JPS6312639A - Production of spherical particle from melt - Google Patents

Production of spherical particle from melt

Info

Publication number
JPS6312639A
JPS6312639A JP15619386A JP15619386A JPS6312639A JP S6312639 A JPS6312639 A JP S6312639A JP 15619386 A JP15619386 A JP 15619386A JP 15619386 A JP15619386 A JP 15619386A JP S6312639 A JPS6312639 A JP S6312639A
Authority
JP
Japan
Prior art keywords
melt
volatile liquid
drops
liquid
droplets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15619386A
Other languages
Japanese (ja)
Other versions
JPH0532097B2 (en
Inventor
Keiichi Nakaya
圭一 中矢
Kunio Sato
邦夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP15619386A priority Critical patent/JPS6312639A/en
Publication of JPS6312639A publication Critical patent/JPS6312639A/en
Publication of JPH0532097B2 publication Critical patent/JPH0532097B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Glanulating (AREA)

Abstract

PURPOSE:To obtain particles having roundness approximate by spherule by a simple means, by dripping drops of melt to a specific volatile liquid, gradually cooling and solidifying the drops in the volatile liquid in a state wherein the drops are covered with a vaporized gas of the volatile liquid. CONSTITUTION:In a method wherein drops of melt is dripped in a volatile liquid which is, practically, neither dissolved in nor dissolves the melt mutually and is not reacted with the melt to solidify the drops of the melt, the volatile liquid is heated to a temperature between the boiling point and the temperature 20 deg.C lower than the boiling point, the drops of the melt are dripped in the liquid and the drops of the melt are cooled and solidified in a state wherein the drops of the melt are covered with a gas of the volatile liquid. Caustic soda, caustic potash, calcium chloride, boric acid, urea, sulfur, a metal such as sodium, etc., are used as the melt. Trichloromonofluoromethane, dichloromethane, etc. are used as the volatile liquid.

Description

【発明の詳細な説明】 [産業上の利用分¥f] 本発明は、球状粒子の製造方法、特には苛性ソーダ等の
溶融液から球状粒子を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Use ¥f] The present invention relates to a method for producing spherical particles, and particularly to a method for producing spherical particles from a melt of caustic soda or the like.

[従来の技術] 溶融液を固化せしめて粒子を得る方法は従来各種の方法
が知られている。これらの方法は大別すると、溶融液滴
を空気中に散布し、冷却固化せしめる方法と、溶融液滴
を液中で冷却固化せしめる方法に分けられる。
[Prior Art] Various methods are conventionally known for obtaining particles by solidifying a molten liquid. These methods can be broadly divided into methods in which molten droplets are dispersed in the air and then cooled and solidified, and methods in which molten droplets are cooled and solidified in liquid.

前者の方法に属するものとしては特公昭33−922号
公報に開示される如く、回転円筒から溶融液滴を遠心力
によって空気中に散布する方法や特公昭38−2959
号公報に開示される如く、気流塔中で回転体の遠心力と
重力との総合効果を利用する方法等が挙げられる。
Examples of the former method include a method in which molten droplets are dispersed into the air by centrifugal force from a rotating cylinder, as disclosed in Japanese Patent Publication No. 33-922, and Japanese Patent Publication No. 38-2959.
As disclosed in the above publication, there is a method that utilizes the combined effect of the centrifugal force of a rotating body and gravity in an air flow tower.

しかしながら、一般的に気流中でのこれらの製造法は、
溶融滴下物は着地までにかなりの滞空時間を要し、装置
の大型化につながる。さらに、溶融液滴は飛行中に器壁
に付着、スケール化し、この除去のために面倒な操作を
必要とする。
However, these manufacturing methods in an air stream generally
The molten drippings require a considerable amount of time to hang in the air before landing, leading to an increase in the size of the device. Furthermore, the molten droplets adhere to and scale the vessel wall during flight, requiring troublesome operations for removal.

一方、後者の液中で冷却固化する方法としては、特公昭
45−34384号、特公昭4B−9802号、特公昭
48−2H7号、特開昭48−88474号、特開昭4
9−127898号、特開昭55−20839号等が挙
げられる。これらの各公報には、溶融液滴を相互に不活
性な液体中に滴下して粒状化する手段が開示されている
が、いずれも溶融液滴が該不活性液体との直接接触によ
る冷却手段を開示するものである。
On the other hand, the latter method of cooling and solidifying in a liquid includes Japanese Patent Publication No. 45-34384, Japanese Patent Publication No. 4B-9802, Japanese Patent Publication No. 2H7-1987, Japanese Patent Publication No. 48-88474, Japanese Patent Publication No. 48-88474, Japanese Patent Publication No. 48-88474,
No. 9-127898, JP-A No. 55-20839, and the like. Each of these publications discloses means for granulating molten droplets by mutually dropping them into an inert liquid, but all of them involve cooling means in which the molten droplets come into direct contact with the inert liquid. This is to disclose.

