JPS63128034A - Electrically conductive porous composite - Google Patents

Electrically conductive porous composite

Info

Publication number
JPS63128034A
JPS63128034A JP27286686A JP27286686A JPS63128034A JP S63128034 A JPS63128034 A JP S63128034A JP 27286686 A JP27286686 A JP 27286686A JP 27286686 A JP27286686 A JP 27286686A JP S63128034 A JPS63128034 A JP S63128034A
Authority
JP
Japan
Prior art keywords
polypyrrole
composite
crosslinked polymer
porous crosslinked
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27286686A
Other languages
Japanese (ja)
Inventor
Makoto Amamiya
誠 雨宮
Yoshiyuki Kobayashi
小林 良之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP27286686A priority Critical patent/JPS63128034A/en
Publication of JPS63128034A publication Critical patent/JPS63128034A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled composite uniform in electrical conductivity in the direction of thickness, thus improved in mass productivity, useful for pressure sensors, dust collecting filters, etc., by making a porous crosslinked polymer form and polypyrrole into a composite. CONSTITUTION:An oxidizing agent (e.g., potassium ferricyanide) is carried on a porous crosslinked polymer form (e.g., urethane sponge) followed by impregnation with a petroleum ether solution of pyrrole to perform chemically oxidizing polymerization to form polypyrrole, thus obtaining the objective composite. Alternatively, the porous crosslinked polymer form is brought into firm contact with the anode followed by contact with an electrolytic solution made up of pyrrole, supporting electrolyte (e.g., sodium sulfate) and solvent such as water to perform electrolytic polymerization to form polypyrrole, thus obtaining the objective composite. The former process will give fine particulate polypyrrole, whereas the latter one, continuous finely dendritic polypyrrole.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、広く電気・電子分野に於いて利用される導電
性ポリマー複合体に拘わり、特に圧力センサー、集塵フ
ィルターおよび抵抗発熱体等に適した、量産性に優れた
導電性複合体に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a conductive polymer composite that is widely used in the electrical and electronic fields, and is particularly applicable to pressure sensors, dust filters, resistance heating elements, etc. The present invention relates to a conductive composite that is suitable for mass production.

〔従来の技術〕[Conventional technology]

共役二重結合を有する導電性ポリマーが近年活発に研究
開発されている。ポリアセチレンを始めとする導電性ポ
リマーが合成されてきた。その中でも、安定性および導
電性の点からポリピロール等の複素五員環化合物の重合
体が注目されている。
Conductive polymers having conjugated double bonds have been actively researched and developed in recent years. Conductive polymers including polyacetylene have been synthesized. Among these, polymers of five-membered heterocyclic compounds such as polypyrrole are attracting attention from the viewpoint of stability and conductivity.

ところが、それら導電性ポリマーの導電性は、銅および
銀等の金属に比べて最高で百分の一程度であって、金属
の代替にするには難しいのが現状である。一方で、バッ
テリー用電極、エレクトロクロミックディスプレーおよ
び接合素子等への用途開発が望まれている。
However, the conductivity of these conductive polymers is at most one-hundredth of that of metals such as copper and silver, and it is currently difficult to use them as a substitute for metals. On the other hand, the development of applications for battery electrodes, electrochromic displays, bonding elements, etc. is desired.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

導電性ポリマーは、前に述べたほかに加工性にも問題が
ある。一般に不融不溶であって、得られる形状もフィル
ム状あるいは粉末状に限られている。そこで、導電性ポ
リマーと加工性および機械的強度に優れているポリマー
との複合化が行われている。
In addition to the problems mentioned above, conductive polymers also have problems with processability. Generally, it is infusible and insoluble, and the shape that can be obtained is limited to film or powder. Therefore, composites of conductive polymers and polymers with excellent processability and mechanical strength are being carried out.

本発明者はその中でも成型体の厚み方向の導電〔問題点
を解決するための手段〕 本発明は、多孔質架橋ポリマーとポリピロールとから構
成することを特徴とする導電性多孔質複合体を提供する
ものである。
Among these, the present inventor has focused on conductivity in the thickness direction of a molded body [Means for solving the problem] The present invention provides a conductive porous composite characterized by being composed of a porous crosslinked polymer and polypyrrole. It is something to do.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明において使用する多孔質架橋ポリマーとしては、
連続した空隙を持つ多孔質架橋ポリマーであれば特に問
題はない。具体的には、ウレタン系スポンジ、シリコー
ン系スポンジおよびポバール系スポンジ等が挙げられる
。形状は、元のシート状あるいはブロック状のものから
切り出して自由に所望の物を得ることができる。この物
を、多孔質架橋ポリマー成型体と以下称する。この物と
ポリピロールとの複合体の力学的性質は、主に多孔質架
橋ポリマーに依存する。この事から、様々な多孔質架橋
ポリマー成型体を用いる事により、様々な力学特性を持
つ導電性多孔質複合体を作る事ができる。
Porous crosslinked polymers used in the present invention include:
There is no particular problem as long as it is a porous crosslinked polymer with continuous voids. Specific examples include urethane sponges, silicone sponges, and poval sponges. The desired shape can be obtained by cutting out the original sheet or block shape. This product is hereinafter referred to as a porous crosslinked polymer molded product. The mechanical properties of the composite of this material with polypyrrole mainly depend on the porous crosslinked polymer. From this fact, by using various porous crosslinked polymer moldings, it is possible to create conductive porous composites with various mechanical properties.

