JPS63128097A - Conversion of synthetic gas to aromatic hydrocarbon - Google Patents

Conversion of synthetic gas to aromatic hydrocarbon

Info

Publication number
JPS63128097A
JPS63128097A JP61273020A JP27302086A JPS63128097A JP S63128097 A JPS63128097 A JP S63128097A JP 61273020 A JP61273020 A JP 61273020A JP 27302086 A JP27302086 A JP 27302086A JP S63128097 A JPS63128097 A JP S63128097A
Authority
JP
Japan
Prior art keywords
dimethyl ether
catalyst
synthesis gas
hydrogen
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61273020A
Other languages
Japanese (ja)
Inventor
Masaaki Yanagi
正明 柳
Hikokusu Kajimoto
梶本 彦久寿
Hiroshi Fujita
浩 藤田
Kazumi Suzuki
鈴木 一巳
Takashi Suzuki
隆史 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Association for Petroleum Alternatives Development
Original Assignee
Research Association for Petroleum Alternatives Development
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Association for Petroleum Alternatives Development filed Critical Research Association for Petroleum Alternatives Development
Priority to JP61273020A priority Critical patent/JPS63128097A/en
Publication of JPS63128097A publication Critical patent/JPS63128097A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To produce a hydrocarbon (gasoline) especially having high octane value, by converting a mixed synthetic gas of CO and H2 to dimethyl ether and contacting the ether with a crystalline silicate catalyst at a high temperature to convert the ether to an aromatic hydrocarbon. CONSTITUTION:A mixed synthetic gas composed of CO and H2 is made to contact with a catalyst consisting of a methanol synthesis catalyst and an acid- type dehydration catalyst at a high temperature of <=400 deg.C and converted to dimethyl ether. The dimethyl ether is dehydrated and converted to an aromatic hydrocarbon by contacting with a crystalline silicate catalyst expressed by formula (R is univalent or bivalent cation; n is atomic valence of R; M is trivalent transition metal ion or Al ion; a+b+c=1, a>=0, b>=0, c>=0, a+b>0; y is >=12) at a high temperature of <=500 deg.C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、天然ガス、重質油、石炭等から製造される合
成ガスから芳香族炭化水素、特に高オクタン価の炭化水
素(ガソリン)を製造する方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is directed to the production of aromatic hydrocarbons, particularly high-octane hydrocarbons (gasoline), from synthesis gas produced from natural gas, heavy oil, coal, etc. Regarding how to.

〔従来の技術〕[Conventional technology]

合成ガスからガソリンの製造方法としては、Fe、 C
o、 Ni、Ru  等の触媒を用いるフィッシャー・
トロブツシュ(F−T)法、IP−T触媒、メタノール
合成触媒と結晶性ゼオライト触媒との複合触媒を用いる
方法、及びメタノール、ジメチルエーテル等を経由して
結晶性ゼオライト触媒を用いる2段階合成方法等がある
As a method for producing gasoline from synthesis gas, Fe, C
Fischer using catalysts such as O, Ni, Ru, etc.
The Trobutsch (F-T) method, the IP-T catalyst, the method using a composite catalyst of a methanol synthesis catalyst and a crystalline zeolite catalyst, and the two-step synthesis method using a crystalline zeolite catalyst via methanol, dimethyl ether, etc. be.

2段階合成法は用いる触媒(結晶性ゼオライト触媒)に
特徴があり、モーピルオイル社は、結晶性アルミノシリ
ケートゼオライト触媒を用いる方法(特公昭57−47
712)を提案しており、本出願人も遷移金属ンリケー
トゼオライト触媒を用いる方法(特願昭55−8540
4、特願昭57−75454)Q既に提案している。
The two-step synthesis method is characterized by the catalyst (crystalline zeolite catalyst) used, and Mopil Oil Co., Ltd.
712), and the present applicant has also proposed a method using a transition metal silicate zeolite catalyst (Japanese Patent Application No. 55-8540).
4. Japanese Patent Application No. 57-75454) Q: It has already been proposed.

