JPS63125626A - Method and apparatus for producing metal compound particle dispersed metallic composite material - Google Patents

Method and apparatus for producing metal compound particle dispersed metallic composite material

Info

Publication number
JPS63125626A
JPS63125626A JP27049786A JP27049786A JPS63125626A JP S63125626 A JPS63125626 A JP S63125626A JP 27049786 A JP27049786 A JP 27049786A JP 27049786 A JP27049786 A JP 27049786A JP S63125626 A JPS63125626 A JP S63125626A
Authority
JP
Japan
Prior art keywords
metal
chamber
composite material
reaction
reaction chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27049786A
Other languages
Japanese (ja)
Other versions
JPH0649910B2 (en
Inventor
Toshio Natsume
夏目 敏夫
Hirohisa Miura
三浦 宏久
Atsushi Ota
厚 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP27049786A priority Critical patent/JPH0649910B2/en
Publication of JPS63125626A publication Critical patent/JPS63125626A/en
Publication of JPH0649910B2 publication Critical patent/JPH0649910B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To efficiently and inexpensively produce a fine metal compd. particle- dispersed metallic material having uniform quality by bombarding a gas contg. the fine metal compd. particles formed by bringing the vapor of the metal and other elements into reaction to the melt of a matrix metal. CONSTITUTION:The metal 82 is heated and melted by a heater 40 in a crucible 38 enclosed by a heat insulating material 42 in an upper housing 10 to generate the vapor of the metal to form the metal compd. The metal vapor thus formed is introduced together with the carrier gas introduced through a preheating chamber 34 into a reaction chamber 50 having a wire net 60 for accelerating the reaction through a conduit 46 penetrating in the melt 82 of the above- mentioned metal without largely decreasing the temp. thereof. The gaseous mixture composed of the fine grains of the metal compd. and residual gas generated in such a manner is adiabatically expanded and ejected from a diaphragm aperture 52 into a composite material producing chamber 54 subjected to evacuation to a vacuum in a lower housing 12. The jet 70 thereof is bombarded to the melt 72 of the matrix metal in a vessel 74 by which the fine metal compd. particles are dispersed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、金属化合物、即ち金属と他の元素との化合物
の粒子が分散された金属よりなる複合材料に係り、更に
詳細には金属化合物粒子分散金属複合材料の製造方法及
び装置に係る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a composite material made of a metal in which particles of a metal compound, that is, a compound of a metal and another element are dispersed, and more particularly, it relates to a composite material made of a metal in which particles of a metal compound, that is, a compound of a metal and another element are dispersed. Pertains to a method and device for manufacturing metal composite materials.

従来の技術 金属化合物の微粉末又はかかる微粉末が分散された金属
マトリックスよりなる複合材料の製造方法として、本願
出願人と同一の出願人の出願にかかる特開昭58−15
0427号、特開昭60−1、50828号、及び特開
昭60−21”346号の各公報には、金属蒸気と反応
ガスとの混合ガス又は金属化合物の微粒を絞り通路に通
し、その際の断熱膨張によって蒸気又は粒子を急冷させ
ることを含む方法が記載されている。これらの方法によ
れば、従来より公知の他の製造方法に比して粒径が非常
に小さく実質的に均一である高純度の金属化合物の微粉
末又はかかる微粉末を分散粒子とする複合材料を能率よ
く低廉に製造することができる。
Prior Art A method for producing a composite material made of a fine powder of a metal compound or a metal matrix in which such a fine powder is dispersed is disclosed in Japanese Patent Application Laid-Open No. 58-15 filed by the same applicant as the present applicant.
No. 0427, JP-A-60-1, JP-A-60828, and JP-A-60-21''346 disclose that a mixed gas of a metal vapor and a reactive gas or fine particles of a metal compound is passed through a constriction passage. Methods are described that involve quenching vapor or particles by adiabatic expansion during production. It is possible to efficiently and inexpensively produce a fine powder of a highly pure metal compound or a composite material containing such a fine powder as dispersed particles.

発明が解決しようとする問題点 しかし上述の先の提案にかかる製造方法により特に金属
炭化物の微粉末を分散粒子とする複合材料を製造する場
合には以下の如き問題が生じる。
Problems to be Solved by the Invention However, the following problems occur particularly when a composite material having dispersed particles of fine metal carbide powder is manufactured by the manufacturing method according to the above-mentioned earlier proposal.

特開昭58−150427号公報の第3図及び第4図に
示された装置又は特開昭60−21346号公報の第1
図に示された装置による場合■炭素を発生する反応ガス
(例えばメタン、エタン、プロパン等)かガス予熱室内
に於て加熱されるので、反応ガスはガス予熱室内に於て
クラッキング現象を生じて炭素を発生する。金属蒸気発
生室内に於ける化合反応を十分進行させるに足る反応ガ
スを供給すべく反応ガスの流量を高くすると、ガス予熱
室内に炭素か堆積し、最悪の場合にはガス予熱室か栓塞
され、これにより金属蒸気発生室へ反応ガスを供給する
ことかできなくなる。
The apparatus shown in FIGS. 3 and 4 of JP-A No. 58-150427 or No. 1 of JP-A-60-21346
In the case of the apparatus shown in the figure: ■ Since the reactant gas that generates carbon (for example, methane, ethane, propane, etc.) is heated in the gas preheating chamber, the reactant gas causes a cracking phenomenon in the gas preheating chamber. Generates carbon. If the flow rate of the reaction gas is increased in order to supply enough reaction gas to sufficiently advance the combination reaction in the metal vapor generation chamber, carbon will accumulate in the gas preheating chamber, and in the worst case, the gas preheating chamber will be blocked. This makes it impossible to supply reactive gas to the metal vapor generation chamber.

