JPS6312772B2 - - Google Patents

Info

Publication number
JPS6312772B2
JPS6312772B2 JP54137554A JP13755479A JPS6312772B2 JP S6312772 B2 JPS6312772 B2 JP S6312772B2 JP 54137554 A JP54137554 A JP 54137554A JP 13755479 A JP13755479 A JP 13755479A JP S6312772 B2 JPS6312772 B2 JP S6312772B2
Authority
JP
Japan
Prior art keywords
film
properties
mol
formula
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54137554A
Other languages
Japanese (ja)
Other versions
JPS5662121A (en
Inventor
Toshuki Asakura
Yukio Noguchi
Hiroaki Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP13755479A priority Critical patent/JPS5662121A/en
Publication of JPS5662121A publication Critical patent/JPS5662121A/en
Publication of JPS6312772B2 publication Critical patent/JPS6312772B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は熱的、機械的、寸法安定的にすぐれた
特性を有するポリp−フエニレンスルフイドフイ
ルムに関するものである。 ここ数年来耐熱性フイルムに関する製造研究な
らびにその企業化についてはおおいに関心が高ま
りつつある。特に溶融成形可能でありしかも熱
的、機械的、寸法安定的、電気化学的特性にすぐ
れたフイルムの必要性が大きくなつてきた。 従来から非常にバランスのとれた特性を有する
フイルムとしてポリエチレンテレフタレートフイ
ルムがあるが、このフイルムは熱的には電気絶縁
用としていわゆるF種には達しておらずもう一段
すぐれたフイルムが必要とされている。またポリ
イミドフイルムは耐熱的にはF種をはるかにしの
ぐ程のものであるが、製膜法が溶液法であり、生
産性が悪くコストが非常に高くつくものである。
現在までのところバランスのとれたポリエステル
フイルムよりも耐熱的に一段上にランクされるF
種絶縁を有し、かつ溶融成形可能なフイルムは見
い出されておらず我々はこの点に注目し新しいフ
イルムの開発に努力し、本発明に到達したもので
ある。 本発明の目的は、耐熱性、機械特性、寸法安定
性、透明性、電気化学的にすぐれたフイルムを提
供せんとするものである。 本発明は上記目的を達成するため次の構成、す
なわち本発明は一般式
The present invention relates to a poly p-phenylene sulfide film having excellent thermal, mechanical and dimensional stability properties. Over the past few years, there has been a great deal of interest in manufacturing research and commercialization of heat-resistant films. In particular, there has been a growing need for films that are melt moldable and have excellent thermal, mechanical, dimensional stability, and electrochemical properties. Polyethylene terephthalate film has traditionally been a film with extremely well-balanced properties, but this film does not reach the so-called F grade for electrical insulation thermally, and there is a need for a film that is even better. There is. In addition, polyimide film has a heat resistance that far exceeds that of Type F, but the film forming method is a solution method, resulting in poor productivity and very high costs.
F, which is currently ranked one step higher in heat resistance than well-balanced polyester films.
A film that has seed insulation and can be melt-formed has not been found, so we paid attention to this point, made efforts to develop a new film, and arrived at the present invention. An object of the present invention is to provide a film with excellent heat resistance, mechanical properties, dimensional stability, transparency, and electrochemical properties. In order to achieve the above object, the present invention has the following configuration, that is, the present invention has the general formula

【式】で示さ れる構成単位を90モル%以上含み、300℃におけ
る溶融粘度がせん断速度200(秒)-1のもとで100以
上60万ポイズ以下で、かつ広角X線により測定し
た相対結晶化度5〜35、微結晶の大きさ40〜130
Å,EdgeおよびEndo方向から測定した配向度が
ともに0.1〜0.6であるポリp−フエニレンスルフ
イドフイルムを特徴とするものである。 本発明に使用する重合体は一般式
Relative crystal containing 90 mol% or more of the structural unit represented by the formula, with a melt viscosity of 100 to 600,000 poise at 300°C and a shear rate of 200 (seconds) -1 , and measured by wide-angle X-rays. degree of crystallization 5-35, microcrystal size 40-130
It is characterized by a poly p-phenylene sulfide film whose degree of orientation measured from the Å, Edge and Endo directions are all 0.1 to 0.6. The polymer used in the present invention has the general formula