多孔質架橋ポリマー成型体とポリピロールとの複合化は
、多孔質架橋ポリマー成型体中でポリピロールを合成す
る事によって行われる。ポリピロールの合成法はモノマ
ーであるビロールの化学酸化重合法と電解酸化重合法が
知られている。以後、それぞれの重合法を中心に具体的
な複合化について述べる。
The composite of the porous crosslinked polymer molded body and polypyrrole is performed by synthesizing polypyrrole in the porous crosslinked polymer molded body. Known methods for synthesizing polypyrrole include chemical oxidative polymerization and electrolytic oxidative polymerization of the monomer pyrrole. Hereinafter, specific conjugation will be described focusing on each polymerization method.

化学酸化重合法による複合化の方法は、既に知られてい
る(特開昭6l−123637)。しかし、これは多孔
質支持体ではない熱可塑性ポリマーを用いるものであっ
て七ツマ−が含浸・重合するのに、時間がかかる事や厚
み方向に不均一になりやすい事が欠点として挙げられる
A method of compounding by chemical oxidative polymerization is already known (Japanese Unexamined Patent Publication No. 61-123637). However, this method uses a thermoplastic polymer rather than a porous support, and its disadvantages include that it takes time for the seven polymers to impregnate and polymerize, and that it tends to become non-uniform in the thickness direction.

本発明では、下記に示す方法で上記の問題点を解決する
事が出来る。
In the present invention, the above problems can be solved by the method shown below.

酸化剤を担持した多孔質架橋ポリマー成型体に、ビロー
ル溶液を含浸させて成型体中でポリピロールを合成させ
る。
A porous crosslinked polymer molded body carrying an oxidizing agent is impregnated with a pyrrole solution to synthesize polypyrrole in the molded body.

酸化剤として一般的に用いられるものは、三価の鉄イオ
ンを含む塩、過酸化水素、過ヨウ素酸、硫酸、硝酸等が
挙げられる。この中で、三価鉄塩がよく用いられる。三
価の鉄イオンを含む塩としては、塩化第二鉄、ヨウ化第
二鉄、フェリシアン化カリウムおよびフェリシアン化ナ
トリウム等が挙げられる。
Commonly used oxidizing agents include salts containing trivalent iron ions, hydrogen peroxide, periodic acid, sulfuric acid, and nitric acid. Among these, trivalent iron salts are often used. Examples of salts containing trivalent iron ions include ferric chloride, ferric iodide, potassium ferricyanide, and sodium ferricyanide.

ビロール溶液の有機溶媒としては、酸化剤を溶解させな
いもので、ビロールを溶解するものであればよい。具体
的には、トルエン、オクタン、イソオクタン、ヘキサン
、エチルエーテル、石油エーテル、アセトニトリル、ク
ロロホルムおよびモノクロロメタン等はとんどの有機溶
剤が使用出来るが、次の溶剤を除く工程を考えると沸点
の低いものが望ましい。また支持体となる多孔質架橋ポ
リマー成型体を溶解あるいは変質させないものである必
要がある。多孔質架橋ポリマー成型体に担持させた酸化
剤は溶液中に流れ出せないため、複素五員環化合物の酸
化重合は、架橋ポリマー上だけに選択的に起きるので、
殆ど無駄なモノマーが無い。この方法で得られるポリピ
ロールは、細かな粒子状であることを特徴とする。
The organic solvent for the virol solution may be one that does not dissolve the oxidizing agent but dissolves virol. Specifically, most organic solvents can be used, such as toluene, octane, isooctane, hexane, ethyl ether, petroleum ether, acetonitrile, chloroform, and monochloromethane, but considering the next process to remove the solvent, those with a low boiling point can be used. is desirable. Further, it is necessary that the porous crosslinked polymer molded body serving as the support is not dissolved or altered in quality. Since the oxidizing agent supported on the porous crosslinked polymer molded body cannot flow out into the solution, the oxidative polymerization of the five-membered heterocyclic compound occurs selectively only on the crosslinked polymer.
There is almost no wasted monomer. The polypyrrole obtained by this method is characterized by being in the form of fine particles.