■かかる問題の発生を回避すべく、金属蒸気発生室へ直
接反応ガスを供給することが考えられるが、金属蒸気発
生室内に於ける反応を十分に進行させるべく反応ガスの
流量を高くすると、金属蒸気発生室内の金属溶湯の表面
に金属炭化物の膜が形成され、そのため金属蒸気の発生
が阻害され、その結果金属化合物の微粉末の生成速度が
低下し、また下端にノズルを有する導管内に炭素や金属
化合物が堆積し、最悪の場合にはノズルが栓塞され、そ
の結果金属化合物の微粉末を分散粒子とする複合材料を
製造できなくなることがある。
■In order to avoid such problems, it is possible to supply the reaction gas directly to the metal vapor generation chamber, but if the flow rate of the reaction gas is increased to allow the reaction to proceed sufficiently in the metal vapor generation chamber, A film of metal carbide is formed on the surface of the molten metal in the steam generation chamber, which inhibits the generation of metal vapor, resulting in a reduction in the rate of production of fine powder of the metal compound, and carbon in the conduit with the nozzle at the lower end. In the worst case, the nozzle is blocked, and as a result, it may become impossible to manufacture a composite material containing dispersed particles of fine powder of a metal compound.

特開昭58−1.50427号公報の第5図の装置によ
る場合 この場合には反応ガスが反応室26内へ供給されるので
、−上述の如き■及び■の問題は生じないが、この装置
の場合には金属蒸気発生室5内にて発生された金属蒸気
がノズル11を通過する際の断熱膨張によって急冷され
、そのため反応室26内に導入される時点に於ては既に
比較的低い温度に低下した金属粉子となっており、また
金属粉子はノズル11より噴出する噴流によって非常に
速い速度にて反応室内を通過せしめられるので、反応室
26内に於て十分な化合反応を行イつせることか困難で
あり、従って未反応の金属を含まない高純度の金属炭化
物の微粉末を製造することか困難であり、従って未反応
の金属部分又は未反応の金属粒子を含まない複合材料を
製造することが困難である。
In the case of the apparatus shown in FIG. 5 of JP-A-58-1.50427, since the reaction gas is supplied into the reaction chamber 26, the above-mentioned problems (1) and (2) do not occur. In the case of the apparatus, the metal vapor generated in the metal vapor generation chamber 5 is rapidly cooled by adiabatic expansion when passing through the nozzle 11, so that the metal vapor is already relatively low at the time it is introduced into the reaction chamber 26. The temperature of the metal powder has decreased, and since the metal powder is passed through the reaction chamber at a very high speed by the jet stream ejected from the nozzle 11, a sufficient combination reaction can be carried out in the reaction chamber 26. Therefore, it is difficult to produce a fine metal carbide powder of high purity that does not contain unreacted metal, and therefore does not contain unreacted metal parts or unreacted metal particles. Composite materials are difficult to manufacture.

特開昭60−150828号公報の製造方法による場合 反応ガスが下室4のみへ供給される場合には」二連の■
及び■の問題は発生しない。しかし下室4へ導入される
金属粒子は既に大きく温度低下しているので、」二連の
特開昭58−150427号公報の第5図に記載された
装置の場合と同様、金属粒子と反応ガスとを速やかに反
応させることが困難であり、金属粒子の一部は未反応の
まま残存し、従って未反応の金属部分又は未反応の金属
粒子を含まない複合材料を製造することが困難である。
In the case of the production method disclosed in JP-A-60-150828, when the reaction gas is supplied only to the lower chamber 4, double
and ■ problems do not occur. However, since the temperature of the metal particles introduced into the lower chamber 4 has already decreased significantly, they react with the metal particles as in the case of the device described in FIG. It is difficult to quickly react with the gas, and some of the metal particles remain unreacted, making it difficult to produce a composite material that does not contain unreacted metal parts or unreacted metal particles. be.

また化合反応がF室の全域に於て生起し、また生じた金
属化合物の微粉末の流速が小さいので、微粉末がマトリ
ックスの溶湯中に侵入する効率がきわめて悪く、そのた
め複合材料を能率よく低廉に製造することができないと
いう問題がある。
In addition, since the compounding reaction occurs throughout the F chamber and the flow velocity of the resulting fine powder of the metal compound is low, the efficiency with which the fine powder penetrates into the molten metal of the matrix is extremely low. The problem is that it cannot be manufactured.

本発明は、上述の如き先の提案にかかる金属化合物の微
粉末の製造方法を利用して、又は上述の先の提案にかか
る複合材料の製造方法により金属化合物粒子分散金属複
合材料を製造する場合に於ける上述の如き問題に鑑み、
金属化合物が金属炭化物である場合にも粒径か非常に小
さく実質的に均一である高純度の金属化合物の微粉末が
分散された金属マトリックスよりなる複合材料を能率よ
く低廉に製造することのできる方法及び装置を提供する
ことを目的としている。
The present invention is directed to the case where a metal composite material in which metal compound particles are dispersed is produced by using the method for producing fine powder of a metal compound according to the above-mentioned earlier proposal or by the method for producing a composite material according to the above-mentioned earlier proposal. In view of the above-mentioned problems,
Even when the metal compound is a metal carbide, it is possible to efficiently and inexpensively produce a composite material consisting of a metal matrix in which fine powder of a high-purity metal compound with a very small particle size and substantially uniformity is dispersed. The present invention aims to provide methods and apparatus.

