10’Po2:02ポ
テンシヤル(パラメータ、 Po2aKO2/100 
) T:02ストップ時の溶鋼温度(7−TO2−stop
X 10−’) 溶鋼温度上昇の予測結果を第4図、吹酸終点の予測結果
を第5図に示す。第4図から、吹酸時の溶鋼温度上昇は
、吹酸前の溶鋼温度と吹酸中の排ガスの温度をパラメー
タとしてσ=11℃で予測できることがわかった。2σ
の予測誤差で推定した場合、1700℃に対し±1.3
%の誤差に相当する。
C02-+Jtop = Ao"A+ 'PO2+
'A2 ・T (8) Ao"0.0004 ^1-2X 10-' A2-8.295851 X 10'Po2:02 potential (parameter, Po2aKO2/100
) T: Molten steel temperature at 02 stop (7-TO2-stop
X 10-') The prediction results of the molten steel temperature rise are shown in Fig. 4, and the prediction results of the acid blowing end point are shown in Fig. 5. From FIG. 4, it was found that the temperature rise of molten steel during acid blowing can be predicted at σ=11°C using the molten steel temperature before blowing acid and the temperature of exhaust gas during blowing acid as parameters. 2σ
When estimated with a prediction error of ±1.3 for 1700℃
% error.

吹酸終点における0%の予測値は、σ= 0.009%
であり、2σの予測誤差でも±0.02%に入り実用で
きることがわかった。この誤差は、+側でもその後の真
空処理により調整できる範囲である。
The predicted value of 0% at the blowing acid end point is σ = 0.009%
It was found that even a prediction error of 2σ is within ±0.02% and can be put to practical use. This error, even on the positive side, is within a range that can be adjusted by subsequent vacuum processing.

[発明の効果] 本発明により、脱炭の終点予測が遅滞なくできるように
なり、Crの過酸化防止による副原料原単位の向上、吹
酸時間の短縮による生産性向上並びに耐火物原単位の向
上1品質の安定化をはかることが可能となった。
[Effects of the Invention] The present invention makes it possible to predict the end point of decarburization without delay, improves the basic unit of auxiliary raw materials by preventing Cr overoxidation, improves productivity by shortening the acid blowing time, and reduces the basic unit of refractories. Improvement 1: It became possible to stabilize quality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はVODプロセスの操業状態を示す概略図、第2
図(^) 、 (B)は酸素センサーの感応部の防塵構
造を示す断面図、第3図は実施例における測定例を示す
グラフ、第4図は溶鋼温度上昇の予測結果を示すグラフ
、第5図はC濃度の予測結果を示すグラフである。 2・・・VOD炉    3・・・排気管7・・・酸素
センサーの感応部
Figure 1 is a schematic diagram showing the operating status of the VOD process, Figure 2
Figures (^) and (B) are cross-sectional views showing the dust-proof structure of the sensing part of the oxygen sensor, Figure 3 is a graph showing measurement examples in Examples, Figure 4 is a graph showing predicted results of molten steel temperature rise, FIG. 5 is a graph showing the prediction results of C concentration. 2... VOD furnace 3... Exhaust pipe 7... Sensing part of oxygen sensor

Claims (1)

【特許請求の範囲】[Claims] (1)VOD炉中の高Cr溶鋼を吹酸して仕上げ脱炭を
行なうに当たり、 除塵フィルターを有する酸素ガスセンサーの感応部をV
OD炉の排気管入口近傍に配置することによって求めら
れるO_2パラメータ、 上記感応部付近の排ガス温度と吹酸前の溶鋼温度から推
定される現在溶鋼温度パラメータ、並びに吹酸前の溶鋼
中Cr濃度パラメータ を用い、上記3つのパラメータと炭素濃度との関係式を
解くことによって現在炭素濃度を求め脱炭終了点を予測
することを特徴とするVODプロセスにおける脱炭終点
の予測方法。
(1) When performing final decarburization by blowing high Cr molten steel in the VOD furnace, the sensitive part of the oxygen gas sensor with a dust removal filter is
The O_2 parameter obtained by placing it near the exhaust pipe inlet of the OD furnace, the current molten steel temperature parameter estimated from the exhaust gas temperature near the sensitive part and the molten steel temperature before blowing acid, and the Cr concentration parameter in the molten steel before blowing acid. A method for predicting the end point of decarburization in a VOD process, characterized in that the current carbon concentration is determined by solving the relational expression between the above three parameters and the carbon concentration, and the end point of decarburization is predicted.
JP27433286A 1986-11-18 1986-11-18 Method for predicting decarburizing end point in vod process Pending JPS63128114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27433286A JPS63128114A (en) 1986-11-18 1986-11-18 Method for predicting decarburizing end point in vod process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27433286A JPS63128114A (en) 1986-11-18 1986-11-18 Method for predicting decarburizing end point in vod process

Publications (1)

Publication Number Publication Date
JPS63128114A true JPS63128114A (en) 1988-05-31

Family

ID=17540179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27433286A Pending JPS63128114A (en) 1986-11-18 1986-11-18 Method for predicting decarburizing end point in vod process

Country Status (1)

Country Link
JP (1) JPS63128114A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133030A (en) * 2001-07-02 2010-06-17 Nippon Steel Corp Method for decarbonization refining of chromium-containing molten steel under reduced pressure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133030A (en) * 2001-07-02 2010-06-17 Nippon Steel Corp Method for decarbonization refining of chromium-containing molten steel under reduced pressure

Similar Documents

Publication Publication Date Title
JP3656231B2 (en) Analytical system for high-precision nitrogen measurement
JP3287204B2 (en) End point carbon concentration control method and carbon concentration control device in RH vacuum degasser
JPS63128114A (en) Method for predicting decarburizing end point in vod process
JP3853978B2 (en) Water quality analyzer
JP6966029B1 (en) Decarburization refining method of molten steel under reduced pressure
RU2037529C1 (en) Method to control metal temperature in converter
SU1010140A1 (en) Method for vacuum treating molten steel in ladle
JP4018140B2 (en) Method for determining volumetric gas flow during a liquid phase process
SU1463768A1 (en) Method of monitoring the flow of outgoing gases
SU533641A1 (en) A device for controlling the carbon content in metal melts
JPS61195913A (en) Method for controlling carbon content in molten steel in vacuum refining furnace
RU2037527C1 (en) Method to control metal temperature in converter
JP3987149B2 (en) Method and apparatus for refining chromium-containing steel
JP3341680B2 (en) Water quality analyzer
JPH01222018A (en) Method for controlling vacuum decarburization of molten steel
JPH0435528B2 (en)
JPH01142012A (en) Method for refining molten steel
JPS5951350A (en) Rapid measurement of molten iron components
KR20010061707A (en) Method for forecasting post combustion ratio of corbon in converter for top and bottom blowing process and method for forecasting carbon concentration in molten steel
JPH01242711A (en) Method for controlling converter blowing
JPH02195255A (en) Apparatus for measuring carbon potential in furnace atmosphere in reduction atmosphere furnace
SU531850A1 (en) The method of controlling the temperature regime of converter melting
JP3293674B2 (en) Control method of end point carbon concentration in RH degassing process
JPH1017918A (en) Guidance method for vacuum decarburizing treatment of molten material
JPH0125369B2 (en)