即ち、これらの方法は、溶融液滴は液との直接接触によ
り冷却されるため、予め、液滴を球状にしない限り固化
した粒子を球状のものとすることが困難である。また−
1予め液滴を球状のものとして不活性液体と接触させる
ことも実用上難しく、また、そのようにしても真に球形
度のよい球状粒子を得ることは困難である。
That is, in these methods, since the molten droplets are cooled by direct contact with the liquid, it is difficult to make the solidified particles spherical unless the droplets are made spherical in advance. Also-
1 It is practically difficult to form droplets into spherical particles in advance and bring them into contact with an inert liquid, and even if this is done, it is difficult to obtain spherical particles with truly good sphericity.

[発明の解決しようとする問題点] かくして、本発明は、従来技術では困難な球形度のよい
球状粒子を簡単な手段で提供するものである。
[Problems to be Solved by the Invention] Thus, the present invention provides by simple means spherical particles with good sphericity, which is difficult to achieve using conventional techniques.

[問題点を解決するための手段] かくして、本発明は、溶融液の液滴を、該溶融液と相互
溶解が起らず、かつ反応しない揮発性液体中に存在せし
め固化する方法において、該液滴の周囲に該揮発主液体
の揮発ガスを存在せしめて該液滴を冷却固化せしめるこ
とを特徴とする球状粒子の製造方法を要旨とするもので
ある。
[Means for Solving the Problems] Thus, the present invention provides a method for solidifying droplets of a molten liquid by making them exist in a volatile liquid that does not mutually dissolve or react with the molten liquid. The gist of the present invention is to provide a method for producing spherical particles, characterized in that the droplets are cooled and solidified by allowing a volatile gas of the volatile main liquid to exist around the droplets.

液滴の周囲に揮発性液体の揮発ガスを存在せしめるため
の好ましい具体的手段は、揮発性液体の温度を沸点以下
のなるべく高い温度に保持しておいて液滴と接触させる
ことである0本発明者の検討によれば、揮発性液体の温
度は驚くことに、溶融液滴の温度以下にかかわらず、揮
発性液体の沸点と沸点より20℃低い温度の間の温度で
あれば、液滴の周囲に、揮発ガスの相が形成され維持さ
れる。上記温度範囲はより好ましくは、沸点と沸点より
10℃低い温度の間である。
A preferred specific means for making the volatile gas of the volatile liquid exist around the droplets is to maintain the temperature of the volatile liquid as high as possible below its boiling point and bring it into contact with the droplets. According to the inventor's study, surprisingly, regardless of whether the temperature of the volatile liquid is below the temperature of the molten droplet, if the temperature is between the boiling point of the volatile liquid and a temperature 20°C lower than the boiling point, the droplet will melt. A phase of volatile gas is formed and maintained around the . The temperature range is more preferably between the boiling point and 10° C. below the boiling point.

本発明が適用される溶融液は特に限定されるわけではな
いが、苛性ソーダ、苛性カリあるいは塩化カルシウム、
ほう酸、尿素、硫黄、ナトリウム等の金属の溶融液に好
ましく適用される。
The melt to which the present invention is applied is not particularly limited, but includes caustic soda, caustic potash, calcium chloride,
It is preferably applied to melts of metals such as boric acid, urea, sulfur, and sodium.

本発明を実施する装置はどのような型式のものでもよい
が、−例をあげれば、トレイ型の槽の一端から揮発性液
体を適当な流速で他端に向って流し、その流入端付近で
溶融液を液柱としであるいは液滴としてその液流に投入
する。
Apparatus for carrying out the invention may be of any type; for example, a tray-shaped vessel may be configured to flow a volatile liquid from one end of the vessel at a suitable flow rate toward the other end, and to The molten liquid is introduced into the liquid stream as a liquid column or as droplets.

その際、揮発性液体は予め、沸点近くまで加温しておく
ことが好ましい。
At that time, it is preferable to heat the volatile liquid in advance to near its boiling point.

かくして揮発性液体に投入された溶融液は液滴となり、
他端に向って液流で運ばれる。ここで、溶融液滴のもつ
潜熱及び/又は顕熱で、液滴周囲の揮発性液体は気化し
、液滴は気化したガスで包まれた状態となり、液滴の急
冷が防がれる。かくすることにより、液滴は徐冷されな
がら、その表面張力でほぼ真珠に近い球形度をもつ粒子
となる。そして、完全に冷却し固化された状態では、も
はや、周囲にはガス相は存在しなくなり、球状粒子が、
揮発性液体中を沈降し、槽底から取り出される。
Thus, the molten liquid poured into the volatile liquid becomes droplets,
It is carried by a liquid stream towards the other end. Here, the volatile liquid surrounding the droplet is vaporized by the latent heat and/or sensible heat of the molten droplet, and the droplet is surrounded by vaporized gas, thereby preventing the droplet from cooling rapidly. As a result, while the droplets are slowly cooled, their surface tension makes them particles with a sphericity almost like that of a pearl. In the completely cooled and solidified state, there is no longer a gas phase around the spherical particles.
It settles in a volatile liquid and is removed from the bottom of the tank.