問題点を解決するための手段 1−述の如き11J的は、本発明によれば、金属化合物
を構成すべき金属の蒸気をその温度を大きく低下させる
ことなく反応室へ導入し、前記金属化合物を構成すべき
他の元素を含む反応ガスを前記反応室へ導入し、前記金
属蒸気と前記反応ガスとを混合することにより前記金属
蒸気と前記他の元素とを反応させ、かくして生じた金属
化合物の微粒と残留ガスとの混合ガスを断熱膨張用の絞
り開口を経て前記反応室より噴出させ、その噴流をマト
リックス金属の溶湯に衝突させることを含む金属化合物
粒子分散金属複合材料の製造方法、及び金属蒸気発生室
と、反応室と、複合材料製造室と、前記金属蒸気発生室
を所定の温度に加熱する手段と、前記金属蒸気発生室と
前記反応室とを連通接続し前記金属蒸気発生室内の金属
蒸気を大きく温度低下させることなく前記反応室へ導く
通路手段と、前記反応室内へ反応ガスを供給する手段と
、前記反応室と前記複合材料製造室とを連通接続する絞
り開口と、前記絞り開口よりの噴流を受ける位置にて前
記腹合材料製造室内に配置されたマトリックス金属溶湯
貯容手段と、前記複合材料製造室内を減圧する手段とを
有する金属化合物粒子分散金属複合材料の製造装置によ
って達成される。
Means for Solving the Problems 1 - According to the present invention, the vapor of the metal that is to constitute the metal compound is introduced into the reaction chamber without greatly reducing its temperature, and the metal compound is A reaction gas containing another element to be formed is introduced into the reaction chamber, and the metal vapor and the other element are reacted by mixing the metal vapor and the reaction gas, and the metal compound thus generated is formed. A method for producing a metal composite material in which metal compound particles are dispersed, the method comprising ejecting a mixed gas of the fine particles and residual gas from the reaction chamber through an adiabatic expansion aperture opening, and colliding the jet with a molten matrix metal; a metal vapor generation chamber, a reaction chamber, a composite material manufacturing chamber, a means for heating the metal vapor generation chamber to a predetermined temperature, and a means for communicating and connecting the metal vapor generation chamber and the reaction chamber, passage means for guiding the metal vapor into the reaction chamber without greatly reducing the temperature; means for supplying a reaction gas into the reaction chamber; a throttle opening that communicates and connects the reaction chamber and the composite material production chamber; By means of a manufacturing apparatus for a metal composite material in which metal compound particles are dispersed, the metal compound particle-dispersed metal composite material manufacturing apparatus has a matrix metal molten metal storage means disposed in the composite material manufacturing chamber at a position receiving the jet from the aperture opening, and a means for reducing the pressure in the composite material manufacturing chamber. achieved.

発明の作用及び効果 本発明の方法によれば、金属蒸気はその温度を大きく低
下せしめられることなく反応室へ導入され、比較的高い
温度状態にて反応ガスと混合され反応ガスと反応せしめ
られるので、金属蒸気と金属化合物を構成すべき他の元
素との化合反応が十分に進行し、またかくして生じた金
属化合物の微粒と残留ガスとの混合ガスが断熱膨張用の
絞り開口を経て反応室より噴出せしめられ、その噴流が
マトリックス金属の溶湯に衝突せしめられるので、金属
化合物が金属炭化物である場合にも、上述の先の提案に
かかる従来の製造方法に比して高純度の金属化合物の微
粉末を分散粒子とする複合材料を能率よく低廉に製造す
ることができる。
Functions and Effects of the Invention According to the method of the present invention, metal vapor is introduced into the reaction chamber without greatly reducing its temperature, and is mixed with and reacted with the reaction gas at a relatively high temperature. , the chemical reaction between the metal vapor and other elements constituting the metal compound has sufficiently progressed, and the resulting mixed gas of the fine particles of the metal compound and the residual gas exits the reaction chamber through the adiabatic expansion aperture. Since the jet is made to collide with the molten matrix metal, even when the metal compound is a metal carbide, it is possible to produce a fine amount of high-purity metal compound compared to the conventional manufacturing method according to the above-mentioned earlier proposal. Composite materials containing dispersed particles of powder can be efficiently and inexpensively produced.

また本発明の製造装置によれば、金属蒸気発生室及び反
応室は金属蒸気発生室内の金属蒸気を大きく温度低下さ
せることなく反応室へ導く通路手段により互いに連通接
続されており、また反応室−9= と粉末捕集室とを連通接続する絞り開口は反応室内にて
十分な反応が行われることにより生じた金属化合物の微
粒を含む混合ガスを複合材料製造室へ噴出しマトリック
ス金属の溶湯に衝突させるよう構成されているので、上
述の如き本発明の製造方法の実施を容易に且確実に実施
することができる。
Further, according to the manufacturing apparatus of the present invention, the metal vapor generation chamber and the reaction chamber are connected to each other by a passage means that guides the metal vapor in the metal vapor generation chamber to the reaction chamber without greatly reducing the temperature. 9= The aperture opening that communicates and connects the powder collection chamber with the gas mixture containing fine particles of the metal compound generated by sufficient reaction in the reaction chamber is ejected into the composite material manufacturing chamber and converted into molten metal of the matrix metal. Since they are configured to collide, the manufacturing method of the present invention as described above can be carried out easily and reliably.

本発明の方法の一つの詳細な特徴によれば、反応ガスは
半径方向内方かつ周方向かつ絞り開口へ向けて傾斜した
方向にて反応室内へ導入され、これに対応して本発明の
装置の一つの詳細な特徴によれば、反応室内へ反応ガス
を供給する手段は半径方向内方かつ周方向かつ絞り開口
へ向けて傾斜した方向へ反応ガスを供給するよう構成さ
れている。かかる方法及び装置によれば、金属蒸気と反
応ガスとの混合及び反応が良好に行われることが確保さ
れる。
According to one detailed feature of the method of the invention, the reaction gas is introduced into the reaction chamber in a direction radially inwardly and circumferentially and obliquely towards the diaphragm opening; According to one detailed feature, the means for supplying the reaction gas into the reaction chamber are configured to supply the reaction gas in a direction radially inwardly and circumferentially and obliquely towards the aperture opening. According to such a method and apparatus, it is ensured that the metal vapor and the reaction gas are mixed and reacted well.