【式】で示される構成単位を90モル %以上含む事が必要であり、これ未満ではすぐれ
た特性のフイルムは得難い。このポリマの重合は
種々の方法があり特に限定されないが硫化アルカ
リとpジハロベンゼンを極性溶媒中で重合助剤を
使用して行なう方法が得られるポリマの重合度が
上昇しやすく好ましい。特に硫化ナトリウムとp
ジクロルベンゼンをNメチルピロリドン等の高沸
点極性溶媒中でカルボン酸の金属塩を使用して加
圧下に重合する方法はすぐれている。共重合成分
として10モル%未満であればメタ結合
It is necessary to contain 90 mol% or more of the structural unit represented by the formula; if it is less than this, it is difficult to obtain a film with excellent properties. There are various methods for polymerizing this polymer, and there are no particular limitations. However, a method in which alkali sulfide and p-dihalobenzene are used in a polar solvent using a polymerization aid is preferred because the degree of polymerization of the resulting polymer is easily increased. Especially sodium sulfide and p
An excellent method is to polymerize dichlorobenzene under pressure in a high-boiling polar solvent such as N-methylpyrrolidone using a metal salt of a carboxylic acid. If it is less than 10 mol% as a copolymer component, it is a meta bond.

【式】エーテル結合[Formula] Ether bond

【式】スルホン結合[Formula] Sulfone bond

【式】ビフエニル 結合[Formula] biphenyl join

【式】ナフチル結合[Formula] Naphthyl bond

【式】置換フエニルスルフ イド結合[Formula] Substituted phenyl sulfur id join

【式】ここでRはアルキル、 ニトロ、フエニル、アルコキシ基を示す)、3官
能フエニルスルフイド結合
[Formula] where R represents an alkyl, nitro, phenyl, or alkoxy group), trifunctional phenyl sulfide bond