いずれの提案方法も第1段階のジメチルエーテルの合成
については、メタノール合成触媒と酸型脱水触媒の混合
触媒を用いる方法が通常用いられている。
In any of the proposed methods, for the first stage of synthesis of dimethyl ether, a method using a mixed catalyst of a methanol synthesis catalyst and an acid type dehydration catalyst is usually used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

合成ガスからのガソリン合成に関する2段階合成法の第
1段階ジメチル・エーテルの合成反応(sco+5z=
O馬00H1+COs )  は大きな発熱を伴う反応
であシ、反応熱の制御が適切でなく灰石温度の上昇を来
たすとジメチルエーテル転化率が低下する。又、原料合
成ガスの水素/一酸化炭素比が小さいと、反応速度は低
下し、これもまた、実装置でのジメチルエーテル転化率
の低下となる。合成ガスからのガソリン収率を高めるた
めKは、中間生成物としてのジメチルエーテル転化率を
高めることが重要であシ、又、一般に原料合成ガスの水
素/一酸化炭素比は石炭ガス比ガスの例のように1に近
い場合が多く(化学量論的には1である)このような水
素/一酸化炭素比の小さい原料合成ガスからガソリン収
率を高めるためにもジメチルエーテル転化率を高めるこ
とが重要となってくる。
The first step of the two-step synthesis method for gasoline synthesis from syngas is the synthesis reaction of dimethyl ether (sco+5z=
Ouma00H1+COs) is a reaction accompanied by large exothermic heat, and if the reaction heat is not properly controlled and the ashes temperature rises, the dimethyl ether conversion rate decreases. Furthermore, if the hydrogen/carbon monoxide ratio of the raw material synthesis gas is small, the reaction rate will decrease, which will also result in a decrease in dimethyl ether conversion in the actual device. In order to increase the gasoline yield from synthesis gas, it is important for K to increase the conversion rate of dimethyl ether as an intermediate product, and in general, the hydrogen/carbon monoxide ratio of raw material synthesis gas is the same as that of coal gas ratio gas. In many cases, the ratio is close to 1 (stoichiometrically it is 1). In order to increase the gasoline yield from such raw material synthesis gas with a low hydrogen/carbon monoxide ratio, it is necessary to increase the dimethyl ether conversion rate. It becomes important.

本発明は上記の要望に答え、合成ガスからガソリンを2
段階合成法で製造する際の第1段階ジメチルエーテルの
合成反応におけるジメチルエーテルの収率を高めうる方
法を提供しようとするものである。
The present invention responds to the above-mentioned needs by converting gasoline from synthesis gas into two parts.
The object of the present invention is to provide a method that can increase the yield of dimethyl ether in the first stage synthesis reaction of dimethyl ether when it is produced by a stepwise synthesis method.

本発明は、一酸化炭素と水素の混合物からなる合成ガス
からジメチルエーテルを経由して液体炭化水素(ガソリ
ン)を合成する2段階方法において、第1段階は合成ガ
スをメタノール合成触媒及び酸型脱水触媒の混合物から
なる触媒と400℃までの高温で接触させ、主としてジ
メチルエーテルからなる反応生成物から水素を分離して
供給原料合成ガスに循環し、水素/一酸化炭素比を供給
原料合成ガスより大きくして合成ガスのジメチルエーテ
ル転化率を高め、第2段階は、前記ジメチルエーテルを
脱水された形態において酸化物のモル比で表わして、(
1,0±αリ−、Ao* (aLa、O,−bOe、O
CcM、O,) 67SiO。
The present invention is a two-step method for synthesizing liquid hydrocarbons (gasoline) from synthesis gas consisting of a mixture of carbon monoxide and hydrogen via dimethyl ether. hydrogen is separated from the reaction product consisting primarily of dimethyl ether and recycled to the feed synthesis gas, resulting in a hydrogen/carbon monoxide ratio greater than that of the feed synthesis gas. to increase the dimethyl ether conversion of the synthesis gas, and the second step involves converting said dimethyl ether in dehydrated form to the molar ratio of oxides (
1,0±α Lee-, Ao* (aLa, O,-bOe, O
CcM, O, ) 67SiO.

上記式中、R;1種又はそれ以上の1価又は2価のカチ
オン n;Rの原子価 M;1種又はそれ以上の5価の遷 移金属イオン及び/又はアル ミニラムイオン a+b+c−ml a 〉O b〉。
In the above formula, R; one or more monovalent or divalent cations n; valence M of R; one or more pentavalent transition metal ions and/or aluminum ions a+b+c-ml a> Ob〉.

C≧O a +b ) O y〉 12 の化学組成を有する結晶性シリケート触媒と500℃ま
での高温で接触させ、芳香族炭化水素を含む有機生成物
を生成させることを特徴とする合成ガスの芳香族炭化水
素への転化方法である。
Aroma of synthesis gas characterized in that it is brought into contact with a crystalline silicate catalyst having a chemical composition of C≧O a +b ) O y〉 12 at high temperatures up to 500° C. to produce organic products containing aromatic hydrocarbons. This is a conversion method to group hydrocarbons.