本発明の装置の他の一つの詳細な特徴によれば、反応室
内には該反応室内へ導入される金属蒸気と反応ガスとの
混合及び反応を促進させる手段が設けられる。かかる構
成によれば、金属蒸気と反応ガスとの混合及び反応が更
に一層向上される。
According to another detailed feature of the apparatus of the invention, the reaction chamber is provided with means for promoting the mixing and reaction of the metal vapor and the reaction gas introduced into the reaction chamber. According to this configuration, the mixing and reaction of the metal vapor and the reaction gas are further improved.

本発明の装置の更に他の一つの詳細な特徴によれば、反
応室内を所定の温度に加熱する手段が設けられ、該手段
により金属蒸気が条間に凝縮することを防止し且反応ガ
スか分解し易い温度に反応室内か維持される。
According to yet another detailed feature of the apparatus of the invention, means are provided for heating the interior of the reaction chamber to a predetermined temperature, which means prevent the metal vapor from condensing between the strips and prevent the reaction gas from condensing. The reaction chamber is maintained at a temperature that facilitates decomposition.

尚本発明による方法及び装置は上述の如き先の提案にか
かる方法によっては能率よく且低廉に製造することが困
難な金属炭化物の微粉末を分散粒子とする複合材料の製
造に対し適用されるに適したものであるが、本発明の方
法及び装置は金属酸化物、金属窒化物の如き他の任意の
金属化合物の微粉末を分散粒子とする複合材料の製造に
適用されてよいものである。
The method and apparatus according to the present invention are applied to the production of composite materials containing dispersed particles of fine powder of metal carbide, which is difficult to produce efficiently and inexpensively using the methods proposed above. Although suitable, the method and apparatus of the present invention may be applied to the production of composite materials having dispersed particles of fine powder of any other metal compound such as metal oxides or metal nitrides.

以下に添付の図を参照しつつ、本発明を実施例について
詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention will be explained in detail below by way of example embodiments with reference to the accompanying figures.

実施例 第1図は本発明による複合材料製造装置の一つの実施例
を示す縦断面図である。
Embodiment FIG. 1 is a longitudinal sectional view showing one embodiment of a composite material manufacturing apparatus according to the present invention.

図に於て、10及び12はそれぞれアツパノ)ウジング
及びロアハウジングを示している。ア・ソックハウジン
グ10は実質的に一体の底壁14を有し軸線Aに沿って
延在する本体16と、該本体の」一端を閉ざす蓋部材1
8とよりなっている。またロアハウジング]2は軸線A
に沿って延在し底壁14により上端を閉ざされた本体2
0と、該本体の下端を閉ざす底壁部材22とよりなって
いる。蓋部材18と本体16の」一端との間、底壁14
と本体20の1一端との間、本体20の下端と底壁部材
22との間にはそれぞれシール24.26.28が配置
されており、これによりアツノクノ\ウジング及びロア
ハウジングの内部が大気より遮断されている。本体16
及び20の側壁は二重円筒状をなしており、それぞれ冷
却水通路30及び32を郭定している。
In the figure, 10 and 12 indicate the upper housing and the lower housing, respectively. The sock housing 10 includes a main body 16 having a substantially integral bottom wall 14 and extending along an axis A, and a lid member 1 closing one end of the main body.
8 and more. Also, lower housing] 2 is axis A
A main body 2 which extends along the main body 2 and whose upper end is closed by a bottom wall 14
0 and a bottom wall member 22 that closes the lower end of the main body. Between the lid member 18 and one end of the main body 16, the bottom wall 14
and one end of the main body 20, and between the lower end of the main body 20 and the bottom wall member 22, seals 24, 26, and 28 are arranged, respectively. It is blocked. Main body 16
The side walls of and 20 are double cylindrical and define cooling water passages 30 and 32, respectively.

アッパハウジング10内にはメアンダ状のガス予熱室3
4と、該ガス予熱室と連通ずる金属蒸気発生室36とを
内部に有する黒鉛製のるつぼ38が配置されている。る
つぼ38の周りにはるつぼの内部を所定の温度に加熱す
るヒータ40が配置されており、るつぼ38及びヒータ
40は底壁−にに配置された箱形の断熱材42内に収容
されている。るつぼ38の天井壁にはガス予熱室34と
連通ずるキャリアガス導入導管44が固定されており、
るつぼ38の底壁には金属蒸気搬送導管46が固定され
ており、該導管のに方部分は金属蒸気発生室36内を1
一方へ延在しており、導管46のF方部分は底壁14を
貫通して下方へ延在している。
Inside the upper housing 10 is a meander-shaped gas preheating chamber 3.
4, and a graphite crucible 38 having therein a metal vapor generation chamber 36 communicating with the gas preheating chamber. A heater 40 for heating the inside of the crucible to a predetermined temperature is arranged around the crucible 38, and the crucible 38 and the heater 40 are housed in a box-shaped heat insulating material 42 arranged on the bottom wall. . A carrier gas introduction conduit 44 communicating with the gas preheating chamber 34 is fixed to the ceiling wall of the crucible 38.
A metal vapor conveying conduit 46 is fixed to the bottom wall of the crucible 38, and the side portion of the conduit carries the inside of the metal vapor generation chamber 36.
The F side portion of the conduit 46 extends downward through the bottom wall 14 .

底壁14の下面には軸線Aに沿って導管46と同心に反
応室部材48が固定されおり、該部材は底壁】4と共働
して反応室50を郭定している。
A reaction chamber member 48 is fixed to the lower surface of the bottom wall 14 concentrically with the conduit 46 along the axis A, and cooperates with the bottom wall 4 to define a reaction chamber 50.

