JPS63125654A - Surface treatment of iron or iron alloy material - Google Patents

Surface treatment of iron or iron alloy material

Info

Publication number
JPS63125654A
JPS63125654A JP26922086A JP26922086A JPS63125654A JP S63125654 A JPS63125654 A JP S63125654A JP 26922086 A JP26922086 A JP 26922086A JP 26922086 A JP26922086 A JP 26922086A JP S63125654 A JPS63125654 A JP S63125654A
Authority
JP
Japan
Prior art keywords
iron
chromium
alloy material
treatment
iron alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26922086A
Other languages
Japanese (ja)
Other versions
JPH0356308B2 (en
Inventor
Toru Arai
新井 透
Hironori Fujita
藤田 浩紀
Yoshihiko Sugimoto
義彦 杉本
Yukio Ota
幸夫 太田
Shigeo Moriyama
守山 重雄
Akira Sato
明 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP26922086A priority Critical patent/JPS63125654A/en
Priority to US07/080,828 priority patent/US4818351A/en
Priority to CA000543121A priority patent/CA1305399C/en
Priority to DE3725321A priority patent/DE3725321C2/en
Publication of JPS63125654A publication Critical patent/JPS63125654A/en
Publication of JPH0356308B2 publication Critical patent/JPH0356308B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

PURPOSE:To form a carbonitride layer of Cr having excellent resistance to wear, seizure, corrosion, oxidation, etc., on the surface of iron and steel materials by incorporating Cr into a fused salt bath of the cyanide salt, etc., of alkali metals and alkaline earth metals, then immersing the iron and steel materials into said bath and heating the same to a specific temp. CONSTITUTION:Metal Cr, iron-chromium alloy, Cr2O3, etc., are added and dissolved in the state of fine powder into the fused salt prepd. by adding 1 or >=2 kinds of the cyanide salt and cyanate of the alkali metals or alkaline earth metals or further 1 or >=2 kinds among the chloride, fluoride, borofluoride, oxide, boride, iodide, carbonate, nitrate, and borate of the alkali metals or alkaline earth metals. Such fused salt bath is heated to <=650 deg.C and the iron and steel members consisting of carbon steel, alloy steel, cast iron, sintered alloy, etc., are immersed therein. An electrolytic treatment is otherwise executed with the iron and steel members as a cathode and the Cr-contg. material as an anode to form the hard carbonitride layer of chromium having various excellent characteristics on the surface of the iron and steel members.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、金型、治工具類及び機械部品などの鉄または
鉄合金材料の表面にクロム(Cr)の炭窒化物層を形成
せしめる表面処理方法に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for forming a carbonitride layer of chromium (Cr) on the surface of iron or iron alloy materials such as molds, jigs, tools, and machine parts. This relates to a processing method.

〔従来の技術〕[Conventional technology]

鉄または鉄合金材料(以下、被処理材とする)の表面に
クロムの炭化物、窒化物または炭窒化物から成る表面層
を被覆すると、被処理材の耐摩耗性、耐焼付性、耐酸化
性、耐食性などの諸性質が改善されることはよく知られ
ている。この表面層を被覆する方法について、近年多く
の提案がなされている。例えば、塩化物系の溶融塩浴中
に鉄合金材料を浸漬してクロムの炭化物層を形成しよう
とする方法(特開昭57−200555号、特開昭58
−197264号)、あるいは予め鉄合金材料に窒化処
理を施した後に、クロマイジング処理を施してクロムの
炭窒化物から成る表面層を形成しようとする方法(特公
昭42−24697号、jl、S、 P、424215
1号公報)などがある。
When a surface layer made of chromium carbide, nitride, or carbonitride of chromium is coated on the surface of iron or iron alloy material (hereinafter referred to as the treated material), the wear resistance, seizure resistance, and oxidation resistance of the treated material are improved. It is well known that various properties such as corrosion resistance are improved. Many proposals have been made in recent years regarding methods of coating this surface layer. For example, a method of forming a chromium carbide layer by immersing an iron alloy material in a chloride-based molten salt bath (JP-A-57-200555, JP-A-58
-197264), or a method in which a surface layer consisting of chromium carbonitride is formed by chromizing after nitriding the iron alloy material (Japanese Patent Publication No. 42-24697, jl, S , P, 424215
Publication No. 1).

しかしながら、上記の方法では、いずれも鉄のAC,変
態点である約700°Cより高い温度域で加熱処理を行
っているため、鉄合金材料の母材に歪みが発生し、複雑
形状の材料では割れるおそれがある。また高熱のため作
業環境が悪いなどの問題点もある。
However, in all of the above methods, heat treatment is performed at a temperature higher than approximately 700°C, which is the AC and transformation point of iron, which causes distortion in the base material of the iron alloy material, resulting in the formation of complex-shaped materials. There is a risk of it breaking. There are also other problems, such as the high heat and poor working environment.

一方、700℃以下の温度域でクロムを含む表面層を形
成しようとする方法として、クロムのハロゲン化物など
を利用するCVD (化学的気相蒸着法)やPVI)(
物理的気相蒸着法)などが提案されている。しかし、こ
れらの方法においては。
On the other hand, methods for forming a surface layer containing chromium at temperatures below 700°C include CVD (Chemical Vapor Deposition) (PVI), which uses chromium halides, etc.
Physical vapor deposition (physical vapor deposition) and other methods have been proposed. But in these methods.

形成された表面層のつきまわり性や密着性が良好なもの
を得ることは難しい。また、処理工程が複雑で、装置が
高価である。また水素中あるいは減圧中で実施しなけれ
ばならないので能率も悪い。
It is difficult to obtain a formed surface layer with good throwing power and adhesion. Furthermore, the processing steps are complicated and the equipment is expensive. Furthermore, it is inefficient because it must be carried out in hydrogen or reduced pressure.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は上記従来の問題点を解消して、きわめて簡単な
装置で、能率よく低温での加熱処理により、母材に歪み
を発生させることなく、鉄合金材料に母材との密着性の
優れたクロムの炭窒化物から成る表面層を形成する方法
を提供しようどするものである。
The present invention solves the above-mentioned conventional problems and provides excellent adhesion to the base material of iron alloy materials by efficient heat treatment at low temperatures using extremely simple equipment, without causing distortion to the base material. The object of the present invention is to provide a method for forming a surface layer of chromium carbonitride.

〔問題点を解決するための手段〕[Means for solving problems]

本第1発明は、鉄または鉄合金材料と、クロムを含む材
料と、アルカリ金属またはアルカリ土類金属のシアン化
塩、シアン酸塩のうちの1種または2種以上から成る処
理剤とを共存せしめて、650℃以[゛において加熱処
理し、クロム、窒素及び炭素を上記鉄または鉄合金材料
表面に拡散せしめることにより、鉄または鉄合金材料表
面にクロムの炭窒化物から成る表面層を形成せしめるこ
とを特徴とする鉄または鉄合金材料の表面処理方法であ
る。
The first invention coexists an iron or iron alloy material, a chromium-containing material, and a treatment agent consisting of one or more of cyanide salts and cyanates of alkali metals or alkaline earth metals. At least, a surface layer consisting of chromium carbonitride is formed on the surface of the iron or iron alloy material by heat treatment at 650° C. or higher to diffuse chromium, nitrogen and carbon onto the surface of the iron or iron alloy material. This is a method for surface treatment of iron or iron alloy materials.

本第2発明は、鉄または鉄合金材料と、クロムを含む材
料と、アルカリ金属またはアルカリ土類金属のシアン化
塩、シアン酸塩のうちの1種または2種以上及びアルカ
リ金属またはアルカリ土類金属の塩化物、ホウ弗化物、
弗化物、酸化物、臭化物、ヨウ化物、炭酸塩、硝酸塩、
硼酸塩のうちの1種または2種以上から成る処理剤とを
共存せしめて、650°C以下において加熱処理し、ク
ロム、窒素及び炭素を上記鉄または鉄合金材料表面に拡
散せしめることにより、鉄または鉄合金材料表面にクロ
ムの炭窒化物から成る表面層を形成せしめることを特徴
とする鉄または鉄合金材料の表面処理方法である。
The second invention provides an iron or iron alloy material, a material containing chromium, one or more of cyanide salts and cyanates of an alkali metal or alkaline earth metal, and an alkali metal or alkaline earth metal. Metal chlorides, boron fluorides,
fluoride, oxide, bromide, iodide, carbonate, nitrate,
By coexisting with a treatment agent consisting of one or more types of borates and heat-treating at 650°C or less to diffuse chromium, nitrogen, and carbon onto the surface of the iron or iron alloy material, Alternatively, there is provided a surface treatment method for iron or iron alloy material, characterized in that a surface layer made of chromium carbonitride is formed on the surface of iron alloy material.