すなわち、本発明は、合成ガスからのガソリン収率を高
めるために、第1段階ジメチルエーテル合成反応生成物
から、未反応水素ガスを例えば膜分離装置等の手段を用
いて分離し、これを原料合成ガスに循環してジメチルエ
ーテル合成反応器に供給することによシ、水素/一酸化
炭素比を原料合成ガスよシ大きくしてジメチルエーテル
転化反応速度を速めることにより、合成ガスからのジメ
チルエーテル転化率を上げて、効率よくガソリン収率を
高める方法である。
That is, in order to increase the gasoline yield from synthesis gas, the present invention separates unreacted hydrogen gas from the first-stage dimethyl ether synthesis reaction product using a means such as a membrane separator, and uses this for raw material synthesis. By circulating the gas and supplying it to the dimethyl ether synthesis reactor, the hydrogen/carbon monoxide ratio is increased compared to the raw material synthesis gas and the dimethyl ether conversion reaction rate is accelerated, thereby increasing the dimethyl ether conversion rate from the synthesis gas. This is a method to efficiently increase gasoline yield.

本発明の合成ガスからガソリンを合成する2段階合成法
の一実施態様を第1図のプロセス70−シートによシ説
明する。
One embodiment of the two-step synthesis method for synthesizing gasoline from synthesis gas according to the present invention will be described with reference to the process 70-sheet of FIG.

第1図に於いて、1は第1段ジメチルエーテル合成反応
器、2は第2段ガソリン合成反応である。
In FIG. 1, 1 is the first stage dimethyl ether synthesis reactor, and 2 is the second stage gasoline synthesis reaction.

天然ガス、石炭、バイオマス等を原料として製造された
合成ガス101はガス貯槽4で水分を除去した後、ガス
圧縮機11で昇圧される。
Synthetic gas 101 produced using natural gas, coal, biomass, etc. as a raw material has moisture removed in a gas storage tank 4, and then is pressurized in a gas compressor 11.

20〜100 ky15+1”G  に圧縮された原料
合成ガスは予熱器9を経て予熱原料合成ガス102とな
ってジメチルエーテル合成反応器1に供給される。
The raw material synthesis gas compressed to 20 to 100 ky15+1''G passes through the preheater 9, becomes preheated raw material synthesis gas 102, and is supplied to the dimethyl ether synthesis reactor 1.

反応器1は例えば、多管式熱交換器型の反応器で反応管
内にメタノール合成触媒と酸型脱水触媒の混合物からな
る成型複合触媒が充填されている。メタノール触媒とし
てはZn−Cu−0r系又はZn−Cu−Al系が、酸
型脱水触媒としてはアルミナが用いられる。
The reactor 1 is, for example, a multitubular heat exchanger type reactor, and the reaction tube is filled with a molded composite catalyst consisting of a mixture of a methanol synthesis catalyst and an acid type dehydration catalyst. As the methanol catalyst, Zn-Cu-Or type or Zn-Cu-Al type is used, and as the acid type dehydration catalyst, alumina is used.

この複合触媒の下では、ジメチルエーテル合成反応は co+2z ==an、oT1 2C!E、O!E :ゴcT1sooa、−4−4゜c
 o + II!o === c o!+ H。
Under this composite catalyst, the dimethyl ether synthesis reaction is co+2z ==an, oT1 2C! E, O! E: GocT1sooa, -4-4°c
o + II! o === c o! + H.

の反応を主反応とする逐次反応で進行するものと考えら
れ総括的には sao+ sz 、==” c馬oaa、+co。
It is thought that the reaction proceeds as a sequential reaction with the main reaction as the main reaction.

に従って進行するので化学量論上は水素/一酸化炭素比
は約1である。この反応速度は、水素/一酸化炭素比に
ほぼ比例して大きくなることが実験的に判明している。
Therefore, stoichiometrically, the hydrogen/carbon monoxide ratio is approximately 1. It has been experimentally found that this reaction rate increases approximately in proportion to the hydrogen/carbon monoxide ratio.

反応温度は150℃〜400℃が好ましく、又平衡反応
転化率は低温度の方が高い。大量に発生する反応熱のた
めに固定床反応器では器内に温度分布が生ずる。
The reaction temperature is preferably 150°C to 400°C, and the equilibrium reaction conversion rate is higher at lower temperatures. Due to the large amount of reaction heat generated, a fixed bed reactor produces a temperature distribution within the reactor.

反応生成物103は供給合成ガス101と予熱器9で熱
交換して冷却し貯槽5に入る。ここでは、主として生成
ジメチルエーテル及び副生メタ、ノール、水の大部分は
凝縮し、未反応水素、一酸化炭素及び副生炭酸ガスを主
成分とする非凝縮ガス104は水素分離器3に導入され
る。
The reaction product 103 is cooled by exchanging heat with the supplied synthesis gas 101 in the preheater 9, and then enters the storage tank 5. Here, most of the produced dimethyl ether, by-product methanol, ethanol, and water are condensed, and the non-condensable gas 104, which is mainly composed of unreacted hydrogen, carbon monoxide, and by-product carbon dioxide gas, is introduced into the hydrogen separator 3. Ru.