【式】な どを含有していてもポリマの結晶性、延伸性、配
向性に大きく影響しない範囲でかまわないが好ま
しくは共重合成分は5モル%以下が好ましい。特
に3官能以上の共重合成分は1モル%以下が好ま
しい。 本発明に使用される重合体の粘度は、300℃,
200(秒)-1のせん断速度下で100以上60万ポイズ以
下、好ましくは300以上10万ポイズ以下であり、
また非ニユートン係数(n)(せん断速度とせん
断応力の傾きから求められる)が0.8〜2.0である
事が好ましい。これらの溶融特性範囲をはずれて
極端に低粘度や高粘度又はn>3.0のポリマは溶
融吐出が安定しなかつたり、吐出フイルムの表面
形状が好ましくなかつたり厚みむら、延伸むら、
表面凹凸がはげしくなる等好ましくない。ここで
非ニユートン係数は下式で定義されるものであ
る。 γ=1/μτn ここで、γ=せん断速度、μ=粘度定数、τ=
せん断応力、n=非ニユートン係数を示す。 本発明におけるフイルムの構造パラメータとし
ては次の3つが満たされる必要がある。まず第一
に相対結晶化度は広角X線によるフイルムの回析
プロフイルより(200)ピークの最大強度(I200
と2θ=25゜での強度(I25)を測定し両者の比I200
I25をもつて相対結晶化度と定義するがこの値が
5〜35の範囲になる事が必要である。つまり5未
満では結晶性が不十分である事と対応しフイルム
が高温に加熱された際に寸法安定性に乏しくまた
耐熱性も十分なフイルムではない。一方35を越す
様なフイルムは実際に得難くたとえ得られたとし
てもかなりもろいフイルムになつてしまう。 第二に微結晶の大きさが一定範囲である必要が
あるが、これは(200)回折ピークの半価幅より
Schellerの式を使用して得られる見かけの結晶粒
子サイズ(ACS)を意味しており、40〜130Åで
ある事が必要である。種々検討討した結果この
ACSとフイルム物性の相関はフイルムの耐熱性、
機械的特性特にヤング率、熱ゆがみ特性などと密
接な関係がありACSが40Å未満であるとこれら
性質が悪化してくる。また130Å以上にまで成長
させるとフイルムの脆化が目立つ様になつてく
る。 第3に必要なパラメータは配向度についてであ
り、このパラメータはフイルムのEdgeおよび
Endo方向からのX線プレート写真を撮影し、
(200)面の強度を赤道線上でデンシトメータで半
径方向に走査した時の黒化度(I〓=0゜)と30゜方向
での黒化度(I〓=30゜)の比つまりI〓=30゜/I〓=0
を配
向度(OF)と定義して求めると好ましい範囲は
0.1〜0.6である。ここでEdgeとは長軸に平行な方
向からのX線入射でありEndoとはこれと直角の
しかも厚み方向にも直角なX線入射である。この
OFはフイルムの透明性、熱寸法変化、機械特性
などと関連があり0.6を越す様な値のフイルムは
これらの特性が劣る。たとえば繊維や一軸配向フ
イルムなどではEndo方向の値が0.6を越す様にな
りフイルム面内にどの方向でもある程度以上の特
性を持つ有用なフイルムにはなり得ない。また
0.1未満のようなフイルムは通常の手法では得難
く、得られたとしてもひき裂性などが悪化する。 次に、本発明の各数値を満足させるための具体
的なフイルムの製法について以下述べる。最も簡
便なフイルムの結晶化およびその特性を一定の範
囲にさせる手法は架橋度の少ないポリマを使用し
て延伸又はドラフトによる配向と加熱による結晶
化の組み合わせである。例えば、溶融吐出後少な
くとも10℃/秒以上の速度で冷却した密度1.310
〜1.330g/c.c.のほとんど非晶フイルムを85〜110
℃の範囲で同時又は遂次に面倍率8.5〜21倍延伸
して二軸配向を達せしめた後150〜275℃、好まし
くは200〜275℃、1〜300秒間で緊張下に熱固定
する方法や円形口金から溶融吐出後気体を吹込み
フイルムの膨張と同時に配向を達せしめるいわゆ
るチユブラ法とそれに続く150〜275℃、好ましく
は200〜275℃での緊張下の熱固定する方法または
圧延による配向と延伸による配向を組み合わせた
後、上記温度で熱固定する方法が挙げられる。製
膜中のフイルムの相対結晶化度、OF,ACSの変
化は当然考えられるが最終フイルムとしてはこの
3つのパラメータが一定の範囲になくてはすぐれ
たフイルムを得る事は出来ない。工業的に採用し
得る最も好ましい方法は遂次二軸延伸およびそれ
に続く熱固定を行なう方法である。 なお、本発明のフイルムは、他のポリマや充て
ん剤が混合されていてもよく、また酸化防止剤、
紫外線吸収剤などの添加剤が含有されていてもよ
い。さらに、本発明のフイルムは他のフイルムが
複合されたり、他の物質のコーテイングが行なわ
れていてもよい。 本発明のフイルムは、三つの結晶に関する構造
パラメータが各々独自にまたは相まつてフイルム
特性と密接な相関をもつものである。つまりこれ
らパラメータが満足されてはじめて耐熱性、機械
特性、寸法安定性、透明性、電気化学的にすぐれ
たフイルムが得られる。本発明により得られたフ
イルムはこれら特性を活かし、包装用、写真用、
磁気記録用、電気絶縁用、粘着テープベース、建
材用、装飾用などの素材として使用する事が出来
る。 ここで本発明の測定法について説明する。 溶融粘度は高化式フローテスタを使用し、1mm
径、長さ10mmの口金を使用し300℃にてせん断速
度200(秒)-1のもとで測定した。 次にX線による3つのパラメータの測定法につ
いて述べる。 CF;各試料の延伸方向をそろえて厚み1mm、
幅1mm、長さ10mmの短冊状に成型(成型時の各フ
イルムの固定はコロジオンの5%酢酸アルミ溶液
を用いた)し、フイルムの膜面に沿つてX線を入
射(EdgeおよびEndo方向)してプレート写真を
撮影した。X線発生装置は理学電機製D−3F型
装置を用い、40KV−20mAでNiフイルターを通
したCu−Kα線をX線源とした。試料−フイルム
間距離は41mmでコダツクノンスクリーンタイプフ
イルムを用い多重露出(15分および30分)法を採
用した。次にプレート写真上の(200)ピークの
強度をφ=0゜(赤道線上)、10゜,20゜,30゜の位置