本発明において、鉄または鉄合金材料はクロムの炭窒化
物層を表面に形成する被処理材である。
In the present invention, the iron or iron alloy material is the material to be treated on which a chromium carbonitride layer is formed.

該鉄または鉄合金材料としては、炭素を含むもの。The iron or iron alloy material includes carbon.

例えば炭素鋼1合金鋼、鋳鉄、焼結合金等でもよく、ま
た純鉄のような炭素を全く含まないものでもよい。また
、窒素は含まれている必要はないが。
For example, carbon steel 1 alloy steel, cast iron, sintered alloy, etc. may be used, or it may be a material that does not contain carbon at all, such as pure iron. Also, it does not need to contain nitrogen.

含まれていてもさしつかえない。It's okay if it's included.

本発明において、−上記被処理材と、クロムを含む材料
と、処理剤とを共存せしめて、加熱する加熱処理は、被
処理材の表面にクロムと窒素と炭素とを拡散させて、ク
ロムの炭窒化物から成る表面層を形成するものである。
In the present invention, - the heat treatment in which the above-mentioned material to be treated, a material containing chromium, and a treatment agent are made to coexist and heated is performed by diffusing chromium, nitrogen, and carbon onto the surface of the material to be treated, thereby removing chromium. This forms a surface layer made of carbonitride.

なお、以降の作用で述べるように、形成されるクロムの
炭窒化物から成る表面層とは、クロムを主成分とする炭
窒化物から成る層である。また。
Note that, as described in the following operations, the surface layer made of chromium carbonitride that is formed is a layer made of carbonitride whose main component is chromium. Also.

該クロムの炭窒化物層の直下には窒素および炭素の鉄へ
の固溶体層(拡散層)が形成されている。
Directly below the chromium carbonitride layer, a solid solution layer (diffusion layer) of nitrogen and carbon in iron is formed.

−ト記クロム(Cr)を含む材料とは、被処理材の表面
に拡散させるクロムを供給するものであり。
- The material containing chromium (Cr) is one that supplies chromium to be diffused onto the surface of the material to be treated.

クロムを含む金属あるいはクロム化合物等を用いる。該
金属としては、純クロムやフェロクロム(Fe−Cr)
等の合金が挙げられる。上記化合物としては、 CrC
l2.CrFa、 Crz03+に2Cr03等の塩化
物。
A metal containing chromium or a chromium compound is used. Such metals include pure chromium and ferrochrome (Fe-Cr).
Examples include alloys such as The above compounds include CrC
l2. Chlorides such as CrFa, Crz03+ and 2Cr03.

弗化物、酸化物等が挙げられる。しかして、これらクロ
ムを含む材料は、これらのうち1種または2種板−トを
用いるが、純クロムを用いるのが最も実用的である。
Examples include fluorides and oxides. Therefore, although one or two of these chromium-containing materials are used, it is most practical to use pure chromium.

また、前記処理剤は、被処理材表面に拡散させる窒素と
炭素とを供給すると共にクロムが被処理材の表面に拡散
する媒介となる働きを有している。
Furthermore, the treatment agent has the function of supplying nitrogen and carbon to be diffused onto the surface of the material to be treated and serving as a medium for chromium to diffuse onto the surface of the material to be treated.

該処理剤としては、アルカリ金属またはアルカリ土類金
属のシアン化塩、シアン酸塩の1種または2種以上(以
下、これを第1処理剤とする)のみでもよく、あるいは
該第1処理剤にアルカリ金属またはアルカリ土類金属の
塩化物、弗化物、ホウ弗化物、酸化物、臭化物、ヨウ化
物、炭酸塩、硝酸塩、硼酸塩のうちの1種または2種以
上(以下。
The treatment agent may be one or more of cyanide salts and cyanates of alkali metals or alkaline earth metals (hereinafter referred to as the first treatment agent), or the first treatment agent. and one or more of the following: chlorides, fluorides, borate fluorides, oxides, bromides, iodides, carbonates, nitrates, and borates of alkali metals or alkaline earth metals.

これを第2処理剤とする)を混合したものでもよい。な
お、第1処理剤が鉄合金材料表面に拡散する窒素と炭素
とを供給する。また、第2処理剤は融点、粘性、蒸発量
などを調節し、処理の安定性を増す働きを有しており、
加熱処理方法によって適宜選択して使用する。
This may be used as a second treatment agent). Note that the first treatment agent supplies nitrogen and carbon that diffuse to the surface of the iron alloy material. In addition, the second processing agent has the function of adjusting the melting point, viscosity, amount of evaporation, etc., and increasing the stability of the processing.
It is appropriately selected and used depending on the heat treatment method.

例えば、第1処理剤としてば、 NaCN、KCN、N
aCN0゜KCNO等が挙げられ、これらのうちの1種
または2種以上を使用する。
For example, as the first treatment agent, NaCN, KCN, N
Examples include aCN0°KCNO, and one or more of these may be used.

また、第2処理剤としてLl:、 NaC1,KCI、
CaCIz。
In addition, as a second treatment agent, Ll:, NaCl, KCI,
CaCIz.

LiCl 、 NaF、 KF、 LiF+ KBFa
 、 NazCOi+ LiCO31KzcOff+N
 a N O21K N 031)− i B r +
 K I + N a 20等が挙げられ、これらのう
ちの1種または2種以上を使用する。
LiCl, NaF, KF, LiF+KBFa
, NazCOi+ LiCO31KzcOff+N
a N O21K N 031)- i B r +
Examples include K I + N a 20, and one or more of these are used.

処理剤とクロムを含む材料との配合割合は、クロムを含
む材料に対して0.5〜30重景%重量下。
The mixing ratio of the processing agent and the material containing chromium is 0.5 to 30% by weight relative to the material containing chromium.

重量%を%とする)の処理剤が望ましい。この範囲外で
あると連続的に表面層を形成することが困難になり、ま
たこの範囲の中心に近づくと、連続的な表面層形成が容
易になる傾向にある。
% by weight) is preferable. If it is outside this range, it will be difficult to form a continuous surface layer, and if it approaches the center of this range, it will tend to be easier to form a continuous surface layer.

加熱処理方法としては、溶融塩浸漬法、溶融塩電解法、
ペースト法等がある。
Heat treatment methods include molten salt immersion method, molten salt electrolysis method,
There are paste methods etc.

以下、これらにつき説明する。These will be explained below.

1−記溶融塩浸漬法とは、前記処理剤を溶融して溶融塩
浴を形成し、該溶融塩浴にクロムを含む材料と被処理材
とを浸漬するものである。
In the 1-molten salt immersion method, the treatment agent is melted to form a molten salt bath, and the chromium-containing material and the material to be treated are immersed in the molten salt bath.

上記溶融塩浴にクロ1、を含む+、1籾を浸漬するのは
、溶融浴塩中にクロムを溶入きせるためである。
The reason for immersing the +,1 rice grains containing chromium 1 in the molten salt bath is to dissolve chromium into the molten salt bath.

クロムを溶入させる手段としては、該材料を粉末状(好
ましくは200メソシユ以下)または薄板状で溶融浴に
添加する方法あるいは棒状または板状の該材料を陽極と
して溶融浴中に浸漬して電解しクロムを陽極溶解させる
方法等がある。クロJ、を含む材料からクロムが溶融塩
中に溶入する速度は用いるクロムを含む材料の種類や大
きさによって異なり、被処理材を浸漬する前に一定時間
溶融塩浴を処理温度あるいは処理温度近辺の温度で保持
する(熟成)ことが必要になる。上記陽極溶解によりク
ロムを溶入する場合には、クロムが迅速に溶入して作業
能率を向上させることができ、しかも未溶解のクロムを
含む材料が浴底に堆積することはないという点で有利で
ある。なお、この場合の陰極としては溶融塩浴の容器ま
たは他に挿入した導電性物質を使用する。陽極溶解する
ときの陽極電流密度は、これを大きくすれば溶入速度は
大きくなるが、電解しなくても溶入することから考えて
も、比較的低い電流密度で充分である。実用」二は0.
1〜0.8 A / ctが適当である。
Chromium can be infused by adding the material to a molten bath in the form of a powder (preferably 200 mS or less) or in the form of a thin plate, or by immersing the material in the form of a rod or plate in a molten bath as an anode and electrolyzing it. There are methods such as anodic dissolution of chromium. The rate at which chromium dissolves into the molten salt from materials containing chromium differs depending on the type and size of the chromium-containing material used. It is necessary to maintain (ripen) the product at a temperature around that level. When chromium is injected by the above-mentioned anodic melting, the chromium infiltrates quickly and improves work efficiency, and furthermore, material containing undissolved chromium does not accumulate on the bath bottom. It's advantageous. In this case, as the cathode, a conductive substance inserted into a molten salt bath container or elsewhere is used. If the anode current density during anodic melting is increased, the infiltration rate will increase, but considering that infiltration occurs even without electrolysis, a relatively low current density is sufficient. Practical” 2 is 0.
1 to 0.8 A/ct is suitable.