反応室50は−L端にて導管46により金属蒸気発生室
36と連通接続されており、下端にて絞り開口52を経
てロアハウジング内の複合8料製造室54と連通してい
る。反応室部材48の周りには必要に応じて反応室内を
所定の温度に加熱するヒータ56が配設されている。ま
た反応室50内には複数個の、図示の実施例に於ては周
方向に互いに90度隔置された四つの反応ガス導入導管
58を経て反応ガスが導入されるようになっている。
The reaction chamber 50 is connected to the metal vapor generation chamber 36 by a conduit 46 at the -L end, and communicated with a composite 8-material production chamber 54 in the lower housing through a throttle opening 52 at the lower end. A heater 56 is arranged around the reaction chamber member 48 to heat the inside of the reaction chamber to a predetermined temperature as necessary. Further, a reaction gas is introduced into the reaction chamber 50 through a plurality of reaction gas introduction conduits 58, in the illustrated embodiment four reaction gas introduction conduits 58 spaced apart from each other by 90 degrees in the circumferential direction.

図示の如く、各導管58の反応室50内に位置する開口
部58aは半径方向内方かつ下方かつ周方向へ向けて延
在するよう屈曲されており、これにより反応ガスが螺旋
状に反応室内へ導入され、導管46を経て反応室へ供給
される金属蒸気及びキャリアガスと均一に混合されるよ
うになっている。また反応室50の軸線方向長さは金属
蒸気と反応ガスとが十分反応するに足る長さに設定され
ている。更に金属蒸気と反応ガスとの混合及び反応が十
分に行われるよう、反応室50内には導管58の開口部
58aと絞り開口52との間にて耐熱金属よりなる金網
60が設けられている。
As shown in the figure, the opening 58a of each conduit 58 located inside the reaction chamber 50 is bent so as to extend radially inward, downward, and circumferentially, thereby allowing the reaction gas to flow spirally into the reaction chamber. The metal vapor and carrier gas are uniformly mixed with the metal vapor and carrier gas supplied to the reaction chamber via conduit 46. Further, the length of the reaction chamber 50 in the axial direction is set to a length sufficient to cause sufficient reaction between the metal vapor and the reaction gas. Further, a wire mesh 60 made of a heat-resistant metal is provided in the reaction chamber 50 between the opening 58a of the conduit 58 and the throttle opening 52 so that the metal vapor and the reaction gas are sufficiently mixed and reacted. .

ロアハウジング20の側壁の下方部には途中に開閉弁6
4を有する導管66の一端が連結されており、該導管の
他端には真空ポンプ68が接続されており、これにより
複合材料製造室54等が所定の圧力に減圧されるように
なっている。複合8料製造室54内には絞り開口52の
下ノjに、即ち絞り開口よりの噴流70を受ける位置に
マトリックス金属の溶湯72を貯容する容器74が配置
されている。図示の実施例に於ては、容器74は底壁部
材22と一体に形成されており、その主要部は底壁部材
よりF方へ突出している。容器74の周りには容器内を
加熱して溶湯72を溶融状態に維持するヒータ76が配
設されている。また溶湯72はシャフト78を介して図
には示されていないモータにより回転駆動されるプロペ
ラ80により撹拌されるようになっている。
An on-off valve 6 is located in the lower part of the side wall of the lower housing 20.
4 is connected to one end of a conduit 66, and a vacuum pump 68 is connected to the other end of the conduit, thereby reducing the pressure in the composite material manufacturing chamber 54, etc. to a predetermined pressure. . A container 74 for storing a matrix metal molten metal 72 is disposed in the composite 8 material production chamber 54 at the bottom j of the aperture opening 52, that is, at a position that receives the jet stream 70 from the aperture opening. In the illustrated embodiment, the container 74 is formed integrally with the bottom wall member 22, and its main portion protrudes from the bottom wall member in the direction F. A heater 76 is disposed around the container 74 to heat the inside of the container and maintain the molten metal 72 in a molten state. Further, the molten metal 72 is agitated via a shaft 78 by a propeller 80 which is rotationally driven by a motor (not shown).

尚金属蒸気及び反応ガスの組合せの如何や装置の運転パ
ラメータの設定如何によっては、ヒータ56への通電が
省略され又はヒータ56の自身が省略されてよい。また
金属蒸気と反応ガスとの均−混合及び相互反応を促進す
るための手段としての金網60は、反応室50内の流体
の乱流を発生させ得るものである限り、反応室を横切っ
て延在する複数個の線材の如き他の任意の構造のもので
あってよい。
Note that depending on the combination of metal vapor and reaction gas and the setting of the operating parameters of the apparatus, the energization of the heater 56 may be omitted or the heater 56 itself may be omitted. Further, the wire mesh 60 as a means for promoting homogeneous mixing and mutual reaction between the metal vapor and the reaction gas may be extended across the reaction chamber 50 as long as it can generate turbulent flow of the fluid within the reaction chamber 50. It may be of any other construction, such as a plurality of wires.

次に−1−述の如く構成された複合材料製造室置を用い
て行われる本発明の製造方法の実施例について説明する
Next, an embodiment of the manufacturing method of the present invention, which is carried out using the composite material manufacturing chamber configured as described in -1-- will be described.

まず容器74内へマトリックス金属の溶湯を導入し、ヒ
ータ76により溶湯を所定の温度に加熱し、また金属蒸
気発生室36内に金属化合物を構成すべき固体又は液体
の金属を装入し、キャリアガス導入導管よりキャリアガ
スを導入しつつ真空ポンプ68を作動させる。次いて冷
却水通路30及び32に冷却水を流しつつ、ヒータ40
(及び56)に通電を行って金属蒸気発生室(及び反応
室50)を所定の温度に加熱する。この段階に於ては金
属蒸気発生室内へ装入された金属は金属溶湯82となり
、図には示されていないがその液面より金属蒸気を発生
する。次いで反応ガス導入導管58より反応室50内へ
反応ガスを導入する。
First, a molten metal of the matrix metal is introduced into the container 74, the molten metal is heated to a predetermined temperature by the heater 76, and a solid or liquid metal to form a metal compound is charged into the metal vapor generation chamber 36. The vacuum pump 68 is operated while introducing carrier gas from the gas introduction conduit. Next, while flowing cooling water into the cooling water passages 30 and 32, the heater 40
(and 56) to heat the metal vapor generation chamber (and reaction chamber 50) to a predetermined temperature. At this stage, the metal charged into the metal vapor generation chamber becomes molten metal 82, and although not shown in the figure, metal vapor is generated from the liquid surface. Next, a reaction gas is introduced into the reaction chamber 50 through the reaction gas introduction conduit 58 .