写真の中心から半径方向にデンシトメータを走査
し黒化度を読みとり各試料の配向度(OF)を OF=I〓=30゜/I〓=0゜ と定義した。ここでI〓=30゜は30゜の走査の最大強
度、I〓=0゜は赤道線走査の最大強度である。なお
I〓=0゜はφ=0゜とφ=180゜,I〓=30゜はφ=30゜と
φ=
150゜の強度の平均値を用いた。ここでデンシトメ
ータの測定条件は次の様である。 装置は小西六写真工業製サクラマイクロデンシ
トメータモデルPDM−5タイブAを使用し、測
定濃度範囲は0.0〜4.0D(最小測定面積4μ2換算)、
光学系倍率100倍でスリツト幅1μ、高さ10μを使
用しフイルム移動速度50μ/秒でチヤート速度は
1mm/秒である。 ACSおよび相対結晶化度;試料の配向効果を
消去するために試料を面内で回転する方法を採用
し、反射法で回折パターンを測定した。X線発生
装置は理学電機製D−8C型装置を用い、35KV−
15mAでNiフイルターを通したCu−KαをX線源
とした。ゴニオメータは理学電機製PMG−A2型
を用い試料を回転速度80rpmで回転する回転試料
台に取り付け、スリツト系はDivergence slit 1゜,
Recieuing Slit0.15mm,Scattering Slit1゜を採用
した。2θ走査速度は1/分、チヤート速度は1
cm/分である。各試料は一辺20mmの正方形に切り
出し厚さ0.5mmに重ねて測定試料とした。 (200)回折ピークの半価幅よりSchellerの式
を用いてみかけの結晶サイズ(ACS)を算出し
た。 ACS(Å)=Kλ/βcosθ,β =〔B2−(B′)21/2 ここでK:Scheller定数(K=1) λ:X線波長(λ=1.5418Å) 2θ:Bragg angle(゜) β:補正後の半価幅(radian) B:実測半価幅 B′:補正用標準試料(Si単結晶)の半価幅 また相対結晶化度は各試料の回折プロフイルよ
り(200)ピークの最大強度(I200)と2θ=25で
の強度(I25)を内部標準値として測定し両者の
比を相対結晶化度(I200/I25)と定義した。 以下本発明を実施例をもつて説明する。 実施例1〜3、比較実施例1〜5 硫化ナトリウム9水塩1モル、水酸化ナトリウ
ム0.15モル、安息香酸ナトリウム0.8モル、Nメ
チルピロリドン400mlをオートクレープに入れ窒
素気流中で200℃まで徐々に加熱し脱水を行なつ
た。次に系を170℃まで冷却後1.01モルのpジク
ロルベンゼンを200mlの脱水したNメチルピロリ
ドンとともに添加し窒素により4.0Kg/cm2まで加
圧した、この系を撹拌下に270℃まで加熱し5時
間重合を行なつた。重合終了後内容物を大量の水
中へあけポリマを単離させ続いて熱水、アセトン
で洗浄をくり返し白色ビーズ状のポリマを得た。
このポリマはμ=2200ポイズ、n=1.12であつ
た。 乾燥したポリマを300℃にて溶融プレス後、10
℃の冷水中へ急冷し密度1.325のほとんど非晶の
200μフイルムを得た。このフイルムをT.M.Long
社のフイルムストレツチヤーで種々の条件下に同
時二軸延伸し、熱固定を行ないX線による構造パ
ラメータとフイルム物性を測定し第1表の結果を
得た。実施例1〜3の本発明は本発明外の比較実
施例と比べ熱的、機械的特性などがすぐれている
事がわかる。
[Formula] and the like may be contained as long as they do not significantly affect the crystallinity, stretchability, and orientation of the polymer, but preferably the copolymerization component is 5 mol % or less. In particular, the content of the trifunctional or higher functional copolymerization component is preferably 1 mol % or less. The viscosity of the polymer used in the present invention is 300℃,
100 to 600,000 poise, preferably 300 to 100,000 poise at a shear rate of 200 (seconds) -1 ,
Further, it is preferable that the non-Newtonian coefficient (n) (obtained from the slope of shear rate and shear stress) is 0.8 to 2.0. Polymers with extremely low or high viscosity or n>3.0 outside of these melting property ranges may not be stable in melting and discharging, or the surface shape of the discharged film may be unfavorable, resulting in uneven thickness, uneven stretching, etc.
This is undesirable as the surface becomes uneven. Here, the non-Newtonian coefficient is defined by the following formula. γ=1/ μτ nwhere γ=shear rate, μ=viscosity constant, τ=
Shear stress, n = non-Newtonian coefficient. The following three structural parameters of the film in the present invention must be satisfied. First of all, the relative crystallinity is determined by the maximum intensity of the (200) peak (I 200 ) from the diffraction profile of the film using wide-angle X-rays.
The intensity (I 25 ) at 2θ=25° is measured and the ratio of the two is I 200 /
Relative crystallinity is defined as I25 , and this value must be in the range of 5 to 35. In other words, if it is less than 5, the crystallinity will be insufficient, and the film will have poor dimensional stability when heated to high temperatures and will not have sufficient heat resistance. On the other hand, it is actually difficult to obtain a film that exceeds 35, and even if it were obtained, it would be quite brittle. Second, the size of the microcrystals must be within a certain range, which is smaller than the half-width of the (200) diffraction peak.
It refers to the apparent crystal grain size (ACS) obtained using Scheller's formula, and it needs to be between 40 and 130 Å. As a result of various studies, this
The correlation between ACS and film physical properties is the film's heat resistance,
There is a close relationship with mechanical properties, particularly Young's modulus and thermal distortion properties, and if the ACS is less than 40 Å, these properties deteriorate. Furthermore, when the film is grown to a thickness of 130 Å or more, the embrittlement of the film becomes noticeable. The third necessary parameter is the degree of orientation, and this parameter is related to the edge and
Take an X-ray plate photograph from the Endo direction,