浴中に溶入したクロムは処理剤から供給される窒素及び
炭素と共に被処理材表面に拡散してクロムの炭窒化物か
ら成る表面層を形成する。
The chromium dissolved in the bath diffuses onto the surface of the material to be treated together with nitrogen and carbon supplied from the treatment agent to form a surface layer consisting of chromium carbonitride.

なお、溶融塩浴の容器としては黒鉛、チタン。The container for the molten salt bath is graphite or titanium.

鋼などが用いられるが、実用上は鋼で充分である。Steel is used, but steel is sufficient for practical purposes.

また、前記溶融塩電解法とは、処理剤を溶融せしめた浴
にクロムを含む材料を浸漬しクロムを溶入せしめた状態
で、該溶融塩浴に被処理材を陰極として浸漬し、電解処
理を行うものである。なおこの場合、陽極として浴の容
器または別に挿入した導電性物質を用いる。
In addition, the molten salt electrolysis method is a method in which a material containing chromium is immersed in a bath in which a treatment agent is melted to infiltrate the chromium, and the material to be treated is immersed as a cathode in the molten salt bath, and electrolytic treatment is performed. This is what we do. In this case, the bath container or a separately inserted conductive substance is used as the anode.

処理剤を溶融した浴にクロムを含む材料を浸漬してクロ
ムを溶入する手段は前記溶融塩浸漬法と同様な方法でよ
い。また処理剤の溶融塩浴にクロムを含む材料を陽極、
被処理材を陰極として浸漬し電解処理を行うこともでき
る。この場合、クロムの陽極溶解と表面層の形成とを同
時に行うことができるというメリットがある。
A method similar to the molten salt immersion method described above may be used to dissolve the chromium by immersing the chromium-containing material in a bath containing a molten treatment agent. In addition, a material containing chromium is added to the molten salt bath of the treatment agent as an anode.
Electrolytic treatment can also be performed by immersing the material to be treated as a cathode. In this case, there is an advantage that the anodic melting of chromium and the formation of the surface layer can be performed simultaneously.

また、被処理材を浸漬して電解処理を行う陰極電流密度
は2 A / cnl以下、実用的には0.05〜1゜
OA/cdが適当である。
Further, the cathode current density at which the material to be treated is immersed and subjected to electrolytic treatment is 2 A/cnl or less, and 0.05 to 1° OA/cd is suitable for practical use.

なお、上記溶融塩浸漬法、溶融塩電解法とも大気雰囲気
あるいは保護ガス(Nz、 Ar等)中いずれにても処
理が可能である。
Note that both the molten salt immersion method and the molten salt electrolysis method described above can be carried out either in the air or in a protective gas (Nz, Ar, etc.).

ペースト法とは、前記処理剤とクロムを含む材料との混
合粉末あるいは前記のように予めクロムを溶入させた処
理剤を冷却固化させた後に粉砕した粉末をペースト状に
し、被処理材に被覆して加熱するものである。
The paste method is a process in which a mixed powder of the treatment agent and a material containing chromium, or a treatment agent into which chromium has been infused as described above, is cooled and solidified and then ground into a paste form and coated on the material to be treated. It is then heated.

上記粉末をペースト化するためにはデキストリン水溶液
、グリセリン、水ガラス、エチレングリコール、アルコ
ール等の粘着剤を添加する。この粉末のペーストは、被
処理材の表面に通常IN以上の厚さで被覆される。ペー
ストを被覆された鉄合金材料は1通常容器に入れられて
加熱炉で加熱される。雰囲気は大気中でよいが非酸化性
雰囲気下ではペーストの被覆層を薄くすることができる
In order to form the powder into a paste, an adhesive such as an aqueous dextrin solution, glycerin, water glass, ethylene glycol, or alcohol is added. This powder paste is usually coated on the surface of the material to be treated to a thickness of IN or more. The paste-coated iron alloy material is usually placed in a container and heated in a heating furnace. The atmosphere may be air, but the paste coating layer can be made thinner in a non-oxidizing atmosphere.

また、このペースト法では、ペーストの被覆された表面
部のみに表面層が形成されるため被処理材の任意の一部
表面部のみに表面層を形成すること= 1) = ができる。
Furthermore, in this paste method, since the surface layer is formed only on the surface portion covered with the paste, it is possible to form the surface layer only on an arbitrary part of the surface portion of the material to be treated.

また、この粉末の粒度は、JISNalooのフルイ通
過程度でよい。これより粗くとも細かくとも特に大きな
影響はない。
Further, the particle size of this powder may be such that it can pass through a JIS Naloo sieve. Whether it is coarser or finer than this, there is no particular effect.

以上のような加熱処理の加熱温度は650℃以下とする
。650℃以下の温度域で処理することにより被処理材
の母材が歪みを受けにくくなる。
The heating temperature of the above heat treatment is 650° C. or lower. By processing in a temperature range of 650° C. or lower, the base material of the material to be processed is less susceptible to distortion.

また、その下限温度としては450℃とするのが望まし
い。450℃より低温で加熱処理を施した場合2表面層
の形成速度は非常に遅い。実用上はダイス鋼の高温焼戻
し温度、構造用鋼の焼戻し温度の500〜650℃が望
ましい。
Further, it is desirable that the lower limit temperature is 450°C. When heat treatment is performed at a temperature lower than 450° C., the rate of formation of the second surface layer is very slow. Practically speaking, the high temperature tempering temperature for die steel is preferably 500 to 650°C, which is the tempering temperature for structural steel.

加熱処理の処理時間が長くなれば表面層の厚さは増加し
、短時間処理では表面層中のクロム含有量が増加する。
As the treatment time of the heat treatment increases, the thickness of the surface layer increases, and when the treatment takes a short time, the chromium content in the surface layer increases.

このため処理時間は所望とする上記表面層の厚さあるい
はクロム含有量により定まるが、1〜50時間の範囲で
選ばれる。
Therefore, the treatment time is determined by the desired thickness or chromium content of the surface layer, and is selected within the range of 1 to 50 hours.

また、形成する表面層の厚さは1〜10μm程度が実用
的である。それを越える厚さに達すると被処理材の靭性
低下や層の剥離が生ずる恐れかあ一12= る。
Further, the practical thickness of the surface layer to be formed is about 1 to 10 μm. If the thickness exceeds this, there is a risk that the toughness of the material to be treated will decrease or the layers will peel off.

〔作用〕[Effect]

本発明によるクロムの炭窒化物から成る表面層の形成機
構は明確ではないが2本発明者らがX線回折、マイクロ
アナライザ分析や処理時間と厚さの関係などから判断す
ると、以下のようになっていると考えられる(以下のm
、n、o、pはそれぞれ数字を表す)。
The formation mechanism of the surface layer made of chromium carbonitride according to the present invention is not clear, but as judged by the present inventors from X-ray diffraction, microanalyzer analysis, and the relationship between processing time and thickness, it is as follows. (m below)
, n, o, and p each represent a number).

まず、被処理材である鉄または鉄合金材料に外部から窒
素(N)と炭素(C)とが拡散し、被処理材の表面部の
鉄(Fe)と反応してFe、 (CI N) nの形で
窒化物層が形成される。なお、被処理材中に炭素(C)
あるいは窒素(N)が含まれているとこの炭素あるいは
窒素(N)もFe、(C,N)、、に含まれる。また、
この窒化物層の直下には、窒素および炭素鉄への固溶体
(Fe−N−Cの形)も形成される。これらの反応は表
面から次第に内部へと進行する。
First, nitrogen (N) and carbon (C) diffuse into the iron or iron alloy material to be treated from the outside and react with iron (Fe) on the surface of the treated material to form Fe, (CI N). A nitride layer is formed in the form of n. Note that carbon (C) is contained in the material to be treated.
Or, if nitrogen (N) is included, this carbon or nitrogen (N) is also included in Fe, (C,N), etc. Also,
Immediately below this nitride layer, a solid solution of nitrogen and carbon to iron (in the form of Fe--N--C) is also formed. These reactions proceed from the surface to the interior.