電解酸化重合法による複合化の方法も、既に知られてい
る(特開昭6O−177507)、陽極上に熱可塑性フ
ィルムを形成して、そのフィルム中に導電性ポリマーを
電解合成するものであるが、この時、モノマーと支持電
解質は電解液中の溶媒で膨潤したポリマーフィルム中を
拡散して陽極表面に到達することが必要である。この条
件を満たす電解液とポリマーフィルムとの組み合わせは
、実際は限られていて自由にポリマーフィルムを選択す
る事が難しい事や、導電性ポリマーの生成速度が遅く厚
さ方向に導電率に差がでやすいことが問題点として挙げ
られる。
A composite method using electrolytic oxidation polymerization is already known (Japanese Unexamined Patent Publication No. 6O-177507), in which a thermoplastic film is formed on the anode, and a conductive polymer is electrolytically synthesized in the film. However, at this time, the monomer and supporting electrolyte must diffuse through the polymer film swollen with the solvent in the electrolyte solution to reach the anode surface. Combinations of electrolytes and polymer films that meet this condition are actually limited, and it is difficult to freely select a polymer film, and the formation rate of conductive polymer is slow, resulting in differences in conductivity in the thickness direction. The problem is that it is easy to use.

本発明者は、熱可塑性フィルムの代わりに多孔質架橋ポ
リマーを用いる事で上記の問題点を解決している。
The inventor of the present invention solved the above problems by using a porous crosslinked polymer instead of a thermoplastic film.

多孔質架橋ポリマー成型体を、陽極に密着させる。この
時、電極と成型体との界面から電解液が、漏れないよう
に注意する。つまり、成型体の細孔を通して、電解液と
陽極表面が接触するようにする。
The porous crosslinked polymer molded body is brought into close contact with the anode. At this time, care must be taken to prevent the electrolyte from leaking from the interface between the electrode and the molded body. That is, the electrolytic solution and the anode surface are brought into contact through the pores of the molded body.

電解液は、ビロールと支持電解質と溶媒とから、基本的
に構成される。
The electrolyte solution basically consists of virol, a supporting electrolyte, and a solvent.

支持電解質としては、過塩素酸塩、スルフォン酸塩、ホ
ウフッ化塩、硫酸塩およびハロゲン化塩等が一般的に用
いられる。特に、本発明では支持電解質の制約はない。
As the supporting electrolyte, perchlorates, sulfonates, fluoroborates, sulfates, halides, and the like are generally used. In particular, there are no supporting electrolyte restrictions in the present invention.

電解重合法で使われる溶媒は、アセトニトリル、ジメチ
ルスルホキシド、ジメチルホルムアミド、テトラヒドロ
フラン、メタノール、ピリジンおよび水等が挙げられる
。これらは、単独あるいは複数混合して用いても構わな
い。
Examples of solvents used in the electrolytic polymerization method include acetonitrile, dimethyl sulfoxide, dimethyl formamide, tetrahydrofuran, methanol, pyridine, and water. These may be used alone or in combination.

電解重合時の、電圧、電流および時間については、特に
制限はない、この方法で得られるポリピロールは、連続
した細かな樹状体であることを特徴とする。
There are no particular limitations on the voltage, current and time during electrolytic polymerization.The polypyrrole obtained by this method is characterized by being a continuous fine dendritic body.

〔作 用〕[For production]

本発明の導電性多孔質複合体の特性および用途について
述べる。
The characteristics and uses of the conductive porous composite of the present invention will be described.

多孔質架橋ポリマー成型体を、柔らかな例えば実施例に
用いたような架橋ポバールシートにした場合、多孔質導
電性複合体の電気抵抗は、図1および図2に示すように
圧力依存性をしめす。これらの図に示すように、本発明
の導電性多孔質複合体は、圧力により電気抵抗が大幅に
変化する。圧力をかけていくと、最初大きく電気抵抗が
減少し、次に緩やかに減少し、最後には圧力にたいして
直線的に減少するようになる。
When the porous crosslinked polymer molded body is made into a soft crosslinked poval sheet such as the one used in the example, the electrical resistance of the porous conductive composite exhibits pressure dependence as shown in Figures 1 and 2. . As shown in these figures, the electrical resistance of the electrically conductive porous composite of the present invention changes significantly with pressure. As pressure is applied, the electrical resistance first decreases greatly, then gradually decreases, and finally decreases linearly with the pressure.