The ratio of the degree of blackening (I〓 =0゜) when the intensity of the (200) surface is scanned in the radial direction with a densitometer on the equator line and the degree of blackness in the 30゜ direction (I〓 =30゜), that is, I〓 =30゜/I〓 If =0゜ is defined as the degree of orientation (OF), the preferable range is
It is 0.1-0.6. Here, Edge is an X-ray incident from a direction parallel to the long axis, and Endo is an X-ray incident perpendicular to this and also perpendicular to the thickness direction. this
OF is related to film transparency, thermal dimensional change, mechanical properties, etc., and films with values exceeding 0.6 are inferior in these properties. For example, in the case of fibers or uniaxially oriented films, the Endo direction value exceeds 0.6, making it impossible for the film to be a useful film that has properties above a certain level in any direction within the film plane. Also
Films with a molecular weight of less than 0.1 are difficult to obtain using normal methods, and even if they are obtained, tearability and other properties will deteriorate. Next, a specific film manufacturing method for satisfying each numerical value of the present invention will be described below. The simplest method for crystallizing a film and keeping its properties within a certain range is a combination of orientation by stretching or drafting and crystallization by heating using a polymer with a low degree of crosslinking. For example, density 1.310 cooled at a rate of at least 10°C/sec after melting and dispensing.
~1.330g/cc mostly amorphous film 85~110
A method of simultaneously or sequentially stretching at an areal magnification of 8.5 to 21 times at a temperature range of 8.5 to 21 times to achieve biaxial orientation, followed by heat setting under tension at 150 to 275 °C, preferably 200 to 275 °C, for 1 to 300 seconds. The so-called tubular method involves blowing gas into the film after melting and discharging it from a circular die to achieve orientation at the same time as the film expands, followed by heat setting under tension at 150 to 275°C, preferably 200 to 275°C, or orientation by rolling. An example of this method is to combine orientation by stretching and then heat setting at the above temperature. Of course, changes in the relative crystallinity, OF, and ACS of the film during film formation can be considered, but it is not possible to obtain an excellent final film unless these three parameters are within a certain range. The most preferred method that can be employed industrially is a method of sequential biaxial stretching and subsequent heat setting. Note that the film of the present invention may be mixed with other polymers and fillers, and may also contain antioxidants,
Additives such as ultraviolet absorbers may also be contained. Furthermore, the film of the present invention may be composited with other films or coated with other materials. In the film of the present invention, the three crystal-related structural parameters each independently or jointly have a close correlation with the film properties. In other words, only when these parameters are satisfied can a film with excellent heat resistance, mechanical properties, dimensional stability, transparency, and electrochemical properties be obtained. The film obtained according to the present invention takes advantage of these properties and can be used for packaging, photography, etc.
It can be used as a material for magnetic recording, electrical insulation, adhesive tape bases, building materials, decorations, etc. Here, the measurement method of the present invention will be explained. Melt viscosity was measured at 1mm using a Koka type flow tester.
Measurements were made using a cap with a diameter and length of 10 mm at 300°C and a shear rate of 200 (sec) -1 . Next, a method for measuring the three parameters using X-rays will be described. CF: The thickness of each sample is 1 mm, with the stretching direction aligned.