その直後に、上記窒化物層に外部からのクロム(Cr)
が拡散する反応が始まり、上記2つの反応が平行に進行
する。この拡散はF e +n (C+ N ) 、、
のFeとCrとが置換する反応であり、窒化物層は(C
r、 Fe)。(C9N)pに変化し、その反応は表面
から次第に内部に進行する。なお、  (Cr、 Fe
)。(C,N)p層においては表面はどCrが多く、母
材に近いほどFeが多い傾向にある。従って条件によっ
ては表面部のFe量は著しく小さく 、 Cro (C
+ N) pと表示するのが妥当な場合もある。
Immediately thereafter, chromium (Cr) is added to the nitride layer from the outside.
A reaction begins in which the ions diffuse, and the above two reactions proceed in parallel. This diffusion is F e +n (C+ N ),,
This is a reaction in which Fe and Cr are substituted, and the nitride layer is formed by (C
r, Fe). (C9N)p, and the reaction progresses gradually from the surface to the inside. In addition, (Cr, Fe
). In the (C,N)p layer, the surface tends to have more Cr, and the closer it is to the base material, the more Fe. Therefore, depending on the conditions, the amount of Fe on the surface may be extremely small, and Cro (C
+ N) In some cases, it is appropriate to express it as p.

更に、上記の反応の他に被処理材表面にCrとNあるい
はCrとNおよびCが化合した形で直接析出する反応も
同時に起こっているであろう。
Furthermore, in addition to the above-mentioned reaction, a reaction in which Cr and N or a combination of Cr, N, and C are directly precipitated on the surface of the material to be treated may also be occurring at the same time.

この(Cr、 Fe)。(C5N)p層と鉄・窒素・炭
素の固溶体層の厚さ、および厚さの比率および化学組成
は、母材種類、処理温度1時間、処理剤の種類。
This (Cr, Fe). The thickness, thickness ratio, and chemical composition of the (C5N) p layer and the solid solution layer of iron, nitrogen, and carbon are determined by the type of base material, treatment temperature for 1 hour, and type of treatment agent.

混合比などによって調節することが可能である。It is possible to adjust by adjusting the mixing ratio.

なお1本発明者らは先に鉄合金材料からなる被処理材の
表面処理法として被処理材の表面にクロムの窒化物ある
いは炭窒化物から成る表面層を形成せしめることを特徴
とする表面処理法に関する発明を行い、出願した(特願
昭60−431556号)。
Note that the present inventors have previously proposed a surface treatment method for a workpiece made of an iron alloy material, which is characterized by forming a surface layer made of chromium nitride or carbonitride on the surface of the workpiece. He made an invention related to law and filed an application (Japanese Patent Application No. 431556/1983).

これは、被処理材の表面に鉄・窒素または鉄・炭素・窒
素の化合物層を形成させる窒化処理を施した後、被処理
+4と、クロムを含む材料と、アルカリ金属またはアル
カリ土類金属の塩化物、弗化物。
After applying nitriding treatment to form an iron-nitrogen or iron-carbon-nitrogen compound layer on the surface of the treated material, the treatment is performed using +4 to be treated, a material containing chromium, and an alkali metal or alkaline earth metal. Chloride, fluoride.

ボウ弗化物、酸化物、臭化物、ヨウ化物、炭酸塩。Bow fluoride, oxide, bromide, iodide, carbonate.

硝酸塩、硼酸塩のうちの1種または2種以上あるいはハ
ロゲン化アンモニウム塩または金属ハロゲン化物の一方
または双方から成る処理剤とを共存せしめて、700°
C以下において加熱処理し、クロムを上記窒化処理によ
って形成されている化合物層に拡散せしめることにより
、被処理材の表面にクロムの窒化物あるいは炭窒化物か
ら成る表面層を形成せしめることを特徴とする表面処理
方法(以下、2回処理法と称す)であった。
700° with a treatment agent consisting of one or more of nitrates and borates, one or both of ammonium halides and metal halides.
A surface layer made of chromium nitride or carbonitride is formed on the surface of the material to be treated by heat treatment at a temperature of C or less and diffusing chromium into the compound layer formed by the nitriding treatment. This was a surface treatment method (hereinafter referred to as the two-time treatment method).

本発明と先の2回処理法では、熱による歪の発生しにく
い低温で、塩浴法やペースト法を用い。
In the present invention and the previous two-step processing method, a salt bath method or a paste method is used at a low temperature where distortion due to heat is less likely to occur.

被処理材の表面にクロムの炭窒化物から成る表面層を形
成せしめる点で似ているが、以下の点で大きく異なる。
Although they are similar in that a surface layer made of chromium carbonitride is formed on the surface of the material to be treated, they differ greatly in the following points.

(A)炭窒化物層形成の機構 IA− 2回処理法では、1回目の処理で鉄・窒素および鉄・炭
素・窒素の化合物層を形成し22回目の処理でクロムと
上記窒化物層中の鉄との置換反応によってクロムの窒化
物層および炭窒化物層が形成される。したがって該窒化
処理した被処理材に形成させ得る表面層の最大厚さは、
1回目の処理で形成された鉄・窒素および鉄・炭素・窒
素の化合物層の厚さと同じであり、従って表面層の厚さ
は1回目の窒化処理によって規定される。
(A) Mechanism of carbonitride layer formation IA- In the two-step treatment method, iron-nitrogen and iron-carbon-nitrogen compound layers are formed in the first treatment, and chromium and iron-carbon-nitrogen compound layers are formed in the 22nd treatment. A chromium nitride layer and a carbonitride layer are formed by the substitution reaction of chromium with iron. Therefore, the maximum thickness of the surface layer that can be formed on the nitrided material is:
It is the same as the thickness of the iron-nitrogen and iron-carbon-nitrogen compound layers formed in the first treatment, and therefore the thickness of the surface layer is defined by the first nitriding treatment.

これに対して本発明では2後の実施例にも示すように、
クロムの炭窒化物層は、処理時間の2乗にほぼ比例して
厚く形成される傾向である。
On the other hand, in the present invention, as shown in the second embodiment,
The chromium carbonitride layer tends to become thicker in proportion to the square of the processing time.

(B)処理材の特性 形成された層の硬さ、耐摩耗性、耐焼イ」性は同じ程度
であるが、被処理材の靭性の而で大きな差が見られる。
(B) Characteristics of treated materials Although the hardness, abrasion resistance, and burning resistance of the formed layers are at the same level, there is a large difference in the toughness of the treated materials.

一般の窒化処理では、母材の靭性の低下を防ぐために0
表面に化合物層を形成させないように処理するのが9通
である。これに対し、先に出願した2同処理法では、化
合物層を厚く形成されることが必要であり、それに伴っ
て鉄・窒素の固溶体層も厚く形成される。実施例中に示
したX線マイクロアナライザーによる分析の結果でも、
窒素が母材中に多く固溶されているのが明確で、これら
は母材の靭性に悪影響をおよぼす。
In general nitriding treatment, in order to prevent a decrease in the toughness of the base metal,
In nine cases, the treatment was performed so as not to form a compound layer on the surface. On the other hand, in the treatment method No. 2 filed earlier, it is necessary to form a thick compound layer, and accordingly, a thick iron/nitrogen solid solution layer is also formed. Even in the results of the analysis using the X-ray microanalyzer shown in the examples,
It is clear that a large amount of nitrogen is solidly dissolved in the base metal, and these have a negative effect on the toughness of the base metal.

本発明による処理では、2回処理法の場合に比べて、後
の実施例にも見られるように母材中の窒素固溶量が極め
て少なく、鉄・窒素および炭素の固溶体層も薄い。した
がって、2回処理法による被処理材に比べて本発明によ
る被処理材の方が靭性が高いと考えられる。
In the treatment according to the present invention, the amount of solid solution of nitrogen in the base material is extremely small, and the solid solution layer of iron, nitrogen and carbon is also thin, as seen in the later examples, compared to the case of the two-time treatment method. Therefore, it is considered that the material to be treated according to the present invention has higher toughness than the material to be treated by the two-time treatment method.