この場合金属溶湯82より発生した金属蒸気は金属蒸気
発生室内にてキャリアガスと混合され、該混合ガスは大
きく温度低下することなく導管46を経て反応室へ流入
し、導管58を経て反応室へ導入された反応ガスと混合
され、これにより金属蒸気と反応ガスとが反応して高温
の金属化合物の微粒となり、かかる微粒を含む混合ガス
は絞り開口52より噴流70となって噴出し、該絞り開
1−1を通過する際の断熱膨張によって急冷される。
In this case, the metal vapor generated from the molten metal 82 is mixed with the carrier gas in the metal vapor generation chamber, and the mixed gas flows into the reaction chamber via the conduit 46 without significantly decreasing the temperature, and then flows into the reaction chamber via the conduit 58. The metal vapor and the reaction gas react to form fine particles of a high-temperature metal compound, and the mixed gas containing such fine particles is ejected as a jet 70 from the aperture opening 52, It is rapidly cooled by adiabatic expansion when passing through the opening 1-1.

かくして生じた金属化合物の微粉末を含む噴流7〔]は
溶湯72に衝突し、これにより微粉末が溶湯中に侵入し
、微粉末と溶湯とがプロペラ80により均一に撹拌混合
される 尚この場合、キャリアガスの流量、反応ガスの流は、各
室内の圧力等を調節することにより、生成する金属化合
物の微粉末の大きさを変化させることかでき、また金属
蒸気発生室内の温度や反応ガスの流は等を調節すること
により、金属化合物の微粉末の単位時間当りの生成はを
変化させることかできる。
The jet stream 7 containing the fine powder of the metal compound thus generated collides with the molten metal 72, whereby the fine powder penetrates into the molten metal, and the fine powder and the molten metal are uniformly stirred and mixed by the propeller 80. In this case, By adjusting the pressure in each chamber, the flow rate of the carrier gas and the flow of the reaction gas can be adjusted to change the size of the fine powder of the metal compound produced, and the temperature in the metal vapor generation chamber and the reaction gas can be changed. By adjusting the flow rate, etc., the amount of fine metal compound powder produced per unit time can be changed.

次に第1図に示された?i合合材製製造装置用いて行わ
れた本発明の製造方法の幾つかの具体例について説明す
る。
Next, what is shown in Figure 1? Some specific examples of the manufacturing method of the present invention performed using a composite material manufacturing apparatus will be described.

只−住−1 金属溶湯82としてケイ素溶湯を選定し、マド−1,7
− リックス金属の溶湯として純アルミニウムの溶湯を選定
し、キャリアガスとしてアルゴンを選定し、反応ガスと
してメタンガスを選定し、ヒータ56に通電を行うこと
なく下記の表1に示された条件にて第1図に示された装
置を運転することにより、炭化ケイ素の微粉末か分散さ
れた純アルミニウムよりなる複合材料を製造した。
Tadashi-Sumi-1 Silicon molten metal is selected as the molten metal 82, and Mad-1 and 7 are selected.
- Select pure aluminum molten metal as the molten metal, select argon as the carrier gas, select methane gas as the reaction gas, and conduct the heating under the conditions shown in Table 1 below without energizing the heater 56. By operating the apparatus shown in Figure 1, a composite material consisting of pure aluminum in which fine powder of silicon carbide was dispersed was produced.

表  1 Si溶湯の温度+  2000℃ アルゴンの流量= 2ノ/m1n CH4ガスの流ft:  3J/min金属蒸気発生室
の圧カニ  15Torr反応室の圧力、 コ0Tor
r 複合材料製造室の圧力+  2Torrその結果純アル
ミニウムの溶湯中に平均粒径的50OAの炭化ケイ素微
粉末を約40g/hrの速度にて捕集することかでき、
前述の特開昭60−21346号公報に記載された方法
の場合に比して、微粉末の体積率が同一である複合材料
の製造速度を約5〜10倍に向上させることができた。
Table 1 Temperature of Si molten metal + 2000℃ Argon flow rate = 2 no/m1n CH4 gas flow ft: 3 J/min Pressure of metal vapor generation chamber 15 Torr Pressure of reaction chamber, 0 Torr
r Pressure in the composite material manufacturing chamber + 2 Torr As a result, silicon carbide fine powder with an average particle size of 50 OA can be collected in the pure aluminum molten metal at a rate of about 40 g/hr,
Compared to the method described in JP-A No. 60-21346, the production speed of a composite material with the same volume fraction of fine powder could be improved by about 5 to 10 times.

また炭素の蓄積等による装置の運転」−の障害が生じる
ことなく約100時間に亙り複合材料の製造を行うこと
ができた。
In addition, the composite material could be manufactured for about 100 hours without any trouble in the operation of the apparatus due to carbon accumulation or the like.

具体例2 金属溶湯82及びマトリックス金属の溶湯として純アル
ミニウム溶湯を選定し、キャリアガスとしてアルゴンを
選定し、反応ガスとしてメタンガスを選定し、ヒータ5
6に通電を行うことなく下記の表2に示された条件にて
第1図に示された装置を運転することにより、炭化アル
ミニウムの微粉末が分散された純アルミニウムよりなる
複合材料を製造した。
Specific example 2 Pure aluminum molten metal is selected as the molten metal 82 and the molten matrix metal, argon is selected as the carrier gas, methane gas is selected as the reaction gas, and the heater 5
By operating the apparatus shown in Figure 1 under the conditions shown in Table 2 below without applying electricity, a composite material made of pure aluminum in which fine powder of aluminum carbide was dispersed was manufactured. .