Formed into a strip with a width of 1 mm and a length of 10 mm (each film was fixed using a 5% aluminum acetate solution of collodion during forming), and X-rays were incident along the film surface of the film (Edge and Endo directions). I then took a photo of the plate. The X-ray generator was a Rigaku D-3F type device, and the X-ray source was Cu-Kα rays passed through a Ni filter at 40 KV and 20 mA. The distance between the sample and the film was 41 mm, and a multiple exposure (15 and 30 minutes) method was used using Kodatsu non-screen type film. Next, measure the intensity of the (200) peak on the plate photograph by scanning the densitometer in the radial direction from the center of the photograph at φ = 0° (on the equator line), 10°, 20°, and 30°, and read the degree of blackening for each. The degree of orientation (OF) of the sample was defined as OF=I〓 =30゜/I〓 =0゜. Here, I〓 =30゜ is the maximum intensity of the 30゜ scan, and I〓 =0゜ is the maximum intensity of the equatorial line scan. In addition
I〓 =0゜ is φ=0゜ and φ=180゜, I〓 =30゜ is φ=30゜ and φ=
The average value of the intensity at 150° was used. Here, the measurement conditions of the densitometer are as follows. The device used was Sakura Microdensitometer Model PDM-5 Type A manufactured by Roku Konishi Photo Industry, and the measurement concentration range was 0.0 to 4.0D (minimum measurement area 4μ 2 conversion).
The optical system has a magnification of 100 times, a slit width of 1 μ and a height of 10 μ, a film movement speed of 50 μ/sec, and a chart speed of 1 mm/sec. ACS and relative crystallinity: The sample was rotated in the plane to eliminate the sample orientation effect, and the diffraction pattern was measured using the reflection method. The X-ray generator is a Rigaku D-8C type device, 35KV.
The X-ray source was Cu-Kα passed through a Ni filter at 15 mA. The goniometer was a Rigaku Denki model PMG-A2, and the sample was mounted on a rotating sample stage that rotated at a rotation speed of 80 rpm.
Receiving slit 0.15mm and scattering slit 1° were adopted. 2θ scan speed is 1/min, chart speed is 1
cm/min. Each sample was cut into a square with a side of 20 mm and stacked to a thickness of 0.5 mm to serve as a measurement sample. The apparent crystal size (ACS) was calculated from the half-width of the (200) diffraction peak using Scheller's equation. ACS (Å) = Kλ/βcosθ, β = [B 2 − (B′) 2 ] 1/2 where K: Scheller constant (K = 1) λ: X-ray wavelength (λ = 1.5418 Å) 2θ: Bragg angle (°) β: Half-width after correction (radian) B: Actual half-width B′: Half-width of standard sample for correction (Si single crystal) The relative crystallinity is determined from the diffraction profile of each sample (200 ) The maximum intensity of the peak (I 200 ) and the intensity at 2θ=25 (I 25 ) were measured as internal standard values, and the ratio of the two was defined as the relative crystallinity (I 200 /I 25 ). The present invention will be explained below with reference to Examples. Examples 1 to 3, Comparative Examples 1 to 5 1 mol of sodium sulfide nonahydrate, 0.15 mol of sodium hydroxide, 0.8 mol of sodium benzoate, and 400 ml of N-methylpyrrolidone were placed in an autoclave and gradually heated to 200°C in a nitrogen stream. Dehydration was performed by heating. The system was then cooled to 170°C, 1.01 mol of p-dichlorobenzene was added together with 200 ml of dehydrated N-methylpyrrolidone, and the system was pressurized to 4.0 Kg/cm 2 with nitrogen. The system was heated to 270°C with stirring. Polymerization was carried out for 5 hours. After the polymerization was completed, the contents were poured into a large amount of water to isolate the polymer, followed by repeated washing with hot water and acetone to obtain a white bead-like polymer.
This polymer had μ=2200 poise and n=1.12. After melt pressing the dried polymer at 300℃,
Quenched into cold water at ℃ to form a mostly amorphous material with a density of 1.325.
A 200μ film was obtained. TMLong this film
The film was simultaneously biaxially stretched under various conditions using a film stretcher manufactured by the company, and heat-set. The structural parameters and physical properties of the film were measured using X-rays, and the results shown in Table 1 were obtained. It can be seen that Examples 1 to 3 of the present invention are superior in thermal and mechanical properties as compared to comparative examples other than the present invention.