(C)処理能率 2回処理法では、2回の異なった処理が必要であるのに
対し2本発明の処理法では、1回の処理で層の形成が可
能である。従って処理能率が高い他、設備も少なくてす
む利点がある。
(C) Processing Efficiency In contrast to the two-step processing method, which requires two different treatments, the two-step processing method of the present invention allows the formation of a layer in one processing. Therefore, in addition to high processing efficiency, it has the advantage of requiring less equipment.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、前記特定の処理剤を用い、650℃以
下という低温においてクロJ1の拡散処理を行うので、
低温において、鉄または鉄合金材料にクロムの炭窒化物
から成る優れた表面層を形成することができる。
According to the present invention, since the diffusion treatment of Kuro J1 is performed at a low temperature of 650° C. or lower using the above-mentioned specific treatment agent,
At low temperatures, excellent surface layers of chromium carbonitrides can be formed on iron or iron alloy materials.

また、低温で鉄または鉄合金材料を加熱するため、材料
の母材に歪みが発生しにくい。更に低温処理による操作
性が良好であり、多大のエネルギーを必要としない。
Additionally, since the iron or iron alloy material is heated at low temperatures, distortion is less likely to occur in the base material. Furthermore, it has good operability due to low temperature treatment and does not require a large amount of energy.

また2本発明による層は拡散によって形成されるため、
低温で処理するにもかかわらず、拡散反応のないPVD
による炭化物層、窒化物層の場合と異なり母材との密着
性に優れ、緻密な表面層を形成することができる。また
、形成された層の厚さは実用上十分なものである。
Furthermore, since the layer according to the present invention is formed by diffusion,
PVD with no diffusion reaction despite processing at low temperatures
Unlike the case of carbide and nitride layers, it has excellent adhesion to the base material and can form a dense surface layer. Moreover, the thickness of the formed layer is practically sufficient.

〔実施例〕〔Example〕

以下2本発明の詳細な説明する。 Two aspects of the present invention will be described in detail below.

実施例l NaCN0 53 w t%とKCl12wt%とCa
C]z  35wt%との混合物の入った耐熱鋼容器を
大気中の電気炉にて加熱して570℃の溶融塩浴を形成
し、更に一100メソシュの純クロム粉末を上記溶融塩
浴に対して15wt%添加した。この溶融塩浴に直径6
菖1.長さ20鶴のJIS−3KH51丸棒試験片を1
〜50時間浸漬後、取り出して空冷した。付着溶剤を洗
浄除去後、断面を研磨して、断面&ll織の観察を行っ
た。−例として、8時間浸漬処理して形成された表面層
の断面a織の顕微鏡写真(倍率400倍)を第1図に示
す。該表面層は表面の滑′らかな層であり、1層から成
っている。この試料の断面について、X線マイクロアナ
ライザーによる分析を行った結果は、第2図に示すよう
に表面層中にはCr、 FeとともにNとCが認められ
た。また、該表面層の直下にはNとCの鉄への固溶体層
が形成されていたが、Nの固溶量は極めて少なかった(
他の実施例についても同様)。表面からの分析結果によ
れば、約60%のCr量が存在し、さらにX線回折では
CrN、 CrJ、 Fe5Cに相当する回折線が認め
られた。このことより形成された表面層は、CrN、C
r2N、Fe5Cを主体とした混合層から成るクロム−
鉄の炭窒化物層であることが確かめられた。浸漬時間を
、1〜50時間の間で4種類に変えて処理した試験片の
断面組織の観察により1表面に形成された層の厚さを測
定した結果を第3図に示す。層の厚さは、処理時間の2
乗にほぼ比例して増加する傾向であった。
Example 1 NaCN0 53 wt%, KCl12 wt% and Ca
A heat-resistant steel container containing a mixture of C]z and 35 wt% is heated in an electric furnace in the atmosphere to form a 570°C molten salt bath, and 1100 mesosh of pure chromium powder is added to the molten salt bath. 15 wt% was added. This molten salt bath has a diameter of 6 mm.
Iris 1. 1 JIS-3KH51 round bar test piece with a length of 20
After soaking for ~50 hours, it was taken out and air cooled. After washing and removing the adhesion solvent, the cross section was polished and the cross-section &l weave was observed. - As an example, FIG. 1 shows a micrograph (magnification: 400 times) of a cross-sectional a-woven surface layer formed by immersion treatment for 8 hours. The surface layer is a smooth surface layer and consists of one layer. The cross section of this sample was analyzed using an X-ray microanalyzer, and as shown in FIG. 2, N and C were found in the surface layer along with Cr and Fe. In addition, a solid solution layer of N and C in iron was formed just below the surface layer, but the amount of solid solution of N was extremely small (
The same applies to other examples). According to the analysis results from the surface, approximately 60% Cr content was present, and furthermore, diffraction lines corresponding to CrN, CrJ, and Fe5C were observed in X-ray diffraction. The surface layer formed by this is CrN, C
Chromium consisting of a mixed layer mainly composed of r2N and Fe5C.
It was confirmed that it was a carbonitride layer of iron. FIG. 3 shows the results of measuring the thickness of the layer formed on one surface by observing the cross-sectional structures of test pieces treated with four different immersion times ranging from 1 to 50 hours. The layer thickness is 2 times the processing time.
There was a tendency to increase almost in proportion to the

なお2本実施例で形成された層の密着性を調べるため、
ロックウェル硬度計を用い、ロックウェルCスケール硬
度の測定条件で圧子を押し込み。
In addition, in order to examine the adhesion of the layers formed in the two examples,
Using a Rockwell hardness meter, press the indenter under Rockwell C scale hardness measurement conditions.

圧痕周辺に現れる変化を観察した。その結果1本処理で
形成された層では、圧痕周辺母材の盛上がりにより2層
に引張応力が作用して、約10本のクラックが放射線状
に発生したが1層の剥離は認められず、良好な密着性を
示した。一方比較のために、同様のテストをイオンブレ
ーティングによるTin層に行った結果では1周辺の層
は円環状に完全に剥離した。
Changes appearing around the indentations were observed. As a result, in the layer formed by one layer, tensile stress was applied to the two layers due to the swelling of the base material around the indentation, and about 10 cracks were generated in a radial pattern, but no peeling of one layer was observed. It showed good adhesion. On the other hand, for comparison, a similar test was conducted on a Tin layer formed by ion blating, and the results showed that the layer around one layer was completely peeled off in an annular shape.

実施例2 NaCN0 57 w t%とNaCN13wt%とN
aC1)9wt%とCaC]。21wt%との混合物の
入った黒鉛容器を大気中の電気炉にて加熱して550°
Cの溶融塩浴を形成し、更にこの浴中にCrCh粉末(
−320メソシユ)を上記溶融塩浴に対して15wt%
添加したこの溶融塩浴に直径3mm、長さ20mmのJ
 I S −S 4.5 C丸棒試験片を4時間浸漬後
、取り出して空冷した。
Example 2 NaCN0 57 wt%, NaCN13 wt% and N
aC1) 9wt% and CaC]. A graphite container containing a mixture of 21 wt% was heated to 550° in an electric furnace in the atmosphere.
A molten salt bath of C was formed, and CrCh powder (
-320 MSO) at 15 wt% in the above molten salt bath.
A J with a diameter of 3 mm and a length of 20 mm was added to this molten salt bath.
After immersing the IS-S 4.5C round bar test piece for 4 hours, it was taken out and cooled in the air.

試験片の断面組織の顕微鏡写真(倍率400倍)を第4
図に示す。表面に形成された層は実施例1の場合と同様
に表面の滑らかな1層の組織であり。
A micrograph (400x magnification) of the cross-sectional structure of the test piece is shown in the fourth photo.
As shown in the figure. The layer formed on the surface had a single layer structure with a smooth surface, similar to the case of Example 1.

X線回折や第5図に示すXvAマイクロアナライザー分
析の結果より、実施例1の場合と同様、 CrN。
From the results of X-ray diffraction and XvA microanalyzer analysis shown in FIG. 5, as in Example 1, CrN.

Cr z N + F e 3 Cを主体とした混合層
から成るクロム−鉄の炭窒化物層であることが確かめら
れた。
It was confirmed that the layer was a chromium-iron carbonitride layer consisting of a mixed layer mainly composed of Cr z N + Fe 3 C.

また、ロックウェル硬度計による密着性評価でも実施例
1と同様のクラック発生形態であり、良好な密着性を持
った層であると判定される。
In addition, the adhesion evaluation using a Rockwell hardness test showed the same cracking pattern as in Example 1, and it was determined that the layer had good adhesion.