本発明による導電性多孔質複合体は、例えば圧力センサ
ーや圧力スイッチに利用することができる。圧力センサ
ーとして使うには図3に示す構成によって直線部分の抵
抗値あるいは定電流時の電圧を測定すればよい。非直線
部分は、リニアライザーで変換して圧力センサーにする
ことができる。
The conductive porous composite according to the present invention can be used, for example, in pressure sensors and pressure switches. To use it as a pressure sensor, it is sufficient to measure the resistance value of a straight line portion or the voltage at constant current using the configuration shown in FIG. The non-linear part can be converted into a pressure sensor using a linearizer.

圧力スイッチとして使うには図4に示すような構成とす
ればよい。
In order to use it as a pressure switch, it may be configured as shown in FIG.

また、連続細孔構造を利用して、集塵フィルター用電極
として、あるいは抵抗発熱も利用して温風発生用のフィ
ルターとしても使うことができる。
Furthermore, by utilizing the continuous pore structure, it can be used as an electrode for a dust collection filter, or by utilizing resistance heat generation, it can also be used as a filter for generating hot air.

これらの用途には、比較的大きな平均孔径(0,1〜1
0+n)を有する多孔質入架橋ポリマー成型体が適して
いる。
For these applications, relatively large average pore sizes (0.1-1
0+n) is suitable.

〔実施例〕〔Example〕

以下に、本発明の実施例を述べるが、これに限定される
ことはない。
Examples of the present invention will be described below, but the present invention is not limited thereto.

実施例1 架橋ポバールシート(3X3c11、平均孔径8μm1
厚さ0.5 +n )に、フェリシアン化カリウム20
重量%水溶液を含浸して乾燥させた。ビロール2%石油
エーテル溶液に、この鉄塩を担持したシートを室温下で
接触させ・た。5分後、シートを水で洗浄し、乾燥させ
た。シートは、白色から黒色へと変化した。電気抵抗の
圧力依存性は、図1に示した。
Example 1 Crosslinked Poval sheet (3X3c11, average pore size 8 μm1
20% potassium ferricyanide to a thickness of 0.5 + n)
It was impregnated with a wt% aqueous solution and dried. The sheet carrying this iron salt was brought into contact with a 2% petroleum ether solution of virol at room temperature. After 5 minutes, the sheet was washed with water and dried. The sheet changed from white to black. The pressure dependence of electrical resistance is shown in FIG.

実施例2 架橋ポバールシート(3X3ca+、平均孔径8μm、
厚さ0.5mm)を陽極に密着させ、ビロールの電解重
合を行った。電解液の組成は、硫酸ナトリウム3%・ピ
ロール3%の水溶液である。
Example 2 Crosslinked Poval sheet (3X3ca+, average pore diameter 8 μm,
(thickness: 0.5 mm) was brought into close contact with the anode, and virol was electrolytically polymerized. The composition of the electrolytic solution is an aqueous solution of 3% sodium sulfate and 3% pyrrole.

電解電圧は4■・電解時間は30分で行った。The electrolysis voltage was 4■ and the electrolysis time was 30 minutes.

電気抵抗の圧力依存性は、図2に示した。The pressure dependence of electrical resistance is shown in FIG. 2.

〔発明の効果〕〔Effect of the invention〕

以上述べた様に、本発明の導電性多孔質複合体は、優れ
た電気特性を有することが分かった。
As described above, the conductive porous composite of the present invention was found to have excellent electrical properties.

Claims (1)

【特許請求の範囲】[Claims] 多孔性架橋ポリマーとポリピロールから構成することを
特徴とする導電性多孔質複合体。
An electrically conductive porous composite comprising a porous crosslinked polymer and polypyrrole.
JP27286686A 1986-11-18 1986-11-18 Electrically conductive porous composite Pending JPS63128034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27286686A JPS63128034A (en) 1986-11-18 1986-11-18 Electrically conductive porous composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27286686A JPS63128034A (en) 1986-11-18 1986-11-18 Electrically conductive porous composite

Publications (1)

Publication Number Publication Date
JPS63128034A true JPS63128034A (en) 1988-05-31

Family

ID=17519854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27286686A Pending JPS63128034A (en) 1986-11-18 1986-11-18 Electrically conductive porous composite

Country Status (1)