【表】【table】

【表】 実施例4、比較実施例6 pジクロルベンゼン1.01モルの代りに、pジク
ロルベンゼン1.00モルと1,2,4トリクロルベ
ンゼン0.002モルの混合物を使用した他は実施例
1〜3の重合をくり返しフレーク状のμ=5600ポ
イズ、n=1.44のポリマを得た。このポリマを
310℃で溶融プレスした後、氷水中に急冷し密度
1.326のほとんど非晶の250μ厚みのフイルムを得
た。 このフイルムをT.M.Long社のフイルムストレ
ツチヤーにて逐次2軸に延伸し、270℃にて60秒
間熱固定してフイルムを得た。製膜条件と構造パ
ラメータとフイルム物性を第2表に示すが、本発
明の3つの構造パラメータを同時に満足しないと
良好なフイルムが得られない事が判明した。
[Table] Example 4, Comparative Example 6 Examples 1 to 3 except that a mixture of 1.00 mol of p-dichlorobenzene and 0.002 mol of 1,2,4-trichlorobenzene was used instead of 1.01 mol of p-dichlorobenzene. Polymerization was repeated to obtain a flaky polymer with μ=5600 poise and n=1.44. This polymer
After melt pressing at 310℃, quenching in ice water to reduce density.
An almost amorphous 250μ thick film of 1.326 was obtained. This film was sequentially stretched biaxially using a TMLong film stretcher and heat-set at 270° C. for 60 seconds to obtain a film. The film forming conditions, structural parameters, and physical properties of the film are shown in Table 2, and it has been found that a good film cannot be obtained unless the three structural parameters of the present invention are simultaneously satisfied.

【表】【table】

【表】 比較実施例 7 実施例1に於て1.0モルのpジクロルベンゼン
の代わりに1.2モルのpジクロルベンゼンを用い
て重合したところμ=150ポイズ、n=1.02の粉
体状ポリマを得た。このポリマを300℃にて溶融
プレス後、氷水中へ急冷し非晶フイルムを得たが
かなりもろく延伸は90℃にて1.2倍が最大であり
有用なフイルムを得るには粘度が低すぎた。また
非晶フイルムの構造パラメータを測定したとこ
ろ、OF=1.00,ACS=20Åであり又相対結晶化
度は1.5以下であつた。
[Table] Comparative Example 7 In Example 1, when 1.2 mol of p-dichlorobenzene was used instead of 1.0 mol of p-dichlorobenzene, a powdered polymer with μ=150 poise and n=1.02 was obtained. Obtained. This polymer was melt-pressed at 300°C and then rapidly cooled in ice water to obtain an amorphous film, but it was quite brittle and could be stretched to a maximum of 1.2 times at 90°C, so the viscosity was too low to obtain a useful film. Furthermore, when the structural parameters of the amorphous film were measured, it was found that OF = 1.00, ACS = 20 Å, and the relative crystallinity was 1.5 or less.

Claims (1)

【特許請求の範囲】 1 一般式【式】で示される構成単 位を90モル%以上含み、300℃における溶融粘度
がせん断速度200(秒)-1のもとで100以上60万ポイ
ズ以下で、かつ広角X線により測定した相対結晶
化度5〜35、微結晶の大きさ40〜130Å,Edgeお
よびEndo方向から測定した配向度がともに0.1〜
0.6であるポリp−フエニレンスルフイドフイル
ム。
[Claims] 1 Contains 90 mol% or more of the structural unit represented by the general formula [Formula], and has a melt viscosity at 300°C of 100 to 600,000 poise at a shear rate of 200 (sec) -1 , And the relative crystallinity measured by wide-angle X-rays is 5-35, the size of microcrystals is 40-130 Å, and the degree of orientation measured from the Edge and Endo directions is both 0.1-35.
0.6 poly p-phenylene sulfide film.
JP13755479A 1979-10-26 1979-10-26 Poly-p-phenylene sulfide film Granted JPS5662121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13755479A JPS5662121A (en) 1979-10-26 1979-10-26 Poly-p-phenylene sulfide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13755479A JPS5662121A (en) 1979-10-26 1979-10-26 Poly-p-phenylene sulfide film

Publications (2)

Publication Number Publication Date
JPS5662121A JPS5662121A (en) 1981-05-27
JPS6312772B2 true JPS6312772B2 (en) 1988-03-22

Family

ID=15201420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13755479A Granted JPS5662121A (en) 1979-10-26 1979-10-26 Poly-p-phenylene sulfide film