実施例3 KCl42wt%とNaCN38 w t%とKF14
wt%とliF5wt%との混合物の入った耐熱鋼容器
を大気中の電気炉にて加熱して550℃の溶融塩浴を形
成し、更にこの浴中に一100メツシュの純クロム粉末
を一上記溶融塩浴に対して15wt%添加した。この溶
融塩浴に直径3++m、長さ151)のJIS/5KD
II丸棒試験片を8時間浸漬後。
Example 3 KCl42 wt%, NaCN38 wt% and KF14
A heat-resistant steel container containing a mixture of 5 wt% and 5 wt% of LiF is heated in an electric furnace in the atmosphere to form a 550°C molten salt bath, and 1100 mesh of pure chromium powder is added to the bath. 15 wt% was added to the molten salt bath. JIS/5KD with a diameter of 3++ m and a length of 151) was added to this molten salt bath.
II After soaking the round bar test piece for 8 hours.

取り出して空冷した。It was taken out and air cooled.

試片に付着した処理剤を除去後、X線回折、X線マイク
ロアナライザーで調べた結果、他の実施例と同様2表面
にCrN、 CrJ、 Fe、Cを主体とした混合層か
ら成るクロム−鉄の炭窒化物層が形成されていることが
確かめられた。
After removing the treatment agent adhering to the specimen, examination using X-ray diffraction and an X-ray microanalyzer revealed that chromium, which consists of a mixed layer mainly composed of CrN, CrJ, Fe, and C, was formed on the two surfaces as in the other examples. It was confirmed that an iron carbonitride layer was formed.

実施例4 NaCNO46w t%とNaCl 19 w t%と
Na2cO325wt%とLiBr1 Ow t%との
混合物の入った耐熱容器を大気中の電気炉にて加熱して
600℃の溶融塩浴を形成し、更にこの浴中に一100
メツシュのFe −Cr粉末をl 5wt%添加した。
Example 4 A heat-resistant container containing a mixture of NaCNO46wt%, NaCl19wt%, Na2cO325wt%, and LiBr1Owt% was heated in an electric furnace in the atmosphere to form a 600°C molten salt bath, and further 1100 in this bath
15 wt % of mesh Fe-Cr powder was added.

この溶融塩浴に直径61m、長さ201)のJIS・5
KH51丸棒試験片を16時間浸漬後、取り出して空冷
した。
This molten salt bath has a diameter of 61 m and a length of 201) JIS 5
After soaking the KH51 round bar test piece for 16 hours, it was taken out and air cooled.

処理後切断してX線回折、X線マイクロアナライザーで
調べた結果、他の実施例と同様1表面にり1コム−鉄の
炭窒化物層が形成されていることが確かめられた。
After the treatment, it was cut and examined using X-ray diffraction and an X-ray microanalyzer, and as a result, it was confirmed that a carbonitride layer of 1 com-iron was formed on one surface, as in the other Examples.

23一 実施例5 NaCNO46w t%とNaC1)9w t%とNa
zC(1+ 25wt%とK1)0wt%との混合物の
入った耐熱鋼容器を大気中の電気炉にて加熱して、60
0”cの溶融塩浴を形成し、更にこの浴中に一100メ
ツシュの弗化クロム粉末(CrF6)をl 5wt%添
加した。この溶融塩浴に直径8鰭、長さ15嘗璽のJI
S−3KD61丸棒試験片を8時間浸漬後。
23-Example 5 NaCNO46wt% and NaC1)9wt% and Na
A heat-resistant steel container containing a mixture of zC(1+ 25wt% and K1) 0wt% was heated in an electric furnace in the atmosphere to 60%
A 0"C molten salt bath was formed, and 5 wt% of 1100 mesh chromium fluoride powder (CrF6) was added to this bath. A JI with a diameter of 8 fins and a length of 15 cm was added to this molten salt bath.
After immersing the S-3KD61 round bar test piece for 8 hours.

取り出して空冷した。It was taken out and air cooled.

処理後切断してX線回折、X線マイクロアナライザーで
調べた結果、他の実施例と同様2表面にクロム−鉄の炭
窒化物層が形成されていることが確かめられた。
After the treatment, the sample was cut and examined using X-ray diffraction and an X-ray microanalyzer, and as a result, it was confirmed that a chromium-iron carbonitride layer was formed on the two surfaces as in the other examples.

実施例6 NaCNO73w t%とNaNO28w t%とKN
O38wL%とNa2Co31 l w t%との混合
物の入った耐熱鋼容器を大気中の電気炉にて加熱して、
530’Cの溶融塩浴を形成し、更にこの浴中に一10
0メソシュの純クロム粉末を15wt%添加した。この
溶融塩浴に直径81).長さ15tmの、J I S 
−S−9A − KD61丸棒試験片を6時間浸漬後、取り出して空冷し
た。
Example 6 NaCNO73wt%, NaNO28wt% and KN
A heat-resistant steel container containing a mixture of O38wL% and Na2Co31lwt% is heated in an electric furnace in the atmosphere,
A molten salt bath of 530'C is formed, and 110
15 wt % of pure chromium powder of 0 mesosh was added. This molten salt bath has a diameter of 81). JIS with a length of 15tm
-S-9A- After immersing a KD61 round bar test piece for 6 hours, it was taken out and cooled in the air.

処理後切断してXvA回折、X線マイクロアナライザー
で調べた結果、他の実施例と同様1表面にクロム−鉄の
炭窒化物層が形成されていることが確かめられた。
After the treatment, it was cut and examined using XvA diffraction and an X-ray microanalyzer, and as a result, it was confirmed that a chromium-iron carbonitride layer was formed on one surface, as in the other Examples.

実施例7 NaCN 4.4 w t%とK1)0wt%とNaz
B4072Qwt%との混合物の入った耐熱鋼容器を大
気中の電気炉にて加熱して、650℃の溶融塩浴を形成
し、更にこの浴中に一100メツシュの純クロム粉末を
15wt%添加した。この溶融塩浴に直径3+n、長さ
151)1のJIS−3KD61丸棒試験片を4時間浸
漬後、取り出して空冷した。
Example 7 NaCN 4.4 wt% and K1)0 wt% and Naz
A heat-resistant steel container containing the mixture with B4072Qwt% was heated in an electric furnace in the atmosphere to form a 650°C molten salt bath, and 15wt% of pure chromium powder of 1100 mesh was added to this bath. . A JIS-3KD61 round bar test piece with a diameter of 3+n and a length of 151)1 was immersed in this molten salt bath for 4 hours, and then taken out and cooled in the air.

処理後切断してX線回折、xvAマイクロアナライザー
で調べた結果、他の実施例と同様2表面にクロム−鉄の
炭窒化物層が形成されていることが確かめられた。
After the treatment, the sample was cut and examined by X-ray diffraction and an xvA microanalyzer. As a result, it was confirmed that a chromium-iron carbonitride layer was formed on the two surfaces as in the other examples.

実施例8 一 64 = 実施例1に用いたのと同じNaCN053 vy t%
とKCl12wt%とCaCIz 35 w t%との
混合物の入った黒鉛容器を大気中の電気炉にて加熱して
570℃に保持し、更にこの浴の中央に4o鶴×35 
** X 4 xmの純クロム板を挿入し、これを陽極
Example 8 - 64 = Same NaCN053 as used in Example 1 vy t%
A graphite container containing a mixture of 12 wt% KCl and 35 wt% CaCIz was heated in an electric furnace in the atmosphere and maintained at 570°C.
** Insert a pure chrome plate measuring 4 x m and use this as the anode.

黒鉛容器を陰極として、0.8A/cJの陽極電流密度
で約15時間通電した。このクロムの陽極溶解処理によ
るクロム板の重量減少から計算すると。
Using the graphite container as a cathode, electricity was applied at an anode current density of 0.8 A/cJ for about 15 hours. Calculated from the weight reduction of the chromium plate due to this chromium anodic melting treatment.

塩浴量全体に対して約7%のクロムが浴中に溶入された
。この溶融塩浴中に直径61).長さ15龍の5KH5
1丸棒試験片を24時間浸漬した後。
Approximately 7% of chromium was dissolved in the bath based on the total salt bath volume. In this molten salt bath, a diameter of 61). 5KH5 of length 15 dragons
1 After soaking the round bar test piece for 24 hours.

取り出して空冷した。It was taken out and air cooled.

処理された試片を切断してX線マイクロアナライザー分
析で調べたところ、第6図に示すように表面層中にはC
r、 FeとNの他にCも認められた。
When the treated specimen was cut and examined using an X-ray microanalyzer, it was found that carbon was present in the surface layer, as shown in Figure 6.
In addition to r, Fe and N, C was also observed.