水素分離器3は例えばポリイミド高分子膜のような膜分
離装置が好ましく、この分離膜を透過した水素ガス10
5は、圧縮機12によって昇圧され、循環水素106と
して供給原料ガス101に循環される。
The hydrogen separator 3 is preferably a membrane separation device such as a polyimide polymer membrane, and the hydrogen gas 10 that has passed through this separation membrane is
5 is pressurized by the compressor 12 and recycled to the feedstock gas 101 as circulating hydrogen 106.

この結果、反応器1内では、水素/一酸化炭素比は常に
供給原料合成ガスより高く維持され、その結果反応速度
は大きく、後記実施例でみるように、反応器出口の一酸
化炭素転化率が水素ガス循環のない場合と比較して高く
なシ、ジメチルエーテル転化率が向上する。水素を分離
された一部未凝縮のジメチルエーテルを含む炭酸ガス、
一酸化炭素、水素等からなるガス107は、生成したジ
メチルエーテル、メタノール等10Bと共に第2段階反
応器2に供給される。
As a result, in the reactor 1, the hydrogen/carbon monoxide ratio is always maintained higher than that of the feed synthesis gas, and as a result, the reaction rate is high, and as will be seen in the examples below, the carbon monoxide conversion rate at the reactor outlet is is higher than that without hydrogen gas circulation, and the dimethyl ether conversion rate is improved. Carbon dioxide gas containing partially uncondensed dimethyl ether from which hydrogen has been separated;
A gas 107 consisting of carbon monoxide, hydrogen, etc. is supplied to the second stage reactor 2 together with the generated dimethyl ether, methanol, etc. 10B.

又、ライン107にジメチルエーテルを回収する設備を
設はジメチルエーテルを主成分とするガスをに2段階に
送ることもできる。
Furthermore, if equipment for recovering dimethyl ether is installed in the line 107, the gas containing dimethyl ether as a main component can be sent to two stages.

ジメチルエーテル等からガソリンを合成する第2段階の
反応器2は、結晶性シリケート触媒を充填した例えば流
動床型の反応器である。この反応器には、触媒供給槽6
及び触媒抜き出し槽7が設けられ、触媒の間けつ的又は
、連続的な触媒供給抜き出しが可能となるように表って
いる。ここに使用される結晶性シリケート触媒は、先に
提案(特願昭57−75454)l、た方法において使
用したものと同一のものであシ、脱水された形態におい
て酸化物のモル比で表わして、 (1,0±(LA)RJOs (aLa20.@ b(
e、O,* CM、O,) @7SiO。
The second stage reactor 2 for synthesizing gasoline from dimethyl ether or the like is, for example, a fluidized bed type reactor filled with a crystalline silicate catalyst. This reactor includes a catalyst supply tank 6
and a catalyst extraction tank 7 are provided so that the catalyst can be supplied and extracted intermittently or continuously. The crystalline silicate catalyst used here is the same as that used in the method previously proposed (Japanese Patent Application No. 57-75454), and is expressed in terms of the molar ratio of oxides in the dehydrated form. (1,0±(LA)RJOs (aLa20.@b(
e, O, * CM, O,) @7SiO.

の化学組成を有するものである。第1段で生成したジメ
チルエーテル主体の反応生成物は、反応温度250℃〜
500℃、反応圧力100kg/eFI&!G以下の条
件で上記触媒と接触するととくよシ、芳香族炭化水素の
含有率の高い高オクタン価のガソリンに転換される。
It has a chemical composition of The reaction product mainly composed of dimethyl ether produced in the first stage has a reaction temperature of 250℃~
500℃, reaction pressure 100kg/eFI&! When it comes into contact with the above catalyst under conditions below G, it is converted into gasoline with a high octane number and a high content of aromatic hydrocarbons.

第2段階反応生成物109は、ガス状で取り出され、凝
縮器10で冷却され高圧分離器8に入る。高圧分離器8
から副生水110及び炭酸ガス、未反応ガスなどの非凝
縮ガス111が分離され、液状炭化水素112は低圧分
離器15に入る。こむでは主としてC6−炭化水素11
5が分離され、C−炭化水素114は製品ガソリンとし
て取り出される。
The second stage reaction product 109 is taken out in gaseous form, cooled in a condenser 10 and enters a high pressure separator 8 . High pressure separator 8
By-product water 110 and non-condensable gases 111 such as carbon dioxide and unreacted gas are separated from the water, and liquid hydrocarbons 112 enter the low-pressure separator 15. Mainly C6-hydrocarbon 11
5 is separated and C-hydrocarbon 114 is taken out as product gasoline.