Country Status (1)

Country Link
JP (1) JPS5662121A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008282908A (en) * 2007-05-09 2008-11-20 Toray Ind Inc Biaxially-oriented polyphenylene sulfide film for capacitor, and film capacitor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57205119A (en) * 1981-06-12 1982-12-16 Toray Ind Inc Biaxially stretched poly-p-phenylenesulfide film
JPH0796724B2 (en) * 1985-03-22 1995-10-18 呉羽化学工業株式会社 High-performance polyarylene thioether fiber and method for producing the same
JPH0753414B2 (en) * 1987-06-18 1995-06-07 ダイアホイルヘキスト株式会社 Biaxially oriented poly-p-phenylene sulfide film
JP2007169521A (en) * 2005-12-22 2007-07-05 Asahi Kasei Chemicals Corp Film made of polyphenylene sulfide-based resin

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3919177A (en) * 1973-11-19 1975-11-11 Phillips Petroleum Co P-phenylene sulfide polymers
JPS5212240A (en) * 1975-07-18 1977-01-29 Matsushita Electric Ind Co Ltd Process for preparing transparent coating compounds
JPS595100A (en) * 1982-06-30 1984-01-11 富田 重助 Apofocus rule and drawing plate
JPS595101A (en) * 1982-06-09 1984-01-12 バイエル・アクチエンゲゼルシヤフト Plant growth regulant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3919177A (en) * 1973-11-19 1975-11-11 Phillips Petroleum Co P-phenylene sulfide polymers
JPS5212240A (en) * 1975-07-18 1977-01-29 Matsushita Electric Ind Co Ltd Process for preparing transparent coating compounds
JPS595101A (en) * 1982-06-09 1984-01-12 バイエル・アクチエンゲゼルシヤフト Plant growth regulant
JPS595100A (en) * 1982-06-30 1984-01-11 富田 重助 Apofocus rule and drawing plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008282908A (en) * 2007-05-09 2008-11-20 Toray Ind Inc Biaxially-oriented polyphenylene sulfide film for capacitor, and film capacitor

Also Published As

Publication number Publication date
JPS5662121A (en) 1981-05-27

Similar Documents

Publication Publication Date Title
Cheng et al. Organosoluble, segmented rigid-rod polyimide film. 1. Structure formation
DE2916841C2 (en)
Magill et al. Crystallization and morphology of nylon-6, 6 crystals: 1. Solution crystallization and solution annealing behaviour
CA1251893A (en) Vinylidene fluoride copolymer film
JPH03205432A (en) Polyimide film and its production
JPS6312772B2 (en)
Liu et al. Crystal Structure, Morphology, and Phase Transitions in Aromatic Polyimide Oligomers. 1. Poly (4, 4'-oxydiphenylene pyromellitimide)
Rhee et al. Crystalline structure and morphology of biaxially oriented polyamide‐11 films
Koning et al. Synthesis and properties of α, θ-diaminoalkane based polyimides
JPS595100B2 (en) Biaxially oriented poly-P-phenylene sulfide film
US4731390A (en) Biaxially stretched polyparaphenylene sulfide film
Cheng et al. Crystal structure, crystallization kinetics and morphology of a new polyimide
Sidorovich et al. Peculiarities of supermolecular structure of polyimides and polyester imides
Wang et al. Crystallization, orientation morphology, and mechanical properties of biaxially oriented starch/polyvinyl alcohol films
JPS62257941A (en) Oriented polyphenylene sulfide copolymer film
JPS5831112A (en) Polyphenylene sulfide fiber
JPS63104822A (en) Biaxially oriented polyethylene terephthalate film
JPS595099B2 (en) Method for producing polyP-phenylene sulfide film
Dargent et al. Evolution of hot strain induced crystalline texture of poly (ethylene terephthalate) films
JPH066338B2 (en) Method for manufacturing biaxially stretched film
Kim et al. Crystal structure and mechanical properties of ODPA-DMB polyimide fibers
JPS5944968B2 (en) Method for producing polyP-phenylene sulfide film
JPS60217674A (en) Manufacture of high-molecular piezoelectric body having excellent heat resistance
Mårdalen et al. The nucleation process and the crystalline structure of poly (3-alkylthiophenes) precipitated from marginal solvents
JPS62152828A (en) Preparation of para-phenylene sulfide block copolymer-biaxially drawn film