またX線回折結果ではCrN、 Cr2NとFe、Cの
回折とよく一致したことから2表面層はクロム−鉄の炭
窒化物層であることが確かめられた。
Furthermore, the X-ray diffraction results showed good agreement with the diffraction of CrN, Cr2N, Fe, and C, so it was confirmed that the second surface layer was a chromium-iron carbonitride layer.

密着性も実施例1,2と同様良好な結果が得られた。Similar to Examples 1 and 2, good adhesion results were obtained.

実施例9 NaCNO51w t%とNaCl21 w t%とN
82CO328wt%との混合物の入った黒鉛容器を大
気中の電気炉にて570℃に加熱して溶融塩浴を調整し
Example 9 NaCNO51wt%, NaCl21wt% and N
A graphite container containing a mixture of 82CO3 and 28wt% was heated to 570°C in an electric furnace in the atmosphere to prepare a molten salt bath.

更にこの浴に一200メソシュのFe−Cr合金粉末を
溶融塩に対して10%添加したこの570℃の浴に直径
6龍、長さ15mmのJ I 5−3KH51試片を浸
漬して、これを陰極、黒鉛容器を陽極として陰極電流密
度0.05A/cJAで4時間通電して電解処理を行っ
た。処理後試片を浴から取り出して空冷した。
Further, a J I 5-3KH51 specimen with a diameter of 6 mm and a length of 15 mm was immersed in this bath at 570°C to which 1200 mesos of Fe-Cr alloy powder was added at a rate of 10% based on the molten salt. was used as a cathode and the graphite container was used as an anode, and electricity was applied for 4 hours at a cathode current density of 0.05 A/cJA to perform electrolytic treatment. After treatment, the specimens were removed from the bath and cooled in air.

切断して表面層の断面についてX線マイクロアナライザ
ー分析を実施した。その結果2第7図に示すように他の
実施例と同様2表面層にはCr + F e +N、C
が認められた。
After cutting, the cross section of the surface layer was analyzed using an X-ray microanalyzer. As a result 2, as shown in FIG. 7, the 2nd surface layer contains Cr + Fe + N, C
was recognized.

実施例1O NaCN48 w t%とKCl12wt%と一100
メソシュの純クロム粉末2owt%を65o℃に加熱し
、この溶融浴を十分攪拌して均一 とした後。
Example 1O NaCN48 wt% and KCl12wt% and -100
After heating 2wt% of pure chromium powder from Mesos to 65oC and thoroughly stirring the molten bath to make it homogeneous.

この浴の4重量部に対して、黒鉛とアルミナ粉末をそれ
ぞれ1重量部添加し、さらに上置に混合してスラリー塗
布用処理剤を作成した。
To 4 parts by weight of this bath, 1 part by weight each of graphite and alumina powder was added and further mixed on top to prepare a processing agent for slurry coating.

その後、上記処理剤を冷却し、粉末状とした後。After that, the processing agent is cooled and turned into powder.

エヂルアルコールを添加してスラリー状とし、これを縦
15+nX横50龍×厚さ1o龍のJIS−3KH51
平板の上面に約5mlの厚さに塗布し。
Add alcohol to make a slurry, and make this into JIS-3KH51 with a length of 15 + n x width of 50 x 1 o x thickness.
Apply it to the top of the flat plate to a thickness of about 5ml.

乾燥させた。上記試片を窒素雰囲気中で570 ’cで
8時間加熱後冷却した。
Dry. The specimen was heated in a nitrogen atmosphere at 570'C for 8 hours and then cooled.

試片に付着した処理剤を除去後、X線回折、X線マイク
ロアナライザーで調べた結果、他の実施例と同様1表面
にCr N + Cr 2 N + F e * Cを
主体とした混合層から成るクロム−鉄の炭窒化物層が形
成されていることが確かめられた。
After removing the treatment agent adhering to the specimen, examination using X-ray diffraction and an X-ray microanalyzer revealed that there was a mixed layer mainly composed of Cr N + Cr 2 N + Fe * C on one surface, similar to other examples. It was confirmed that a chromium-iron carbonitride layer was formed.

実施例1) 実施例1に用いたのと同じ< 、NaCN053 w 
t%とKCl12wt%とCaCl235 w t%と
の混合物の入った耐熱容器を大気中の電気炉にて加熱し
て570°Cの溶融塩浴を形成し、更に一100メソシ
ュの純クロム粉末を上記溶融塩に対して15wt%添加
した。この溶融塩浴に予め標準条件で焼−2只 − 人、焼もどしされた直径6.5mm、長さ40u+のJ
Is−3KH51試片を8時間浸漬後、取り出して空冷
した。
Example 1) Same as used in Example 1, NaCN053 w
A heat-resistant container containing a mixture of 12 wt% KCl and 35 wt% CaCl was heated in an electric furnace in the atmosphere to form a molten salt bath at 570°C, and 1100 mesosh of pure chromium powder was added to the above mixture. It was added in an amount of 15 wt% based on the molten salt. In this molten salt bath, a J of 6.5 mm in diameter and 40 U+ in length was pre-baked under standard conditions.
After immersing the Is-3KH51 specimen for 8 hours, it was taken out and cooled in the air.

付着浴剤を洗浄除去後、形成された表面層をX線回折で
調べたところ= CrN、CrJ、Fe、Cに相当する
回折線が認められた。
After washing off the adhering bath agent, the formed surface layer was examined by X-ray diffraction, and diffraction lines corresponding to CrN, CrJ, Fe, and C were observed.

次に上記クロム炭窒化物被覆試片(試料階1)について
ガス浸炭焼入されたJIS−3CM415を相手材とし
てファビリー試験機により乾式。
Next, the chromium carbonitride-coated specimen (sample floor 1) was dry-tested using a Fabilly tester using gas carburized and quenched JIS-3CM415 as a mating material.

荷重400kg、回転数30Orpm、摩擦速度0゜1
m/see、試験時間4m1nの条件で摩擦試験を実施
した。また、比較のためJIS−3KH51焼入焼もど
し、試片(試料No、Sl)と窒化処理を施した。5K
H51試片(試料1)&]、s2)についても同様の摩
擦試験を実施した。
Load 400kg, rotation speed 30Orpm, friction speed 0゜1
A friction test was conducted under the conditions of m/see and test time of 4 m1n. In addition, for comparison, JIS-3KH51 quenching and tempering, a specimen (sample No., Sl), and nitriding treatment were performed. 5K
A similar friction test was also conducted on the H51 specimen (sample 1) &], s2).

試料ms1の試片は、約17mg/cIItの摩耗量を
示し、試験開始から30秒後に測定された摩擦係数は0
.280であった。また試籾陽S2の試片は約15■/
 cMの摩耗量を示し、試験開始から30秒後の摩擦係
数は0.265であった。
The specimen of sample ms1 showed a wear amount of about 17 mg/cIIt, and the friction coefficient measured 30 seconds after the start of the test was 0.
.. It was 280. In addition, the test piece of Miyo S2 is approximately 15cm/
The friction coefficient was 0.265 30 seconds after the start of the test.

これに対して本実施例による試料No、 1の試片では
、摩耗量は約2.5■/ cnlと小さく、試験開始か
ら30秒後の摩擦係数も0.093と小さかった。
On the other hand, in the sample No. 1 according to this example, the amount of wear was as small as about 2.5 cm/cnl, and the coefficient of friction 30 seconds after the start of the test was as small as 0.093.

また1020℃の高温の溶融塩浴中に1.5時間浸漬し
て約3μm厚さの炭化バナジウム層(VC)を被覆した
JIS・5KH51試片、あるいは850℃24時間の
条件で化学気相蒸着法(CVD)により8μmの厚さの
Ti (C,N)からなるチタンの炭窒化物を被覆した
JIS−3KHH51試片についても同様の摩擦試験を
行ったところ。
In addition, JIS 5KH51 specimens were coated with a vanadium carbide layer (VC) approximately 3 μm thick by immersing them in a high-temperature molten salt bath at 1020°C for 1.5 hours, or by chemical vapor deposition at 850°C for 24 hours. A similar friction test was also conducted on a JIS-3KHH51 specimen coated with a titanium carbonitride made of Ti (C,N) with a thickness of 8 μm by CVD.