Country Link
JP (1) JPS63128034A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5591482A (en) * 1993-02-17 1997-01-07 Inoac Corporation Conductive polyurethane foam and its manufacture
US6214260B1 (en) 1997-11-10 2001-04-10 World Properties, Inc. Conductive elastomeric foams by in-situ vapor phase polymerization of pyrroles
WO2002039464A3 (en) * 2000-11-10 2002-08-22 Univ Connecticut Conductive elastomeric foams and method of manufacture thereof
EP2550557A4 (en) * 2010-03-25 2014-02-12 Univ Connecticut Formation of conjugated polymers for solid-state devices
ITUB20159724A1 (en) * 2015-12-22 2017-06-22 Consiglio Nazionale Ricerche FUNCTIONALIZATION PROCESS OF A POROUS MATERIAL, POROUS MATERIALS SO OBTAINED AND ITS USE
US9944757B2 (en) 2012-07-23 2018-04-17 The University Of Connecticut Electrochromic copolymers from precursors, method of making, and use thereof
US10323178B2 (en) 2014-05-16 2019-06-18 The University Of Connecticut Color tuning of electrochromic devices using an organic dye

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5591482A (en) * 1993-02-17 1997-01-07 Inoac Corporation Conductive polyurethane foam and its manufacture
US6214260B1 (en) 1997-11-10 2001-04-10 World Properties, Inc. Conductive elastomeric foams by in-situ vapor phase polymerization of pyrroles
WO2002039464A3 (en) * 2000-11-10 2002-08-22 Univ Connecticut Conductive elastomeric foams and method of manufacture thereof
US7029722B2 (en) 2000-11-10 2006-04-18 The University Of Connecticut Conductive elastomeric foams and method of manufacture thereof
EP2550557A4 (en) * 2010-03-25 2014-02-12 Univ Connecticut Formation of conjugated polymers for solid-state devices
US8890130B2 (en) 2010-03-25 2014-11-18 The University Of Connecticut Formation of conjugated polymers for solid-state devices
US9680102B2 (en) 2010-03-25 2017-06-13 University Of Connecticut Formation of conjugated polymers for solid-state devices
US9944757B2 (en) 2012-07-23 2018-04-17 The University Of Connecticut Electrochromic copolymers from precursors, method of making, and use thereof
US10323178B2 (en) 2014-05-16 2019-06-18 The University Of Connecticut Color tuning of electrochromic devices using an organic dye
ITUB20159724A1 (en) * 2015-12-22 2017-06-22 Consiglio Nazionale Ricerche FUNCTIONALIZATION PROCESS OF A POROUS MATERIAL, POROUS MATERIALS SO OBTAINED AND ITS USE
WO2017109671A1 (en) * 2015-12-22 2017-06-29 Consiglio Nazionale Delle Ricerche A functionalization process of a porous material, porous material thus obtained and uses thereof

Similar Documents

Publication Publication Date Title
US4959430A (en) Polythiophenes, process for their preparation and their use
JP5066865B2 (en) REINFORCED ELECTROLYTE MEMBRANE FOR FUEL CELL, METHOD FOR PRODUCING THE SAME, MEMBRANE-ELECTRODE ASSEMBLY FOR FUEL CELL, AND SOLID POLYMER FUEL CELL HAVING THE SAME
Zhang et al. A triblock copolymer design leads to robust hybrid hydrogels for high-performance flexible supercapacitors
JPS61218643A (en) Composite forming material from porous material and conductive polymer
JPS6059087A (en) Electrochemical polymerization for pyrrole and anode therefor
Higgins et al. Grafting and electrochemical characterisation of poly-(3, 4-ethylenedioxythiophene) films, on Nafion and on radiation-grafted polystyrenesulfonate–polyvinylidene fluoride composite surfaces
JPS6058429A (en) Manufacture of electroconductive powdery pyrrole polymer
JPH01261470A (en) Conductive polymer and its production
JPS6254722A (en) Production of solid composite substance
JPS63128034A (en) Electrically conductive porous composite
JPS62181328A (en) Production of conductive organic polymer
CA2096578A1 (en) Solid electrolytic capacitors and process for producing the same
JP2007122902A (en) Manufacturing method of lithium ion battery
JPH0427248B2 (en)
JPH0263730A (en) Porous conductive composite material and preparation thereof
JPH0264107A (en) Electroconductive composite material and production thereof
JP2001163960A (en) Method for preparing electrically conductive polymer material and solid electrolytic capacitor
JP2882892B2 (en) Method for forming conductive polymer / polymer electrolyte composite film
JPH054982B2 (en)
JPS61197636A (en) Production of electrically conductive composite material
JPH054983B2 (en)
JPS62136712A (en) Method for making resin mold surface conductive
JPH0274019A (en) Manufacture of solid electrolytic condenser
JPH0720504A (en) Electrode and electrochemical display device using same
JPH0410907B2 (en)