本発明方法によって得られる球状粒子は、真に球形度の
よいもので、はとんど大部分の粒子はその最大直径と最
小直径の比が1.5以下、更には 1.3以下に入るも
のである。
The spherical particles obtained by the method of the present invention have truly good sphericity, and most of the particles have a ratio of maximum diameter to minimum diameter of 1.5 or less, and even 1.3 or less. It is something.

本発明における揮発性液体は溶融液と相互溶解を起さな
いこと及び反応しないことが必要であるが、他には何ら
制約条件をもたない、溶融液の種類によって適宜選定さ
れうるが、溶融液が苛性ソーダ、苛性カリあるいは塩化
カルシウム水和物である場合にはハロゲン化炭化水素が
好適に使用されうる。
The volatile liquid in the present invention must not cause mutual dissolution or reaction with the molten liquid, but there are no other restrictions. When the liquid is caustic soda, caustic potash or calcium chloride hydrate, halogenated hydrocarbons can be preferably used.

これらの具体例としては、トリクロロモノフルオロメタ
ン、ジクロロメタン、1,1.1−トリクロロモノフル
オロメタン、 1,1.2−)リクロロトリフルオロエ
タン、1,2−ジブロモテトラフルオロエタン、n−パ
ーフルオロオクタン等が挙げられる。
Specific examples of these include trichloromonofluoromethane, dichloromethane, 1,1.1-trichloromonofluoromethane, 1,1.2-)lichlorotrifluoroethane, 1,2-dibromotetrafluoroethane, n-per Examples include fluorooctane.

実施例1 樋型の横長槽の一端の上部には溶融液を流下させる細い
パイプが設けられ、その端部から、水平方向に約42℃
の1.1.2−トリクロロトリフルオロエタン(R−i
13 、沸点47.6℃)を流し。
Example 1 A thin pipe was provided at the top of one end of the gutter-shaped horizontal tank to allow the melt to flow down, and from the end, the temperature was approximately 42°C in the horizontal direction.
1.1.2-Trichlorotrifluoroethane (R-i
13, boiling point 47.6°C).

細いパイプから約150℃の80wt%の苛性ソーダ溶
融液を液柱状に投入した。溶融液は、 R−113の液
流中で小滴になり他端に向って運ばれた。
An 80 wt % caustic soda melt at about 150° C. was poured into a liquid column from a thin pipe. The melt formed droplets in the R-113 stream and was carried toward the other end.

そして、その小滴の周囲は気化したR−113のガスに
包囲され、R−113の液面に浮上しながら徐冷され固
化粒子となり槽の他端で槽底に沈降した。
Then, the droplets were surrounded by the vaporized R-113 gas, and were gradually cooled while floating on the R-113 liquid surface, becoming solidified particles and settling to the bottom of the tank at the other end of the tank.

得られた粒子は平均粒径800μで1粒子の90%以上
が最大直径と最小直径の比が1.2以下の球形度を持つ
ものであった。
The obtained particles had an average particle diameter of 800 μm, and 90% or more of each particle had a sphericity with a ratio of maximum diameter to minimum diameter of 1.2 or less.

比較例 実施例1において、槽に投入するR−113の温度を2
0℃にする以外は全て、実施例1と同様に行った。
Comparative Example In Example 1, the temperature of R-113 put into the tank was changed to 2.
Everything was carried out in the same manner as in Example 1 except that the temperature was 0°C.

槽に投入された苛性ソーダ溶融液は瞬時にその液滴表面
が固化し、周囲にガス相を生じないまま槽底に沈降した
The surface of the droplets of the molten caustic soda poured into the tank instantly solidified, and they settled to the bottom of the tank without forming a gas phase around them.

得られた粒子は貝殻状や半球状あるいは涙滴状であり1
粒径も平均値1500μをはさんで3000〜300μ
と広い範囲に分布するものであった。
The particles obtained are shell-shaped, hemispherical, or teardrop-shaped.
The particle size is also 3000-300μ with an average value of 1500μ.
It was distributed over a wide range.