表  2 A1溶湯の温度:  1800℃ アルゴンの流量; 2ノ/ m1n CH4ガスの流量: 4ノ/min 金属蒸気発生室の圧カニ  17Torr反応室の圧カ
ニ  14Torr 複合材料製造室の圧カニ  2. 5Torrその結果
純アルミニウムの溶湯中に平均粒径的4ooAの炭化ア
ルミニウム微粉末を約50g/hrの速度にて捕集する
ことができ、前述の特開昭60−21346号公報に記
載された方法の場合に比して、微粉末の体積率が同一で
ある複合材料の製造速度を約2〜3倍に向上させること
ができた。また炭素の蓄積等による装置の運転」二の障
害が生じることなく約110時間に亙り複合材料の製造
を行うことができた。
Table 2 Temperature of A1 molten metal: 1800°C Argon flow rate: 2 no/m1n CH4 gas flow rate: 4 no/min Pressure crab in metal vapor generation chamber 17 Torr Pressure crab in reaction chamber 14 Torr Pressure crab in composite material production room 2. 5 Torr.As a result, fine aluminum carbide powder with an average particle size of 40A can be collected in the pure aluminum molten metal at a rate of about 50 g/hr, using the method described in the above-mentioned Japanese Patent Application Laid-Open No. 60-21346. The manufacturing speed of a composite material with the same volume fraction of fine powder could be improved by about 2 to 3 times compared to the case of . In addition, the composite material could be manufactured for about 110 hours without any troubles such as "operation of the apparatus" due to carbon accumulation or the like.

以」−に於ては本発明を特定の実施例及び幾っがの具体
例について詳細に説明したが、本発明はこ−20= れらの実施例及び具体例に限定されるものではなく、本
発明の範囲内にて他の種々の実施例が可能であることは
当業者にとって明らかであろう。
Although the present invention has been described in detail with reference to specific embodiments and specific examples below, the present invention is not limited to these embodiments and specific examples. It will be apparent to those skilled in the art that various other embodiments are possible within the scope of the invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による複合材料製造装置の一つの実施例
を示す縦断面図である。 ]0・・・アッパハウジング、12・・・ロアハウジン
グ、14・・・底壁、16・・・本体、18・・・蓋部
材、20・・・本体、22・・・底壁部材、24.26
.28・・・シール、30.32・・・冷却水通路、3
4・・・ガス予熱室、36・・・金属蒸気発生室、38
・・・るつぼ、40・・・ヒータ、42・・・断熱材、
44・・・キャリアガス導入導管、46・・・金属蒸気
搬送導管、48・・・反応室部利、50・・・反応室、
52・・・絞り開口、54・・・複合材料製造室、56
・・・ヒータ、58・・・反応ガス導入導管、60・・
・金網、64・・・開閉弁、66・・導管、68・・・
真空ポンプ、70・・・噴流、72・・・マトリックス
金属の溶湯、74・・・容器、76・・・ヒータ。 78・・・シャフト、80・・プロペラ、82・・・金
属溶湯 第1図
FIG. 1 is a longitudinal sectional view showing one embodiment of a composite material manufacturing apparatus according to the present invention. ] 0... Upper housing, 12... Lower housing, 14... Bottom wall, 16... Main body, 18... Lid member, 20... Main body, 22... Bottom wall member, 24 .26
.. 28...Seal, 30.32...Cooling water passage, 3
4... Gas preheating chamber, 36... Metal vapor generation chamber, 38
... Crucible, 40... Heater, 42... Insulation material,
44...Carrier gas introduction conduit, 46...Metal vapor transport conduit, 48...Reaction chamber section, 50...Reaction chamber,
52... Aperture opening, 54... Composite material manufacturing room, 56
...Heater, 58...Reaction gas introduction conduit, 60...
・Wire mesh, 64... Open/close valve, 66... Conduit, 68...
Vacuum pump, 70... Jet flow, 72... Molten metal of matrix metal, 74... Container, 76... Heater. 78...shaft, 80...propeller, 82...molten metal Figure 1

Claims (5)