本実施例により処理した試料隘1の試片とほとんど同程
度の摩耗量および摩擦係数であった。このことより2本
実施例により形成した表面層は、高温での溶融塩浸漬法
やCVDにより形成した表面層に比べて、耐摩耗性や耐
焼付性の点において劣っていないことがわかる。
The amount of wear and coefficient of friction were almost the same as those of sample No. 1 treated according to this example. From this, it can be seen that the surface layer formed by the two examples is not inferior in terms of wear resistance and seizure resistance compared to the surface layer formed by molten salt immersion method or CVD at high temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第4図はそれぞれ実施例1.2において本発明
の処理により形成された表面層の断面組織を示す顕微鏡
写真(400倍)、第2図、第5図、第6図、第7図は
それぞれ実施例1.2.8゜9において本発明により処
理された鉄合金材料の表面部のX線マイクロアナライザ
ー分析結果を示す線図、第3図は実施例1において形成
された表面層の層厚さの浸漬時間に対する変化を示す線
図である。
Figures 1 and 4 are micrographs (400x) showing the cross-sectional structure of the surface layer formed by the treatment of the present invention in Example 1.2, Figures 2, 5, 6, and 4, respectively. Figure 7 is a diagram showing the results of X-ray microanalyzer analysis of the surface portion of the iron alloy material treated according to the present invention in Examples 1, 2, 8, and 9, respectively, and Figure 3 is a diagram showing the surface formed in Example 1. FIG. 3 is a diagram showing the change in layer thickness of a layer with respect to immersion time.

Claims (6)

【特許請求の範囲】[Claims] (1)鉄または鉄合金材料と、クロムを含む材料と、ア
ルカリ金属またはアルカリ土類金属のシアン化塩、シア
ン酸塩のうちの1種または2種以上から成る処理剤とを
共存せしめて、650℃以下において加熱処理し、クロ
ム、窒素及び炭素を上記鉄または鉄合金材料表面に拡散
せしめることにより、鉄または鉄合金材料表面にクロム
の炭窒化物から成る表面層を形成せしめることを特徴と
する鉄または鉄合金材料の表面処理方法。
(1) By coexisting an iron or iron alloy material, a chromium-containing material, and a treatment agent consisting of one or more of cyanide salts and cyanates of alkali metals or alkaline earth metals, A surface layer made of chromium carbonitride is formed on the surface of the iron or iron alloy material by heat treatment at 650° C. or lower to diffuse chromium, nitrogen and carbon onto the surface of the iron or iron alloy material. Surface treatment method for iron or iron alloy materials.
(2)鉄または鉄合金材料と、クロムを含む材料と、ア
ルカリ金属またはアルカリ土類金属のシアン化塩、シア
ン酸塩のうちの1種または2種以上及びアルカリ金属ま
たはアルカリ土類金属の塩化物、弗化物、ホウ弗化物、
酸化物、臭化物、ヨウ化物、炭酸塩、硝酸塩、硼酸塩の
うちの1種または2種以上から成る処理剤とを共存せし
めて、650℃以下において加熱処理し、クロム、窒素
及び炭素を上記鉄または鉄合金材料表面に拡散せしめる
ことにより、鉄または鉄合金材料表面にクロムの炭窒化
物から成る表面層を形成せしめることを特徴とする鉄ま
たは鉄合金材料の表面処理方法。
(2) Iron or iron alloy material, material containing chromium, cyanide salt of alkali metal or alkaline earth metal, one or more types of cyanates, and chloride of alkali metal or alkaline earth metal substances, fluorides, boron fluorides,
Chromium, nitrogen, and carbon are removed from the iron by heat treatment at 650°C or lower in the presence of a treatment agent consisting of one or more of oxides, bromides, iodides, carbonates, nitrates, and borates. Alternatively, a method for surface treatment of an iron or iron alloy material, which comprises forming a surface layer of chromium carbonitride on the surface of the iron or iron alloy material by diffusing it onto the surface of the iron or iron alloy material.
(3)上記クロムを含む材料は、純クロム、クロム合金
、クロム化合物の1種または2種以上から成る特許請求
の範囲第(1)項及び第(2)項記載の鉄または鉄合金
材料の表面処理方法。
(3) The chromium-containing material is an iron or iron alloy material according to claims (1) and (2) comprising one or more of pure chromium, a chromium alloy, and a chromium compound. Surface treatment method.
(4)上記加熱処理は、上記処理剤を溶融せしめた溶融
塩浴中にクロムを含む材料と鉄または鉄合金材料とを浸
漬することにより行う特許請求の範囲第(1)項及び第
(2)項記載の鉄または鉄合金材料の表面処理方法。
(4) The heat treatment is carried out by immersing the chromium-containing material and the iron or iron alloy material in a molten salt bath in which the treatment agent is melted. ) Surface treatment method for iron or iron alloy materials.
(5)上記加熱処理は、上記処理剤を溶融せしめると共
に、クロムを含む材料を浸漬した溶融塩浴中で鉄または
鉄合金材料を陰極とし、電解処理により行う特許請求の
範囲第(1)項及び第(2)項記載の鉄または鉄合金材
料の表面処理方法。
(5) The heat treatment is performed by melting the treatment agent and electrolytically treating the iron or iron alloy material as a cathode in a molten salt bath in which the chromium-containing material is immersed. and a method for surface treatment of iron or iron alloy material according to item (2).
(6)上記加熱処理は、上記処理剤とクロムを含む材料
との混合粉末のペーストを鉄または鉄合金材料に塗布し
た状態において行う特許請求の範囲第(1)項及び第(
2)項記載の鉄または鉄合金材料の表面処理方法。
(6) The heat treatment is performed in a state where a paste of mixed powder of the treatment agent and a material containing chromium is applied to the iron or iron alloy material.
2) The surface treatment method for iron or iron alloy material described in section 2).
JP26922086A 1986-07-30 1986-11-12 Surface treatment of iron or iron alloy material Granted JPS63125654A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP26922086A JPS63125654A (en) 1986-11-12 1986-11-12 Surface treatment of iron or iron alloy material
US07/080,828 US4818351A (en) 1986-07-30 1987-07-24 Method for the surface treatment of an iron or iron alloy article
CA000543121A CA1305399C (en) 1986-07-30 1987-07-28 Method for the surface treatment of an iron or iron alloy article
DE3725321A DE3725321C2 (en) 1986-07-30 1987-07-30 Process for the surface treatment of an object made of iron or an iron alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26922086A JPS63125654A (en) 1986-11-12 1986-11-12 Surface treatment of iron or iron alloy material

Publications (2)

Publication Number Publication Date
JPS63125654A true JPS63125654A (en) 1988-05-28
JPH0356308B2 JPH0356308B2 (en) 1991-08-27

Family

ID=17469338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26922086A Granted JPS63125654A (en) 1986-07-30 1986-11-12 Surface treatment of iron or iron alloy material

Country Status (1)

Country Link
JP (1) JPS63125654A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008144654A (en) * 2006-12-08 2008-06-26 Honda Motor Co Ltd Sliding component for valve gear

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008144654A (en) * 2006-12-08 2008-06-26 Honda Motor Co Ltd Sliding component for valve gear

Also Published As

Publication number Publication date
JPH0356308B2 (en) 1991-08-27

Similar Documents

Publication Publication Date Title
US4765847A (en) Method of treating the surface of iron alloy materials
JP5431348B2 (en) Method for boronation of coatings using a fast electrolysis process
US4818351A (en) Method for the surface treatment of an iron or iron alloy article
US3671297A (en) Method of chromizing in a fused salt bath
JPH0365435B2 (en)
CA1036976A (en) Anodically dissolving group v-a element into molten borate bath
US3885059A (en) Method for forming a carbide layer of a IV-b group element of the periodic table on the surface of a cemented carbide article
JPH05140725A (en) Treatment for surface of titanium material
JPS63125654A (en) Surface treatment of iron or iron alloy material
JP2001025843A (en) Manufacture of forged part and die for forging using the same
JPH0356307B2 (en)
JPS63153259A (en) Surface treatment of iron or iron alloy material
JPH0424423B2 (en)
JPS6240362A (en) Surface treatment of iron alloy material
JP2518710B2 (en) Surface treatment method and treatment agent for iron alloy material
EP0122529B1 (en) A method for surface hardening a ferrous-alloy article and the resulting product
US3885064A (en) Method for forming a chromium carbide layer on the surface of an iron, ferrous alloy or cemented carbide article
US3959092A (en) Method for a surface treatment of cemented carbide article
JPS6141984B2 (en)
JPH0447028B2 (en)
JPH0447030B2 (en)
JPH0447029B2 (en)
JP2616814B2 (en) Surface treatment method and treatment agent for iron alloy material
JPS6227578A (en) Treated article of ti material having boron compound layer and its production
JPS6187873A (en) Method for forming metallic compound layer on surface of article to be treated

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees