JPS63125897A - Hydrogen transport method using hydrogen absorbing alloy - Google Patents

Hydrogen transport method using hydrogen absorbing alloy

Info

Publication number
JPS63125897A
JPS63125897A JP61269748A JP26974886A JPS63125897A JP S63125897 A JPS63125897 A JP S63125897A JP 61269748 A JP61269748 A JP 61269748A JP 26974886 A JP26974886 A JP 26974886A JP S63125897 A JPS63125897 A JP S63125897A
Authority
JP
Japan
Prior art keywords
hydrogen
container
alloy
storage alloy
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61269748A
Other languages
Japanese (ja)
Inventor
Yasuo Odai
尾台 保生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Filter Manufacturing Co Ltd
Original Assignee
Fuji Filter Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Filter Manufacturing Co Ltd filed Critical Fuji Filter Manufacturing Co Ltd
Priority to JP61269748A priority Critical patent/JPS63125897A/en
Publication of JPS63125897A publication Critical patent/JPS63125897A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/005Use of gas-solvents or gas-sorbents in vessels for hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/45Hydrogen technologies in production processes

Abstract

PURPOSE:To safely transport hydrogen by repeating a cycle of occluding hydrogen in a hydrogen absorbing alloy in a receptacle for storing a cooled hydrogen absorbing alloy, carrying the receptacle and discharging hydrogen at a hydrogen receiving station and returning the receptacle. CONSTITUTION:At a hydrogen feed-out station, a hydrogen gas is once stored in a storing tank 3, and a hydrogen absorbing alloy storing receptacle 12 is fed into a reaction acceleration tank 6. After that a valve 5 is opened to supply the hydrogen gas in the storing tank 3 to the alloy storing receptacle 12. At this time, a heat medium liquid for cooling is delivered to the reaction acceleration tank 6 by a pump 13. When the hydrogen absorbing reaches saturated state, the alloy storing receptacle 12 is taken out from the tank 6 and sent to a hydrogen receiving station by carrying means. At the hydrogen receiving station, the alloy storing receptacle 12 is heated to discharge hydrogen from the hydrogen absorbing alloy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、水素輸送方法に関し、詳しくは水素吸蔵合金
を用いる水素輸送方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a hydrogen transport method, and more particularly to a hydrogen transport method using a hydrogen storage alloy.

〔発明の背景〕[Background of the invention]

従来、行われている経済的な水素輸送方法は、高圧ガス
ボンベに詰めて輸送する方法とパイプラインによる方法
である。パイプラインによる方法は、パイプラインの設
置コストの点で極めて限定された範囲の輸送にしか用い
られないと言う問題がある。また、高圧ガスボンベを用
いる方法は、運搬車が衝突してボンベに衝撃が加わった
りすると、ボンベが爆発して大きな災害を引き起こす慣
れがあると言う問題がある。
Conventionally used economic methods for transporting hydrogen include transporting it in high-pressure gas cylinders and using pipelines. The problem with the pipeline method is that it can only be used for transportation within a very limited range due to the cost of installing the pipeline. Another problem with the method of using high-pressure gas cylinders is that if a transport vehicle collides and the cylinder receives an impact, the cylinder tends to explode, causing a major disaster.

一方、近年、水素吸蔵合金並びにその反応装置の開発が
進んで、水素吸蔵合金に高い比率で水素を吸蔵させ効率
よく放出させることが迅速に行われるようになって来て
いる。
On the other hand, in recent years, the development of hydrogen storage alloys and their reaction devices has progressed, and it has become possible to quickly store and efficiently release hydrogen at a high rate in hydrogen storage alloys.

本発明者は、水素吸蔵合金を水素輸送に用いることによ
って前述の従来の水素輸送方法における問題を解消し得
ることに着目し、本発明を完成した。
The present inventors have completed the present invention by paying attention to the fact that the above-described problems in the conventional hydrogen transport method can be solved by using a hydrogen storage alloy for hydrogen transport.

〔発明の目的〕[Purpose of the invention]

本発明は、輸送の範囲が限定されず、爆発災害発生の惧
れもない、経済的な水素輸送方法の提供を目的とする。
An object of the present invention is to provide an economical hydrogen transportation method that does not limit the range of transportation and is free from the risk of explosion disasters.

〔発明の構成〕[Structure of the invention]

本発明は、水素送出ステーションにおいて熱媒流体で水
素吸蔵合金収納容器を冷却すると共に該容器に水素ガス
を送る水素吸蔵装置により該容器中の水素吸蔵合金に水
素を吸蔵させ、次に該容器を運搬手段により水素受取り
ステーションに運び、水素受取りステーションにおいて
熱媒流体で該容器を加熱すると共に該容器から水素ガス
を受取る水素放出装置により該容器中の水素吸蔵合金か
ら水素を放出させ、次に該容器を再び運搬手段により水
素送出ステーションに戻すサイクルを繰返すことを特徴
とする水素輸送方法にある。
The present invention cools a hydrogen storage alloy storage container with a heat medium fluid at a hydrogen delivery station, causes the hydrogen storage alloy in the container to store hydrogen using a hydrogen storage device that sends hydrogen gas to the container, and then stores hydrogen in the hydrogen storage alloy storage container in the container. conveyed by a conveying means to a hydrogen receiving station, at the hydrogen receiving station heating the container with a heat transfer fluid and releasing hydrogen from a hydrogen storage alloy in the container by a hydrogen release device receiving hydrogen gas from the container; The hydrogen transport method is characterized by repeating a cycle in which the container is returned to the hydrogen delivery station again using a transport means.

すなわち、本発明の水素輸送方法は、水素を水素吸蔵合
金収納容器(以下、合金収納容器と言う)中の水素吸蔵
合金に吸蔵させてトラック等の運搬手段により輸送する
ものであるから、輸送の範囲が制限されず、また、合金
収納容器に掛かる圧力はは\゛水素吸蔵合金の平衡水素
圧であるから、高圧ガスボンベにおけるような爆発災害
発生の惧れも少ない。そして、水素送出ステーション側
の水素吸蔵装置および水素受取りステーション側の水素
放出装置の数を増やして合金収納容器の輸送サイクルを
増やすようにすればそれに応じて水素輸送量を増やすこ
とができ、また、水素吸蔵装置で用いる熱媒流体を熱媒
液として熱媒液が合金収納容器から取り去る熱を利用し
たり、水素放出装置で合金収納容器を加熱する熱媒流体
に他の冷却排水等を用いたりすることで総合的に輸送の
経済性を高めることもできる。
That is, in the hydrogen transport method of the present invention, hydrogen is stored in a hydrogen storage alloy in a hydrogen storage alloy storage container (hereinafter referred to as alloy storage container) and transported by means of transportation such as a truck. The range is not limited, and the pressure applied to the alloy storage container is the equilibrium hydrogen pressure of the hydrogen storage alloy, so there is less risk of an explosion like in a high-pressure gas cylinder. Then, by increasing the number of hydrogen storage devices on the hydrogen delivery station side and hydrogen release devices on the hydrogen receiving station side to increase the transportation cycle of the alloy storage container, the amount of hydrogen transported can be increased accordingly. The heat transfer fluid used in the hydrogen storage device can be used as a heat transfer fluid to utilize the heat removed from the alloy storage container, or the hydrogen release device can use other cooling waste water as the heat transfer fluid to heat the alloy storage container. By doing so, it is possible to improve the overall economic efficiency of transportation.

〔実施例〕〔Example〕

以下、本発明を図面を参照して説明する。 Hereinafter, the present invention will be explained with reference to the drawings.

第1図は水素送出ステーションの設備の一例を示す概要
構成図、第2図及び第3図は合金収納容器の一例を示す
側面図及びX−X矢視断面図、第4図は水素受取りステ
ーションの設備の一例を示す概要構成図、第5図は水素
送出ステーションまたは水素受取りステーションの設備
の他の例を示す概要構成図である。
Figure 1 is a schematic configuration diagram showing an example of hydrogen delivery station equipment, Figures 2 and 3 are a side view and sectional view taken along the line X-X, and Figure 4 is a hydrogen receiving station. FIG. 5 is a schematic diagram showing an example of the equipment for a hydrogen delivery station or a hydrogen receiving station.

第1図の水素送出ステーションでは、水素ガス生産工場
1で生産した水素ガスをコンプレッサ2で貯留タンク3
に送って一旦貯留し、反応促進タンク6の開閉扉61を
開いて連結継手7やバルブ8.9および逆止弁10,1
1が取付けられている合金収納容器12を反応促進タン
ク6内に送り込み、連結継手7を反応促進タンク6内の
連結継手7に連結すると共にバルブ8を開いて開閉扉6
1を閉じ、そこでバルブ5を開いてコンプレッサ4によ
り貯留タンク3の水素ガスをバルブ5.連結継手7.バ
ルブ8及び逆止弁10を通して合金収納容器12内に供
給する。その際ポンプ13によって冷却用の熱媒液を流
入口62から反応促進タンク6内に送り込んで流出口6
3から排出させることにより合金収納容器12から反応
熱を奪って水素吸蔵合金の水素吸蔵を促進させる。そし
て、水素吸蔵合金の水素吸蔵が飽和に達しコンプレッサ
4が殆ど働かないようになったらバルブ5を閉じてポン
プ13を停止し、次に空気用のバルブ14を開いてコン
プレフサ15により空気を送気口64から反応促進タン
ク6内に送り込んで熱媒液を流出口63から押し出し、
反応促進タンク6内の熱媒液が無くなった段階でコンプ
レッサ15を止め、反応促進タンク6の開閉扉61を開
き、バルブ8を閉じて、連結継手7の連結を外し、合金
収納容器12を反応促進タンク6から取り出してトラッ
ク等の運搬手段に乗せ送り出しを行う。この例では、合
金収納容器12に設けられたバルブ9は閉じられた侭で
ある。また、バルブ8は、逆止弁10に対する安全のた
めに設けられたものであり、通常の条件では合金収納容
器12内が負圧になることはないから、省略も可能であ
る。さらに、バルブ8.9や逆止弁10,11の代わり
に、1個のバルブを用いてもよい。反応促進タンク6に
は、合金収納容器12の送り込みや取り出しが容易にで
き、また連結継手7の位置合わせが自然に行われるよう
にζ底部にレール65が設けられている。
At the hydrogen delivery station shown in Figure 1, hydrogen gas produced at a hydrogen gas production factory 1 is transferred to a storage tank 3 by a compressor 2.
The opening/closing door 61 of the reaction accelerating tank 6 is opened to connect the connecting joint 7, valves 8.9 and check valves 10, 1.
1 is attached to the reaction accelerating tank 6, and the connecting joint 7 is connected to the connecting joint 7 in the reaction accelerating tank 6, and the valve 8 is opened to close the opening/closing door 6.
1 is closed, then valve 5 is opened, and hydrogen gas from storage tank 3 is transferred by compressor 4 to valve 5. Connection joint 7. It is supplied into the alloy storage container 12 through the valve 8 and the check valve 10. At that time, the pump 13 sends a cooling heat medium liquid into the reaction accelerating tank 6 from the inlet 62 and
3, the reaction heat is removed from the alloy storage container 12 and the hydrogen storage of the hydrogen storage alloy is promoted. When the hydrogen storage of the hydrogen storage alloy reaches saturation and the compressor 4 hardly works, the valve 5 is closed to stop the pump 13, and then the air valve 14 is opened to supply air with the compressor 15. The heat transfer liquid is fed into the reaction accelerating tank 6 through the port 64 and pushed out from the outlet 63.
When the heat medium liquid in the reaction accelerating tank 6 is exhausted, the compressor 15 is stopped, the opening/closing door 61 of the reaction accelerating tank 6 is opened, the valve 8 is closed, the connecting joint 7 is disconnected, and the alloy storage container 12 is removed from the reactor. It is taken out from the accelerator tank 6 and placed on a transport means such as a truck and sent out. In this example, the valve 9 provided in the alloy storage container 12 is closed. Further, the valve 8 is provided for the safety of the check valve 10, and can be omitted since the inside of the alloy storage container 12 will not become negative pressure under normal conditions. Furthermore, instead of the valve 8.9 or the check valves 10, 11, a single valve may be used. The reaction accelerator tank 6 is provided with a rail 65 at the bottom so that the alloy storage container 12 can be easily fed in and taken out, and the connecting joint 7 can be aligned naturally.

第1図の水素送出ステーションは、エネルギー節約のた
めに、反応促進タンク6で反応熱を奪って流出口63か
ら流出する熱媒液をフラッシュ蒸発器16に導いて一部
を蒸発させ、その蒸気の熱を放熱器17で他に利用する
ようにしている。この場合、熱媒液はフラッシュ蒸発器
16で一部が蒸発することにより冷やされて下に溜まり
、溜まった熱媒液が先に述べたようにポンプ13で送ら
られる。そして、フラッシュ蒸発器16には熱媒液補給
タンク18からバルブ19を介し熱媒液が補給される。
In order to save energy, the hydrogen delivery station shown in FIG. The heat is used for other purposes by the radiator 17. In this case, the heat medium liquid is partially evaporated in the flash evaporator 16 and cooled, and accumulates at the bottom, and the accumulated heat medium liquid is sent by the pump 13 as described above. The flash evaporator 16 is supplied with heat medium liquid from a heat medium liquid supply tank 18 via a valve 19 .

なお、反応促進タンク6とフラッシュ蒸発器16の間及
びフラッシュ蒸発器16と放熱器17の間のバルブ20
.21は必要に応じて設けられるものであり、また放熱
器17で凝縮した熱媒液をフラッシュ蒸発器16に戻す
ようにした場合は熱媒液の消耗が殆どなくなるから、補
給タンク18等の補給設備を省略することもできる。
In addition, the valve 20 between the reaction accelerating tank 6 and the flash evaporator 16 and between the flash evaporator 16 and the radiator 17
.. 21 is provided as necessary, and if the heat medium liquid condensed in the radiator 17 is returned to the flash evaporator 16, the heat medium liquid will hardly be consumed, so it is necessary to replenish the replenishment tank 18 etc. Equipment can also be omitted.

さらに、フラッシュ蒸発器16からの蒸気をそのま\又
は他の方法で作られた蒸気と混合して利用するようにし
てもよいし、熱媒液の排熱を利用する設備が反応促進タ
ンク6の近くに設けられている場合などではその設備に
熱媒液を直接導くようにしてもよい。
Furthermore, the steam from the flash evaporator 16 may be used as it is or mixed with steam produced by other methods, and equipment that utilizes the exhaust heat of the heat transfer liquid may be used in the reaction accelerator tank 6. If the equipment is installed near the equipment, the heat transfer liquid may be directly introduced to the equipment.

合金収納容器12の冷却には上述のように水等の液体を
用いることが好ましい。そして、゛冷却用熱媒液に常温
の水を用いた場合は、流出口63から排出される熱媒液
をそのま\捨ててもよい。その場合、コンプレフサ15
を用いずに、流出口63からの自然流出によって反応促
進タンク6中の熱媒液を抜くようにしてもよい。
As mentioned above, it is preferable to use a liquid such as water to cool the alloy storage container 12. If room temperature water is used as the cooling heat medium liquid, the heat medium liquid discharged from the outlet 63 may be discarded as is. In that case, compressor 15
Alternatively, the heat transfer liquid in the reaction accelerating tank 6 may be drained by natural outflow from the outlet 63.

合金収納容器12は、第1図に示したような一本もので
もよいが、それでは水素吸蔵合金を多く収納するために
太くすると中に伝熱率を上げるための水素の流通を妨げ
ない伝熱仕切りを設けたとしても、反応速度が遅くなる
から、第2図及び第3図に示したような構成のものが好
ましい。
The alloy storage container 12 may be a single piece as shown in FIG. 1, but if it is made thicker in order to store a large amount of hydrogen storage alloy, it will be necessary to increase the heat transfer rate without interfering with the flow of hydrogen. Even if a partition is provided, the reaction rate will be slow, so the configurations shown in FIGS. 2 and 3 are preferable.

第2図及び第3図に示した合金収納容器12は、それぞ
れ水素吸蔵合金を収納した複数本の部分容器121を水
素吸蔵装置及び水素放出装置において熱媒流体の流路を
形成する邪魔板122によって平行に支持結合し、各部
分容器121の水素出入口を一つの水素出入パイプ12
3に結んで、そのパイプ123の先にバルブ22と水素
吸蔵装置及び水素放出装置に連結するための連結継手7
を設けた構成からなる。このような合金収納容器12を
用いることによって、全体としての水素吸蔵合金の収納
量を多くしても各部分容器121の太さが細くなり、中
の水素吸蔵合金の冷却、加熱が迅速に行われるようにな
るから、水素吸蔵装置及び水素放出装置における水素吸
蔵及び放出の反応速度が早くなる。
The alloy storage container 12 shown in FIGS. 2 and 3 includes a plurality of partial containers 121 each containing a hydrogen storage alloy, and a baffle plate 122 that forms a flow path for a heat medium fluid in a hydrogen storage device and a hydrogen release device. The hydrogen inlet/outlet of each partial container 121 is connected to one hydrogen inlet/outlet pipe 12.
3, and at the end of the pipe 123 there is a connecting joint 7 for connecting the valve 22 to the hydrogen storage device and the hydrogen release device.
It consists of a configuration with By using such an alloy storage container 12, even if the overall amount of hydrogen storage alloy stored is increased, the thickness of each partial container 121 becomes thinner, and the hydrogen storage alloy inside can be quickly cooled and heated. Therefore, the reaction rate of hydrogen storage and release in the hydrogen storage device and the hydrogen desorption device becomes faster.

なお、第3図に示した邪魔板122に設けられた孔12
2aは、合金収納容器12の全体を吊って上げ下ろしす
るだめの吊り下げ用係合孔であり、周方向3箇所に設け
られているのは吊り下げの位置を変えることによって各
部分容器121の直径が太い場合に生じ易い水素吸蔵合
金の容器底部への偏在を是正するためである。また、邪
魔板122周縁部の切欠き122bは、反応促進タンク
6から熱媒液を抜くときに邪It仮122によって熱媒
液が溜められることを防止するための液抜きである。各
部分容器121を直接水素出入パイプ123に結ぶ代わ
りに、一つの部分容器121のみを水素出入パイプ12
3に結び、その部分容器121と他の部分容器121と
の間に水素の流通管路を設けるようにしてもよい。
Note that the hole 12 provided in the baffle plate 122 shown in FIG.
Reference numeral 2a denotes hanging engagement holes for lifting and lowering the entire alloy storage container 12.Three holes are provided in the circumferential direction to adjust the diameter of each partial container 121 by changing the hanging position. This is to correct the uneven distribution of the hydrogen storage alloy at the bottom of the container, which tends to occur when the hydrogen storage alloy is thick. Further, the notch 122b on the peripheral edge of the baffle plate 122 is a drain for preventing the heat medium liquid from being accumulated by the heat transfer tank 122 when the heat medium liquid is removed from the reaction accelerating tank 6. Instead of connecting each partial container 121 directly to the hydrogen inlet/output pipe 123, only one partial container 121 is connected to the hydrogen inlet/outlet pipe 123.
3, and a hydrogen flow pipe may be provided between that partial container 121 and other partial containers 121.

水素送出ステーションから送り出された合金収納容器1
2は第4図に示したような設備を有する水素受取りステ
ーションに運ばれる。第4図の水素受取りステーション
は、第2図、第3図に示した合金収納容器12に適した
水素放出装置を備えている。すなわち、この水素受取り
ステーションにおける反応促進タンク6は、上半分の開
閉可能上部61′が開放されて、運搬手段から吊り上げ
られた第2図、第3図に示した合金収納容器12がバル
ブ22及び連結継手7を外に出して反応促進タンク6内
に下ろされ、その際、連結継手7を水素受取り側の連結
継手7と連結し、そして開閉可能上部61′を閉じるこ
とによって合金収納容器12の収容が行われるものであ
る。本発明はこ。
Alloy storage container 1 sent out from hydrogen delivery station
2 is transported to a hydrogen receiving station having equipment as shown in FIG. The hydrogen receiving station of FIG. 4 is equipped with a hydrogen release device suitable for the alloy storage vessel 12 shown in FIGS. 2 and 3. That is, the reaction accelerating tank 6 at this hydrogen receiving station has its upper half openable and closable upper part 61' opened, and the alloy storage container 12 shown in FIGS. The connecting joint 7 is taken out and lowered into the reaction accelerating tank 6, and at that time, the alloy storage container 12 is opened by connecting the connecting joint 7 with the connecting joint 7 on the hydrogen receiving side and closing the openable upper part 61'. Containment will take place. This invention is here.

れに限らず、水素受取りステーションの反応促進タンク
6が第1図に示したような構造のものであってもよい。
However, the structure of the reaction accelerating tank 6 of the hydrogen receiving station is not limited to that shown in FIG.

水素受取りステーションでは、反応促進タンク6に合金
収納容器12を上述のように収容したら、バルブ22と
バルブ5を開き、ポンプ13によって熱媒液タンク23
の加熱用熱媒液を流入口62から反応促進タンクε内に
送り込むことにより合金収納容器12を加熱して水素吸
蔵合金に水素を放出させるようにすると共に、コンプレ
ッサ4に上って水素吸蔵合金が放出した水素を貯留タン
ク3に一旦貯えるようにする。こ\で、加熱用熱媒液に
は温度の高くなった冷却排水が経済性の点から好ましく
用いられ、ポンプ13は水素吸蔵合金に水素を放出させ
る間熱媒液を送り込み、合金収納容器12を加熱して温
度が低下した熱媒液は順次流出口63から排出される。
At the hydrogen receiving station, after the alloy storage container 12 is accommodated in the reaction accelerating tank 6 as described above, the valve 22 and the valve 5 are opened, and the heat transfer liquid tank 23 is opened by the pump 13.
The heating medium liquid is fed into the reaction accelerating tank ε from the inlet 62 to heat the alloy storage container 12 and release hydrogen from the hydrogen storage alloy, and also flows up to the compressor 4 to release hydrogen from the hydrogen storage alloy. The hydrogen released by the tank is temporarily stored in a storage tank 3. Here, high-temperature cooling wastewater is preferably used as the heating heat medium liquid from the economic point of view, and the pump 13 feeds the heat medium liquid while releasing hydrogen from the hydrogen storage alloy, and the alloy storage container 12 The heat medium liquid whose temperature has been lowered by heating is sequentially discharged from the outlet 63.

なお、熱媒液の代わりに燃焼排ガス等を用いてもよい。Note that combustion exhaust gas or the like may be used instead of the heat transfer liquid.

やがて水素吸蔵合金が水素を放出し了えて、それにより
コンプレッサ4の吸気側圧力が所定圧力以下になった段
階でバルブ5とバルブ22を閉じ、コンプレフサ4とポ
ンプ13を停止して、バルブ14を開き、コンプレフサ
15によって空気を送気口64から反応促進タンク6内
に送り込んで熱媒液を流出口63から排出し、熱媒液が
抜けたらコンプレフサ15を止めてバルブ14を閉じ、
連結継手7を外して反応促進タンク6の開閉可能上部6
1′を開放し、合金収納容器12を吊り上げて運搬手段
に載せ、水素送出ステーションに送り出す。この場合も
、反応促進タンク6から熱媒液を抜くのをコンプレフサ
15を用いずに自然流出によってもよい。
Eventually, when the hydrogen storage alloy finishes releasing hydrogen and the pressure on the intake side of the compressor 4 falls below a predetermined pressure, the valve 5 and the valve 22 are closed, the compressor 4 and the pump 13 are stopped, and the valve 14 is closed. When the compressor 15 is opened, air is sent into the reaction accelerating tank 6 from the air supply port 64 by the compressor 15, and the heat transfer liquid is discharged from the outlet 63. When the heat transfer liquid is discharged, the compressor 15 is stopped and the valve 14 is closed.
The upper part 6 of the reaction accelerating tank 6 can be opened and closed by removing the connecting joint 7.
1' is opened, the alloy storage container 12 is lifted up, placed on a transport means, and sent to a hydrogen delivery station. In this case as well, the heat transfer liquid may be removed from the reaction accelerating tank 6 by natural flow without using the compressor 15.

貯留タンク3に貯えられた水素は、コンプレッサ2によ
って水素消費工場24に送られて使用される。
The hydrogen stored in the storage tank 3 is sent to the hydrogen consumption factory 24 by the compressor 2 for use.

第1図の水素送出ステーション及び第2図の水素受取り
ステーションは、それぞれ反応促進タンク6を1基しか
備えていないから、水素ガス生産工場1及び水素消費工
場24を連続運転するために、貯留タンク3とそれに伴
ってコンプレ・7す4を必要とする。この点、第5図に
示したように、それぞれに対してのバルブ5及び連結継
手7を備えた反応促進タンク6を並列に少なくとも2基
設けるようにすると、そのうちの1基の反応促進タンク
6で合金収納容器12に水素の吸蔵または放出を行って
いる間に、他の反応促進タンク6で次の合金収納容器1
2に水素の吸蔵または放出を行わせる準備ができるから
、連続して水素の送り出しまたは受は取りを行うことが
でき、したがって、貯留タンク3及びそれに伴うコンプ
レッサ4を省略しても水素ガス生産工場1または水素消
費工場24を連続運転することが可能となる。なお、第
5図においても、第1図乃至第4図と同一符号は同一機
能部材を示している。そして、第5図は第1図と同様の
合金収納容器12を用いる例を示しているが、反応促進
タンク6が第4図と同様のものであってもよい。
Since the hydrogen sending station shown in FIG. 1 and the hydrogen receiving station shown in FIG. 3 and, along with it, a comple 7 and 4 are required. In this regard, as shown in FIG. 5, if at least two reaction accelerating tanks 6 each having a valve 5 and a connecting joint 7 are provided in parallel, one of the reaction accelerating tanks 6 While hydrogen is being stored or released into the alloy storage container 12 in the next alloy storage container 1 in the other reaction accelerating tank 6.
2 can be prepared to store or release hydrogen, so it is possible to continuously send out or receive hydrogen. Therefore, even if the storage tank 3 and associated compressor 4 are omitted, the hydrogen gas production plant can still be used. 1 or the hydrogen consuming factory 24 can be operated continuously. Note that in FIG. 5 as well, the same reference numerals as in FIGS. 1 to 4 indicate the same functional members. Although FIG. 5 shows an example in which the same alloy storage container 12 as in FIG. 1 is used, the reaction accelerator tank 6 may be the same as in FIG. 4.

〔発明の効果〕〔Effect of the invention〕

本発明の水素輸送方法によれば、輸送の範囲が限定され
ず、爆発災害発生の惧もなく、しかも経済的に水素を輸
送することができる。また、合金収納容器のみを運搬手
段で運搬するようにしているので、積み荷の重量に占め
る水素吸蔵合金の割合が増し、水素の輸送効率が高いと
言う効果もある。
According to the hydrogen transport method of the present invention, the range of transport is not limited, there is no fear of explosion disasters, and hydrogen can be transported economically. Furthermore, since only the alloy storage container is transported by the transport means, the proportion of the hydrogen storage alloy in the weight of the cargo increases, which has the effect of increasing hydrogen transport efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は水素送出ステーションの設備の一例を示す概要
構成図、第2図及び第3図は合金収納容器の一例を示す
側面図及びX−X矢視断面図、第4図は水素受取りステ
ーションの設備の一例を示す概要構成図、第5図は水素
送出ステーションまたは水素受取りステーションの設備
の他の例を示す概要構成図である。 1・・・水素ガス生産工場、2,4.15・・・コンプ
レッサ、3・・・貯留タンク、 5.8,9,14.19,20,21.22・・・パル
プ、6・・・反応促進タン久 61・・・開閉扉、     61′・・・開閉可能上
部、62・・・熱媒液出入口、  63・・・流出口、
64・・・送気口、     65・・・レール、7・
・・連結継手、    10.11・・・逆止弁、12
・・・合金収納容器、 121・・・部分容器、   122・・・邪魔板、1
23・・・水素出入パイプ、13・・・ポンプ、・16
・・・フラッシュ蒸発器、17・・・放熱器、18・・
・熱媒液補給タンク、23・・・熱媒液タンク、24・
・・水素消費工場。 第1図 第2図 り、X 第3図 第4図 第5図
Figure 1 is a schematic configuration diagram showing an example of hydrogen delivery station equipment, Figures 2 and 3 are a side view and sectional view taken along the line X-X, and Figure 4 is a hydrogen receiving station. FIG. 5 is a schematic diagram showing an example of the equipment for a hydrogen delivery station or a hydrogen receiving station. 1... Hydrogen gas production factory, 2, 4.15... Compressor, 3... Storage tank, 5.8, 9, 14.19, 20, 21.22... Pulp, 6... Reaction accelerator tank 61... Opening/closing door, 61'... Openable/closable upper part, 62... Heat medium liquid inlet/outlet, 63... Outlet,
64...Air supply port, 65...Rail, 7.
...Connection joint, 10.11...Check valve, 12
... Alloy storage container, 121 ... Partial container, 122 ... Baffle plate, 1
23... Hydrogen in/out pipe, 13... Pump, 16
...flash evaporator, 17...radiator, 18...
・Heating medium liquid supply tank, 23...Heating medium liquid tank, 24・
...Hydrogen consuming factory. Figure 1 Figure 2 Diagram, X Figure 3 Figure 4 Figure 5

Claims (6)

【特許請求の範囲】[Claims] (1)水素送出ステーションにおいて熱媒流体で水素吸
蔵合金収納容器を冷却すると共に該容器に水素ガスを送
る水素吸蔵装置により該容器中の水素吸蔵合金に水素を
吸蔵させ、次に該容器を運搬手段により水素受取りステ
ーションに運び、水素受取りステーションにおいて熱媒
流体で該容器を加熱すると共に該容器から水素ガスを受
取る水素放出装置により該容器中の水素吸蔵合金から水
素を放出させ、次に該容器を再び運搬手段により水素送
出ステーションに戻すサイクルを繰返すことを特徴とす
る水素輸送方法。
(1) At the hydrogen delivery station, a hydrogen storage alloy storage container is cooled with a heat transfer fluid, and hydrogen is stored in the hydrogen storage alloy in the container by a hydrogen storage device that sends hydrogen gas to the container, and then the container is transported. means to a hydrogen receiving station, at the hydrogen receiving station heating the container with a heating medium fluid and releasing hydrogen from a hydrogen storage alloy in the container by a hydrogen release device receiving hydrogen gas from the container; A hydrogen transportation method characterized by repeating the cycle of returning hydrogen to a hydrogen delivery station again by means of transportation.
(2)前記水素吸蔵合金収納容器が前記水素吸蔵装置及
び水素放出装置に連結される水素出入パイプと直接もし
くは間接に連絡した複数本のそれぞれ水素吸蔵合金を収
納した容器を前記熱媒流体の流路を形成する邪魔板によ
って一体的に支持結合した構成からなる特許請求の範囲
第1項記載の水素吸蔵合金を用いた水素輸送方法。
(2) The hydrogen storage alloy storage container is connected directly or indirectly to hydrogen inlet/output pipes connected to the hydrogen storage device and the hydrogen release device, and the hydrogen storage alloy storage container is connected to a plurality of containers storing each of the hydrogen storage alloys so that the heat transfer fluid flows through the hydrogen storage alloy storage container. A method for transporting hydrogen using the hydrogen storage alloy according to claim 1, wherein the hydrogen storage alloy is integrally supported and connected by a baffle plate that forms a channel.
(3)前記邪魔板に吊り下げ用の係合部分を設けた特許
請求の範囲第2項記載の水素吸蔵合金を用いた水素輸送
方法。
(3) A hydrogen transport method using the hydrogen storage alloy according to claim 2, wherein the baffle plate is provided with an engaging portion for hanging.
(4)前記水素送出ステーションで2基以上の前記水素
吸蔵装置が稼動する特許請求の範囲第1項記載の水素吸
蔵合金を用いる水素輸送方法。
(4) A hydrogen transport method using the hydrogen storage alloy according to claim 1, wherein two or more of the hydrogen storage devices are operated at the hydrogen delivery station.
(5)前記水素受取りステーションで2基以上の前記水
素放出装置が稼動する特許請求の範囲第1項記載の水素
吸蔵合金を用いる水素輸送方法。
(5) A hydrogen transport method using the hydrogen storage alloy according to claim 1, wherein two or more of the hydrogen release devices are operated at the hydrogen receiving station.
(6)前記水素吸蔵装置に用いる熱媒流体を熱媒液とし
、水素吸蔵合金収納容器を冷却した熱媒液の熱を別の加
熱に利用するようにした特許請求の範囲第1項記載の水
素吸蔵合金を用いる水素輸送方法。
(6) The heat transfer fluid used in the hydrogen storage device is a heat transfer liquid, and the heat of the heat transfer liquid that has cooled the hydrogen storage alloy storage container is used for other heating purposes. Hydrogen transport method using hydrogen storage alloy.
JP61269748A 1986-11-14 1986-11-14 Hydrogen transport method using hydrogen absorbing alloy Pending JPS63125897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61269748A JPS63125897A (en) 1986-11-14 1986-11-14 Hydrogen transport method using hydrogen absorbing alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61269748A JPS63125897A (en) 1986-11-14 1986-11-14 Hydrogen transport method using hydrogen absorbing alloy

Publications (1)

Publication Number Publication Date
JPS63125897A true JPS63125897A (en) 1988-05-30

Family

ID=17476604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61269748A Pending JPS63125897A (en) 1986-11-14 1986-11-14 Hydrogen transport method using hydrogen absorbing alloy

Country Status (1)

Country Link
JP (1) JPS63125897A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0560366A1 (en) * 1992-03-12 1993-09-15 Mazda Motor Corporation Hydrogen gas supply system for hydrogen engine and method of supplying hydrogen gas to the hydrogen gas supply system
JPH07101316A (en) * 1993-09-30 1995-04-18 Mazda Motor Corp Hydrogen filling station
WO2013006091A1 (en) * 2011-07-04 2013-01-10 Общество С Ограниченной Ответственностью "Промышленные Водородные Технологии И Инженеринг" Shell and tube module for a hydride thermosorption hydrogen separator and compressor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0560366A1 (en) * 1992-03-12 1993-09-15 Mazda Motor Corporation Hydrogen gas supply system for hydrogen engine and method of supplying hydrogen gas to the hydrogen gas supply system
US5462021A (en) * 1992-03-12 1995-10-31 Mazda Motor Corporation Hydrogen gas supply systems for hydrogen engine and method of supplying hydrogen gas to the hydrogen gas supply system
JPH07101316A (en) * 1993-09-30 1995-04-18 Mazda Motor Corp Hydrogen filling station
WO2013006091A1 (en) * 2011-07-04 2013-01-10 Общество С Ограниченной Ответственностью "Промышленные Водородные Технологии И Инженеринг" Shell and tube module for a hydride thermosorption hydrogen separator and compressor

Similar Documents

Publication Publication Date Title
KR101643712B1 (en) Oil vapor recovery equipment
CN204704606U (en) A kind of liquefied natural gas (LNG) tank based on liquid nitrogen cold regulation
CN105020572A (en) Skid-mounted gas station
CN102606883A (en) Liquefied natural gas station
JPS63125897A (en) Hydrogen transport method using hydrogen absorbing alloy
US2075678A (en) Transferring combustible liquefied gases
JPH02247598A (en) Cooler for heat generating member
WO2019227328A1 (en) Household alcohol-based fuel supply system
JP2004508528A (en) Floating plant for liquefying natural gas
CN115681811A (en) Marine LNG fuel tank system
CN210259661U (en) Low pressure nitrogen of environment-friendly seals cold-insulated vault jar equipment
CN212929539U (en) Liquefied petroleum gas filling pipeline system
CN212565288U (en) Automatic filling pump capable of automatically precooling
CN111495109B (en) Oil gas recovery system
CN112555670A (en) Movable liquid hydrogen zero release storage and filling integrated storage tank
KR102431077B1 (en) Systems and methods for making nuclear power plants safe after extreme exposure
JPS604695A (en) Unloading device of liquefied gas transport tank lorry
CN112128607A (en) Integrative storage tank of low-loss liquid hydrogen
CN104751909A (en) Container pressurizing and energy-storage system in nuclear power station
JPH08128596A (en) Gas evaporator and gas supplying method
CN215000974U (en) Be used for pressure release system before cryogenic liquids tank wagon fills dress
CN219828534U (en) Liquid chlorine unloading device
CN217496453U (en) LNG power ship
JPS5993600A (en) Liquefied gas transporting tank lorry
CN110496833A (en) A kind of nitrogen envelope internal floating roof tank pipeline scavenging system