【特許請求の範囲】[Claims] (1)金属化合物を構成すべき金属の蒸気をその温度を
大きく低下させることなく反応室へ導入し、前記金属化
合物を構成すべき他の元素を含む反応ガスを前記反応室
へ導入し、前記金属蒸気と前記反応ガスとを混合するこ
とにより前記金属蒸気と前記他の元素とを反応させ、か
くして生じた金属化合物の微粒と残留ガスとの混合ガス
を断熱膨張用の絞り開口を経て前記反応室より噴出させ
、その噴流をマトリックス金属の溶湯に衝突させること
を含む金属化合物粒子分散金属複合材料の製造方法。
(1) Introducing the vapor of the metal to constitute the metal compound into the reaction chamber without significantly reducing its temperature, introducing into the reaction chamber a reaction gas containing other elements to constitute the metal compound, and By mixing the metal vapor and the reaction gas, the metal vapor and the other element are caused to react, and the resulting mixed gas of the fine particles of the metal compound and the residual gas is passed through the adiabatic expansion aperture to react with the other element. A method for manufacturing a metal composite material in which metal compound particles are dispersed, the method comprising ejecting the jet from a chamber and colliding the jet with a molten matrix metal.
(2)特許請求の範囲第1項の金属化合物粒子分散金属
複合材料の製造方法に於て、前記反応ガスは半径方向内
方かつ周方向かつ絞り開口へ向けて傾斜した方向にて反
応室内へ導入されることを特徴とする金属化合物粒子分
散金属複合材料の製造方法。
(2) In the method for manufacturing a metal composite material in which metal compound particles are dispersed in claim 1, the reaction gas is introduced into the reaction chamber in a direction radially inward, circumferentially, and inclined toward the aperture opening. A method for producing a metal composite material in which metal compound particles are dispersed.
(3)金属蒸気発生室と、反応室と、複合材料製造室と
、前記金属蒸気発生室を所定の温度に加熱する手段と、
前記金属蒸気発生室と前記反応室とを連通接続し前記金
属蒸気発生室内の金属蒸気を大きく温度低下させること
なく前記反応室へ導く通路手段と、前記反応室内へ反応
ガスを供給する手段と、前記反応室と前記複合材料製造
室とを連通接続する絞り開口と、前記絞り開口よりの噴
流を受ける位置にて前記複合材料製造室内に配置された
マトリックス金属溶湯貯容手段と、前記複合材料製造室
内を減圧する手段とを有する金属化合物粒子分散金属複
合材料の製造装置。
(3) a metal vapor generation chamber, a reaction chamber, a composite material production chamber, and means for heating the metal vapor generation chamber to a predetermined temperature;
passage means for communicating and connecting the metal vapor generation chamber and the reaction chamber and guiding the metal vapor in the metal vapor generation chamber to the reaction chamber without greatly reducing the temperature; and means for supplying a reaction gas into the reaction chamber; a diaphragm opening that communicates and connects the reaction chamber and the composite material manufacturing chamber; a matrix metal molten metal storage means disposed within the composite material manufacturing chamber at a position receiving the jet from the diaphragm opening; and a means for reducing the pressure of the metal compound particle-dispersed metal composite material.
(4)特許請求の範囲第3項の金属化合物粒子分散金属
複合材料の製造装置に於て、前記反応室内へ反応ガスを
供給する手段は前記反応ガスを半径方向内方かつ周方向
かつ絞り開口へ向けて傾斜した方向へ反応ガスを供給す
るよう構成されていることを特徴とする金属化合物粒子
分散金属複合材料の製造装置。
(4) In the apparatus for manufacturing a metal composite particle-dispersed metal composite material according to claim 3, the means for supplying the reaction gas into the reaction chamber is configured to supply the reaction gas inward in the radial direction, in the circumferential direction, and through the aperture opening. 1. An apparatus for producing a metal composite material in which metal compound particles are dispersed, characterized in that the apparatus is configured to supply a reactive gas in a direction inclined toward.
(5)特許請求の範囲第3項又は第4項の金属化合物粒
子分散金属複合材料の製造装置に於て、前記反応室には
該反応室内へ導入される金属蒸気と反応ガスとの混合及
び反応を促進させる手段が設けられていることを特徴と
する金属化合物粒子分散金属複合材料の製造装置。
(5) In the apparatus for manufacturing a metal composite particle-dispersed metal composite material according to claim 3 or 4, the reaction chamber contains a mixture of metal vapor and a reaction gas introduced into the reaction chamber; 1. An apparatus for producing a metal composite material in which metal compound particles are dispersed, characterized in that a means for promoting the reaction is provided.
JP27049786A 1986-11-13 1986-11-13 Method and apparatus for producing metal compound particle-dispersed metal composite material Expired - Lifetime JPH0649910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27049786A JPH0649910B2 (en) 1986-11-13 1986-11-13 Method and apparatus for producing metal compound particle-dispersed metal composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27049786A JPH0649910B2 (en) 1986-11-13 1986-11-13 Method and apparatus for producing metal compound particle-dispersed metal composite material

Publications (2)

Publication Number Publication Date
JPS63125626A true JPS63125626A (en) 1988-05-28
JPH0649910B2 JPH0649910B2 (en) 1994-06-29

Family

ID=17487096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27049786A Expired - Lifetime JPH0649910B2 (en) 1986-11-13 1986-11-13 Method and apparatus for producing metal compound particle-dispersed metal composite material

Country Status (1)

Country Link
JP (1) JPH0649910B2 (en)

Also Published As

Publication number Publication date
JPH0649910B2 (en) 1994-06-29

Similar Documents

Publication Publication Date Title
US4386258A (en) High frequency magnetic field coupling arc plasma reactor
US4145403A (en) Arc heater method for producing metal oxides
US4335080A (en) Apparatus for producing selective particle sized oxide
WO1998019965A1 (en) Microwave plasma chemical synthesis of ultrafine powders
JPH0415839B2 (en)
US3399980A (en) Metallic carbides and a process of producing the same
RU2010126636A (en) NEW REACTOR, ALLOWING TO REALIZE AT EXTRA TEMPERATURE AND HIGH PRESSURE
JPS6052082B2 (en) Liquid silicone pouring method and device
JPS63125626A (en) Method and apparatus for producing metal compound particle dispersed metallic composite material
JPS63125627A (en) Method and apparatus for producing metal compound particle-dispersed metallic composite material
US2963354A (en) Process for the gasification of solid carbonaceous fuels
NO912715L (en) PROCEDURE FOR THE MANUFACTURE OF SILICON CARBID.
JPH0557201B2 (en)
RU2321543C1 (en) Titanium nanoxide synthesis method
US3869254A (en) Apparatus for carrying out high temperature reactions
CN110182771B (en) Method for synthesizing silicon nitride by rotary kiln method
JPS63123435A (en) Production of fine powder of metallic compound and apparatus therefor
CN110282609B (en) Rotary kiln method nitride self-spreading synthesis equipment
CN110182772B (en) Method for synthesizing aluminum nitride by rotary kiln method
JPS6019034A (en) Chemical reaction apparatus using composite plasma
JPH01100230A (en) Production of metal composite material containing dispersed metal compound particles and its device
JPH0497998A (en) Production of aluminum nitride whisker
JPS63123436A (en) Production of fine powder of metallic compound and apparatus
WO2005097312A1 (en) High flow rate gaseous reactant supply
JPS62213841A (en) Chemical reaction using dc arc plasma