〔実験例1〕 第1段階の反応の触媒として0u−Zn−Or酸化物メ
タノール触媒1部とr−アルミナ触媒1部の混合成型触
媒を用い、水素/−一酸化炭素モル比1.0の合成ガス
を反応管管壁温度500℃、反応圧力a o H/do
  ガス空間速度GHBV−toooh−t(反応、管
入口ガス量基準)の反応条件で、ジメチルエーテルへの
転化反応を行い、下記の中間生成物が得られた。
[Experimental Example 1] A mixed molded catalyst of 1 part of 0u-Zn-Or oxide methanol catalyst and 1 part of r-alumina catalyst was used as a catalyst for the first stage reaction, and a hydrogen/carbon monoxide molar ratio of 1.0 was used. The synthesis gas was heated to a reaction tube wall temperature of 500°C and a reaction pressure of a o H/do.
The conversion reaction to dimethyl ether was carried out under the reaction conditions of a gas hourly space velocity of GHBV-toooh-t (reaction, based on the amount of gas at the tube inlet), and the following intermediate product was obtained.

一酸化炭素の転化率      62.0チ中間生成物
組成(モルチ) ジメチルエーテル      1 z6チー酸化炭素 
        52.4チ水素       524
チ H,O10馬OII、 00. 、(!III、   
   17.6 %なお、第1段階の反応で使用するジ
メチルエーテル合成触媒は次のように製造した。
Conversion rate of carbon monoxide 62.0% Intermediate product composition (mol%) Dimethyl ether 1 z6% carbon oxide
52.4 hydrogen 524
Chi H, O10 Horse OII, 00. ,(!III,
17.6% The dimethyl ether synthesis catalyst used in the first stage reaction was produced as follows.

au(no、)、 * 5zo ; 152 y、 Z
n(No、)、 −6zo ;?19およびOr(Ho
g)1 ・9H,O: 1521を水で500−に希釈
し、90℃に加熱した。これにあらかじめ90℃に加熱
した1 04 NaOH溶液を攪拌しながらPRが12
となるまで添加した。冷却後沈殿物はプツフナーP斗で
f過し、洗浄水のPHが7.8になるまで純水で洗浄し
た。次に沈殿物を120七で乾燥後、空気中で320℃
で3時間焼成した。得られた組成物はOuO−ZnO−
OrfiO@ が重量比で50:25:25であった。
au(no,), *5zo; 152 y, Z
n(No,), -6zo ;? 19 and Or(Ho
g) 1.9H,O: 1521 was diluted to 500° with water and heated to 90°C. To this was added a 104 NaOH solution preheated to 90°C while stirring until the PR was 12
It was added until. After cooling, the precipitate was filtered through a Puchner PET and washed with pure water until the pH of the washing water became 7.8. Next, the precipitate was dried at 120°C and then at 320°C in air.
It was baked for 3 hours. The obtained composition was OuO-ZnO-
The weight ratio of OrfiO@ was 50:25:25.

との組成物の一部は100メツシユ以下の粒子に粉砕し
、コンデア社型1’ural BB  y−アルミナ粉
末と重量で50:50の割合で混合し、ペレットに圧縮
成形した後、再度20〜52メツシユの粒度に粉砕し、
ジメチルエーテル合成触媒51111Fを調製した。
A part of the composition was ground into particles of 100 mesh or less, mixed with Condea type 1'ural BB y-alumina powder in a ratio of 50:50 by weight, compression molded into pellets, and then pulverized again at 20 to Grind to a particle size of 52 mesh,
Dimethyl ether synthesis catalyst 51111F was prepared.

〔実験例2〕 第1段階の反応の触媒、原料合成ガスとして実験例1と
同一のものを用い、第1図記載の反応生成物よ)の水素
ガス分離及びこの循環系付きの反応装置(反応管は実験
例1と同一)を用いて、反応管入口の水素/−一酸化炭
素モル比2.0、反応管管壁温度500℃反応圧力40
時/iGsガス空間速度GH日v−1,500h−1(
反応管入口ガス量基準)の反応条件で、一酸化炭素のジ
メチルエーテル転化反応を行い、下記の中間生成物が得
られた。
[Experimental Example 2] Using the same catalyst and raw material synthesis gas as in Experimental Example 1 for the first stage reaction, hydrogen gas separation from the reaction product shown in Fig. 1) and a reaction apparatus equipped with this circulation system ( The reaction tube was the same as in Experimental Example 1), the hydrogen/-carbon monoxide molar ratio at the inlet of the reaction tube was 2.0, the reaction tube wall temperature was 500°C, and the reaction pressure was 40°C.
hour/iGs gas space velocity GH day v-1,500h-1 (
The conversion reaction of carbon monoxide to dimethyl ether was carried out under the reaction conditions (based on the amount of gas at the inlet of the reaction tube), and the following intermediate product was obtained.