手続補正書(方式) %式%( 1、事件の表示 昭和61年特許願第156193号 2、発明の名称 溶融液から球状粒子を製造する方法 3、補正をする者 $件との関係  特許出願人 住 所  東京都千代田区丸の内二丁目1番2号(00
4)旭硝子株式会社 昭和61年9月30日(発送日)付手続補正指令書に基
づく自発補正 6、補正により増加する発明の数   なし7、補正の
対象 明細書全文
Procedural amendment (method) % formula % ( 1. Indication of the case Patent Application No. 156193 of 1985 2. Name of the invention Method for producing spherical particles from a melt 3. Person making the amendment $ Relationship with the matter Patent application Address 2-1-2 Marunouchi, Chiyoda-ku, Tokyo (00
4) Asahi Glass Co., Ltd. Voluntary amendment based on the procedural amendment order dated September 30, 1986 (shipment date) 6. Number of inventions increased by the amendment None 7. Full text of the specification subject to the amendment

Claims (3)

【特許請求の範囲】[Claims] (1)溶融液の液滴を、該溶融液と実質上、相互溶解が
起らず、かつ反応しない揮発性液体中に存在せしめ固化
する方法において、該液滴の周囲に該揮発性液体の揮発
ガスを存在せしめて該液滴を冷却固化せしめることを特
徴とする球状粒子の製造方法。
(1) A method in which droplets of a molten liquid are solidified by being present in a volatile liquid that does not substantially mutually dissolve or react with the molten liquid, in which the droplets are surrounded by the volatile liquid. A method for producing spherical particles, which comprises cooling and solidifying the droplets in the presence of a volatile gas.
(2)揮発性液体の温度が沸点と沸点より20℃低い温
度の間で液滴を固化せしめる特許請求の範囲第(1)項
の球状粒子の製造方法。
(2) The method for producing spherical particles according to claim (1), wherein the droplets are solidified between the boiling point and a temperature 20° C. lower than the boiling point of the volatile liquid.
(3)溶融液が苛性ソーダ、苛性カリ及び塩化カルシウ
ム、ほう酸、尿素、硫黄、ナトリ ウム等の金属から選ばれたものである特許 請求の範囲第(1)項の球状粒子の製造方 法。
(3) The method for producing spherical particles according to claim (1), wherein the melt is selected from metals such as caustic soda, caustic potash, calcium chloride, boric acid, urea, sulfur, and sodium.
JP15619386A 1986-07-04 1986-07-04 Production of spherical particle from melt Granted JPS6312639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15619386A JPS6312639A (en) 1986-07-04 1986-07-04 Production of spherical particle from melt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15619386A JPS6312639A (en) 1986-07-04 1986-07-04 Production of spherical particle from melt

Publications (2)

Publication Number Publication Date
JPS6312639A true JPS6312639A (en) 1988-01-20
JPH0532097B2 JPH0532097B2 (en) 1993-05-14

Family

ID=15622404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15619386A Granted JPS6312639A (en) 1986-07-04 1986-07-04 Production of spherical particle from melt

Country Status (1)

Country Link
JP (1) JPS6312639A (en)

Also Published As

Publication number Publication date
JPH0532097B2 (en) 1993-05-14

Similar Documents

Publication Publication Date Title
JPH04227043A (en) Method and device for producing spherical particle from liquid phase
JP4093184B2 (en) Glass ball manufacturing method and manufacturing apparatus
FR2732621A1 (en) PEARLS OF A PRODUCT HAVING THE SURFUSION PHENOMENON AND PROCESS FOR OBTAINING THE SAME
JP3921262B2 (en) Silicone resin hollow body and method for producing the same
JPH01284496A (en) Flux for brazing of aluminum material having excellent suspension stability and its production
US2798831A (en) Coating protected alkali metal product and process
US8557380B2 (en) Form of hydroquinone and production thereof
JPS6312639A (en) Production of spherical particle from melt
CN111422874B (en) Method for producing spherical titanium carbide powder by one-step method
US1671866A (en) Globular sodium bisulphate and method of making the same
JPS58124528A (en) Spherical product of sublimable substance, method and apparatus for preparing same
JPS5871306A (en) Production of powder
US4356141A (en) Method of casting silicon into thin sheets
US4321086A (en) Preparation of micron sized metal droplets
JP5305495B1 (en) Method for producing antimony trisulfide
JPH10500899A (en) Preparation method of pearl containing active ingredient having unclear melting point and obtained pearl
JP3394550B2 (en) Method for producing bisphenol A prill
JPS61279603A (en) Production of low melting point alloy grain
JPS6025532A (en) Preparation of high quality aqueous solution
JPH09503481A (en) Resurge (PbO) manufacturing process and equipment
US6156092A (en) Method for producing high purity aluminum
JPS637308Y2 (en)
US4076776A (en) Calcium chloride prilling
JP3013923B2 (en) Method for producing fluoride glass microspheres
JP3721793B2 (en) Aluminum purification method and use thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees