JPS63125304A - Method and device for molding powdered body - Google Patents

Method and device for molding powdered body

Info

Publication number
JPS63125304A
JPS63125304A JP26988186A JP26988186A JPS63125304A JP S63125304 A JPS63125304 A JP S63125304A JP 26988186 A JP26988186 A JP 26988186A JP 26988186 A JP26988186 A JP 26988186A JP S63125304 A JPS63125304 A JP S63125304A
Authority
JP
Japan
Prior art keywords
mold
powder
solvent
molding
plunger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26988186A
Other languages
Japanese (ja)
Inventor
芳郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP26988186A priority Critical patent/JPS63125304A/en
Publication of JPS63125304A publication Critical patent/JPS63125304A/en
Pending legal-status Critical Current

Links

Landscapes

  • Producing Shaped Articles From Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〈産業上の利用分計〉 本発明は、セラミック・超硬合金等の弾性の高い微粉末
(粒径107n以下)の成形に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Applications> The present invention relates to the molding of highly elastic fine powders (particle size of 107 nm or less) such as ceramics and cemented carbide.

〈従来の技術及び発明が解決しようとする問題点〉 粉体の成形法としては従来よりプレス成形法、ホットプ
レス法、インジエクシリンモールド法、スリップキャス
ティング法等各種の成形法が知られている。この中でプ
レス成形法は量産性、成形コストの面で大きなメリット
を有するものの一つであるが、しかしながらセラミック
や超硬合金等の微粉末は高い弾性を有するものであるこ
とから、プレス成形法によりこれを成形した場合には型
と粉体との間に生ずる摩擦により加圧面から離れな部分
での充填加圧を充分に行なわせろことができない。その
ため成形形状によっては、例えば加圧方向に長い円柱状
のものや途中に段差を有するものなどの場合には密度差
、が成形体内に生じてしまい焼結後クラックが生じてし
まうという問題点があった。一方かかるプレス成形法の
欠点を解消することを目的として、粉体にパラフィン等
を混入しこれを型内に押し込むようにしたインジエクシ
芦ンモールド法や、粉体を水等液状体で溶きスラリー状
にしてセラコラ型に流し込み成形するスリップキャステ
ィング法(沈漿法)などがあるが、このような溶剤等を
用いた方法では溶剤として用いたパラフィンや水などを
排出させるのに数十時間から数日必要とすることから量
産性に問題があった。
<Prior art and problems to be solved by the invention> Various molding methods have been known as powder molding methods, such as press molding, hot pressing, indie-excillin molding, and slip casting. . Among these, press forming is one of the methods that has great advantages in terms of mass production and forming costs. However, since fine powders such as ceramics and cemented carbide have high elasticity, press forming When this is molded, the friction generated between the mold and the powder makes it impossible to perform sufficient filling and pressurization in areas remote from the pressurizing surface. Therefore, depending on the shape of the molded object, such as a cylindrical shape that is long in the pressurizing direction or a shape that has a step in the middle, a density difference may occur inside the molded object, resulting in cracks after sintering. there were. On the other hand, with the aim of eliminating the drawbacks of such press molding methods, there is the Injiexi Ashin molding method, in which paraffin or the like is mixed into the powder and then pushed into the mold, and the powder is dissolved in a liquid such as water to form a slurry. There is a slip casting method (sedimentation method) in which the material is poured into a Ceracola mold, but methods using such solvents require tens of hours to several days to discharge the paraffin, water, etc. used as the solvent. Because of this, there was a problem with mass production.

く問題点を解決するための手段〉 そこで本発明では、溶剤を混入させた粉体を型内に流入
させ、その後型内を加圧、加温することで前記溶剤を型
内より排出させて前記粉体を成形するようにしたのであ
る。又かかる方法を実現させるため、成形用装置を、型
内を加圧するプランジャと、このプランジャから離れな
箇所に設けた前記溶剤を通過させるが粉体は通さないス
トレーナと、賦型を加熱する加熱器と備えて構成したの
である。
Means for Solving the Problems> Therefore, in the present invention, powder mixed with a solvent is flowed into a mold, and then the inside of the mold is pressurized and heated to cause the solvent to be discharged from the mold. The powder was molded. In order to realize such a method, a molding device is equipped with a plunger that pressurizes the inside of the mold, a strainer installed at a location remote from the plunger that allows the solvent to pass through but not the powder, and a heating device that heats the forming mold. It was constructed with a vessel.