一酸化炭素の転化率      72.9%中間生成物
組成 ジメチルエーテル     12.0’fa一酸化炭素
        1工4% 水  素               62.6チ4
o%am、o”a、aO!、ox、      zto
%実験例1と比較して、水素循環を行うことにより、同
一の反応装置による同一量の原料合成ガスを処理して、
約10−の一酸化炭素の転化率向上の効果があることが
判る。
Conversion rate of carbon monoxide 72.9% Intermediate product composition Dimethyl ether 12.0'fa Carbon monoxide 1/4% Hydrogen 62.6/4
o%am, o”a, aO!, ox, zto
%Compared with Experimental Example 1, by performing hydrogen circulation, the same amount of raw material synthesis gas was processed by the same reactor,
It can be seen that there is an effect of improving the conversion rate of about 10-carbon monoxide.

〔実験例S〕[Experiment example S]

実、験例2と同−触媒及び反応装置を用いての反応試験
を、反応管入口の水素/−一酸化炭素モル比2.0、反
応圧力40ゆ/ctt? G 、ガス空間速度G111
8V −LOOOh−” (入口ガス量基準)の反応条
件で実施し、下記の中間生成物が得られた。
In fact, a reaction test using the same catalyst and reaction apparatus as in Experimental Example 2 was conducted at a hydrogen/carbon monoxide molar ratio of 2.0 at the inlet of the reaction tube and a reaction pressure of 40 Yu/ctt? G, gas space velocity G111
The reaction was carried out under the reaction conditions of 8V -LOOOh-" (based on the inlet gas amount), and the following intermediate product was obtained.

一酸化炭素の転化率      9&5チ中間生成物組
成(モルチ) ジメチルエーテル     IZ8チ ー酸イし炭素         2.1%水  素  
             5a8チ馬Q、 OR,O
E[、co、、CI!、    24. Sチ〔実施例
1〕 実験例3の中間生成物を流動床型反応器に供給しガス空
間速度GHE?V −6y h−1(ジメチルエーテル
供給量基準)、反応温度400℃、反応圧力5ψ’dG
の反応条件で、下記の結晶性シリケート触媒と接触させ
た。
Conversion rate of carbon monoxide 9 & 5 thi intermediate product composition (molti) Dimethyl ether IZ8 thiic acid carbon 2.1% hydrogen
5a8chi horse Q, OR, O
E[,co,,CI! , 24. S [Example 1] The intermediate product of Experimental Example 3 was fed to a fluidized bed reactor and the gas hourly space velocity GHE? V -6y h-1 (based on dimethyl ether supply amount), reaction temperature 400°C, reaction pressure 5ψ'dG
It was brought into contact with the following crystalline silicate catalyst under the following reaction conditions.

ここで使用した結晶性シリケートは次のように製造した
The crystalline silicate used here was manufactured as follows.

水ガラス、塩化ランタン、水を、56MatO・La、
O,・80 Sin、 @1600 H,Oのモル比に
なるように調合し、これに塩酸を適当量添加し、上記混
合物のpHが9前後になるようにした後、有機化合物と
してトリーnプロピルアミン、nプロピルブロマイド及
びメチルエチルケトンをLL!LtO。
Water glass, lanthanum chloride, water, 56MatO・La,
O, .80 Sin, @1600 H, O was prepared in a molar ratio, and an appropriate amount of hydrochloric acid was added to the mixture so that the pH of the mixture was around 9, and tri-n propyl was added as an organic compound. LL! amine, n-propyl bromide and methyl ethyl ketone! LtO.

のモル数の20倍加え、良く混合し1/のステンレス製
オートクレーブに張込んだ。上記混合物を約50 Or
pmにて攪拌しながら100℃で1日、次に170℃で
38間反応させた。冷却後、固形分をr過し、洗浄水の
pHが約8になるまで充分水洗し、110℃で′12時
間乾燥し、550℃で約3時間焼成した。この生成物の
結晶粒径は約1μ惟てあシ、有機化合物を除去した組成
は脱水の形態で表わして14Nζ0−La、O,・80
810、であった。これを結晶性シリケート1と称する
20 times the number of moles was added, mixed well, and placed in a 1/2 stainless steel autoclave. The above mixture was heated to about 50 Or
The reaction was carried out at 100° C. for 1 day and then at 170° C. for 38 hours while stirring at pm. After cooling, the solid content was filtered, thoroughly washed with water until the pH of the washing water became about 8, dried at 110°C for 12 hours, and calcined at 550°C for about 3 hours. The crystal grain size of this product is about 1μ, and the composition after removing organic compounds is expressed in dehydrated form as 14Nζ0-La,O,・80
It was 810. This is called crystalline silicate 1.

また結晶性シリケート1の原料調合時において塩化ラン
タンに加えて塩化セリウムを15モル二0.5モルの比
率で添加した以外は同じ操作を行いα4NI!L!O・
(α5L&!O,−α5CJe、03) −80SiO
,の組成を示す結晶性シリケート2を調整した。
Further, when preparing the raw materials for crystalline silicate 1, the same operation was performed except that cerium chloride was added in a ratio of 15 mol to 0.5 mol in addition to lanthanum chloride, and α4NI! L! O・
(α5L&!O, -α5CJe, 03) -80SiO
A crystalline silicate 2 having a composition of , was prepared.

次にとのようにして合成した結晶性シリケート2を1N
塩酸に浸漬し、80℃で7日間処理した。とれをイオン
交換水で洗浄水のpHが6になるまで洗浄した後、11
0℃で12時間乾燥し、水素イオン型の結晶性シリケー
トを得た。
Next, 1N crystalline silicate 2 synthesized as follows.
It was immersed in hydrochloric acid and treated at 80°C for 7 days. After washing the fish with ion-exchanged water until the pH of the washing water becomes 6,
It was dried at 0° C. for 12 hours to obtain hydrogen ion type crystalline silicate.

次にとの後者の結晶性シリケートにアルミナベーマイト
乾燥ゲル粉末をAj、03  として等量加え良く混合
し、さらに54 HMO,溶液を徐々に加えた後押出成
型機でt 5 mφのサイズに成型し、これを110℃
で12時間乾燥し550℃でS時間焼成することによシ
触媒とし、これを第2段階反応用の触媒とした。
Next, an equal amount of alumina boehmite dry gel powder was added as Aj, 03 to the latter crystalline silicate and mixed well, and after gradually adding 54 HMO solution, it was molded into a size of t 5 mφ using an extruder. , this at 110℃
The catalyst was dried for 12 hours and calcined at 550°C for S hours, and this was used as a catalyst for the second stage reaction.

この結果、下記の製品生成物が得られた。As a result, the following product product was obtained.

ジメチルエーテルの転化率    9a6%生成物組成
(wtチ) C040チ C!              五7チ037.5% 0、             15.4%C5+69
.4チ 〔発明の効果〕 合成ガスからジメチルエーテルを経由してガソリンを合
成する2段階合成法において、第1段ジメチルエーテル
合成反応生成物°から水素を分離して原料合成ガスに循
環することによって、合成ガスを効率よくジメチルエー
テルに転化できガソリン収率を上げることができる。特
に供給原料合成ガスの水素/一酸化炭素比が小さい場合
に効果が大きい。
Conversion rate of dimethyl ether 9a6% Product composition (wt) C040! 57chi037.5% 0, 15.4%C5+69
.. 4 H [Effect of the invention] In a two-step synthesis method for synthesizing gasoline from synthesis gas via dimethyl ether, hydrogen is separated from the first stage dimethyl ether synthesis reaction product and recycled to the raw material synthesis gas, thereby improving the synthesis gas. Gas can be efficiently converted to dimethyl ether and gasoline yield can be increased. This is particularly effective when the feedstock synthesis gas has a low hydrogen/carbon monoxide ratio.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例としての合成ガスからのガ
ソリンを製造する70−シートを示す。
FIG. 1 shows a 70-sheet for producing gasoline from syngas in accordance with one embodiment of the present invention.

Claims (1)

【特許請求の範囲】 一酸化炭素と水素の混合物からなる合成ガスからジメチ
ルエーテルを経由して液体炭化水素(ガソリン)を合成
する2段階方法において、第1段階は合成ガスをメタノ
ール合成触媒及び酸型脱水触媒の混合物からなる触媒と
400℃までの高温で接触させ、主としてジメチルエー
テルからなる反応生成物から水素を分離して供給原料合
成ガスに循環し、水素/一酸化炭素比を供給原料合成ガ
スより大きくして合成ガスのジメチルエーテル転化率を
高め、第2段階は、前記ジメチルエーテルを脱水された
形態において酸化物のモル比で表わして、 (1.0±0.4)R_2/nO・〔aLa_2O_3
・bCe_2O_3・cM_2O_3〕・ySiO_2
上記式中、R;1種又はそれ以上の1価又は2価のカチ
オン n;Rの原子価 M;1種又はそれ以上の3価の遷 移金属イオン及び/又はアル ミニウムイオン a+b+c=1 a≧0 b≧0 c≧0 a+b>0 y≧12 の化学組成を有する結晶性シリケート触媒と500℃ま
での高温で接触させ、芳香族炭化水素を含む有機生成物
を生成させることを特徴とする合成ガスの芳香族炭化水
素への転化方法。
[Claims] In a two-step method for synthesizing liquid hydrocarbons (gasoline) from synthesis gas consisting of a mixture of carbon monoxide and hydrogen via dimethyl ether, the first step is to convert the synthesis gas into methanol synthesis catalyst and acid form. Contact with a catalyst consisting of a mixture of dehydration catalysts at elevated temperatures of up to 400° C. separates hydrogen from the reaction product consisting primarily of dimethyl ether and circulates it to the feed synthesis gas, increasing the hydrogen/carbon monoxide ratio from the feed synthesis gas. The second step is to increase the dimethyl ether conversion of the synthesis gas, and the second step converts the dimethyl ether in its dehydrated form to oxide molar ratio: (1.0±0.4)R_2/nO·[aLa_2O_3
・bCe_2O_3・cM_2O_3]・ySiO_2
In the above formula, R; one or more monovalent or divalent cations n; valence M of R; one or more trivalent transition metal ions and/or aluminum ions a+b+c=1 a≧0 A synthesis gas characterized in that it is brought into contact with a crystalline silicate catalyst having a chemical composition of b≧0 c≧0 a+b>0 y≧12 at a high temperature of up to 500° C. to produce an organic product containing aromatic hydrocarbons. A method for converting into aromatic hydrocarbons.
JP61273020A 1986-11-18 1986-11-18 Conversion of synthetic gas to aromatic hydrocarbon Pending JPS63128097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61273020A JPS63128097A (en) 1986-11-18 1986-11-18 Conversion of synthetic gas to aromatic hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61273020A JPS63128097A (en) 1986-11-18 1986-11-18 Conversion of synthetic gas to aromatic hydrocarbon

Publications (1)

Publication Number Publication Date
JPS63128097A true JPS63128097A (en) 1988-05-31

Family

ID=17522042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61273020A Pending JPS63128097A (en) 1986-11-18 1986-11-18 Conversion of synthetic gas to aromatic hydrocarbon

Country Status (1)

Country Link
JP (1) JPS63128097A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993010069A1 (en) * 1991-11-11 1993-05-27 Nkk Corporation Process for producing dimethyl ether
JP2020500258A (en) * 2016-08-29 2020-01-09 ダイオキサイド マテリアルズ,インコーポレイティド Apparatus and method for producing renewable fuels and chemicals

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993010069A1 (en) * 1991-11-11 1993-05-27 Nkk Corporation Process for producing dimethyl ether
JP2020500258A (en) * 2016-08-29 2020-01-09 ダイオキサイド マテリアルズ,インコーポレイティド Apparatus and method for producing renewable fuels and chemicals

Similar Documents

Publication Publication Date Title
CN109071390B (en) System and method for producing dimethyl ether from natural gas
EP0871602B1 (en) Preparation of fuel grade dimethyl ether
AU712528B2 (en) Process for the preparation of hydrogen rich gas
US2472219A (en) Synthesis of hydrocarbons
JPS5953245B2 (en) Methane gas
US4145400A (en) Process for the preparation of plural metal crystalline compounds
JPS6241276B2 (en)
JPS6324035B2 (en)
JP4989650B2 (en) Catalyst for producing liquefied petroleum gas, and method for producing liquefied petroleum gas using the catalyst
US3944480A (en) Production of oil and high Btu gas from coal
EP0591538A1 (en) Process for producing dimethyl ether
JP5668422B2 (en) Method for producing aluminosilicate
EP0044740B1 (en) Process for the production of lower hydrocarbons and oxygenated derivatives thereof by the catalytic conversion of carbon monoxide and hydrogen
JPS63128097A (en) Conversion of synthetic gas to aromatic hydrocarbon
US2529630A (en) Process for the manufacture of synthesis gases
CN107814690B (en) Method for converting ethylene glycol monomethyl ether
JP4391521B2 (en) Method for producing a hydrogen-rich stream
US2498838A (en) Synthesis of hydrocarbons
JP2008019176A (en) Method for synthesizing methanol and dimethyl ether
EA004130B1 (en) Method for producing petrol from gaseous hydrocarbons raw material
JP2764114B2 (en) Method for producing methanol
JPH03258737A (en) Production of methanol
US2704293A (en) Preparation of highly active hydrocarbon synthesis catalyst
JPS63254188A (en) Production of hydrocarbon from synthesis gas
KR20060132292A (en) Hybrid catalyst for preparing dimethylether and process for the preparation of dimethylether using the same