く実 施 例〉 以下本発明にかかる成形方法及び装置の一実施例につい
て述べる。第1図は成形装置の一実施例を示すもので、
セラミック粉末を原料とし、これよりエンジンバルブを
成形するものである。この成形製!!!2は、外側の枠
体4内に型6及び加熱器14を有し、この枠体4の上部
に加圧板8と前記型6内に連通ずるノズル10を備えて
いる。前記型6は、前述したようにバルブの型形状を有
し、前記ノズル10に連通ずる側を原材料の投入口とし
、他端側すなわち下端部にストレーナ1乞を有している
。このストレーナ12は、液体又は気体等を通過させ得
る多孔質部材からなるもので、例えば金属焼結体・セラ
ミック焼結体・濾紙などであり、その孔の平均径は粉体
径の5〜20倍程度である。更に枠体4の内部には前記
型6を加温させる加熱器14が賦型6を囲むように設け
てあり、又枠体4の壁面には排気ポンプ(図示せず。)
等に連通ずる排気孔16が設けられている。一方前記ノ
ズル10には、型6内に流入された粉体等を加圧するプ
ランジャ18が押圧装置(図示せず。)に連結されて設
けられてあり、該ノズル10内を軸方向に摺動移動する
ようになっている。
Embodiment> An embodiment of the molding method and apparatus according to the present invention will be described below. Figure 1 shows an embodiment of the molding device.
The raw material is ceramic powder, which is used to mold engine valves. Made of this molding! ! ! No. 2 has a mold 6 and a heater 14 in an outer frame 4, and a pressure plate 8 and a nozzle 10 communicating with the mold 6 are provided on the upper part of the frame 4. As described above, the mold 6 has the shape of a valve, and has the side communicating with the nozzle 10 serving as an input port for the raw material, and the other end, that is, the lower end, having a strainer 1. This strainer 12 is made of a porous member through which liquid or gas can pass, such as a metal sintered body, ceramic sintered body, filter paper, etc., and the average diameter of the pores is 5 to 20 times the diameter of the powder. It's about double that. Furthermore, a heater 14 for heating the mold 6 is provided inside the frame 4 so as to surround the forming mold 6, and an exhaust pump (not shown) is provided on the wall of the frame 4.
An exhaust hole 16 is provided which communicates with the other parts. On the other hand, the nozzle 10 is provided with a plunger 18 connected to a pressing device (not shown) for pressurizing the powder, etc. that has flowed into the mold 6, and the plunger 18 slides in the nozzle 10 in the axial direction. It is supposed to move.

このノズル10が設けられている加圧板8は、型6との
間にパツキンを介して型6に接しており、更に型6内か
らの反力に耐え得るよう、抑圧装置(図示せず。)によ
り枠体4及び型6に向けて押圧されるようになっている
The pressure plate 8 on which the nozzle 10 is provided is in contact with the mold 6 through a gasket between the pressure plate 8 and the mold 6, and is provided with a suppressing device (not shown) so as to be able to withstand the reaction force from within the mold 6. ) is pressed toward the frame 4 and mold 6.

次に操作手順及び条件等について述べる。Next, the operating procedure and conditions will be described.

セラミック粉末は溶剤で予め練っておく。この溶剤は水
・アルコール等の低沸点材であり、この溶剤で練られた
流動性を有する材料を前記ノズル10を通して型6内に
所定量流し込みプランジャ18で加圧圧力500kg重
/ cd程度で加圧する。この加圧により粉体間に残存
する溶剤以外の過剰の溶剤はストレーナ12を通して外
部に排出される。更に加熱器14により型6を加熱し、
溶剤を気化させてストレーナ12より蒸散させ、又それ
とともにその蒸気圧(メチルアルコールの場合203.
5℃で40気圧)を用いて液体状態の溶剤をも含めてス
トレーナ12より排出する。その排出に必要な時間は数
十分である。乙のとき排気孔16より脱気し枠体4内を
真空状態に保つと溶剤の気化が促進され上記排出時間を
より短縮できる。尚加温中においても当初固めた粉体間
の接触を保つためプランジャ18による加圧は引き続き
行なうが、プランジャ18の加圧力は蒸気圧の4〜5倍
、すなわち203.5℃の型温では160 kg重/−
〜200 kg重/dに降下させる。この理由は、供給
時の材料は混合させた溶剤が潤滑剤として働くため粉体
粒子間の摩擦係数が低くプランジャ18による加圧によ
っても材料の内部応力に不均一化が起こらないが、溶剤
の排出に伴い粉体相互間及び粉体と型6との間の摩擦係
数が増加し、これにより過大な加圧は材料の密度の不均
一化を招くからである。そして溶剤が排出されたなら加
熱器14による加熱を停止させ型6の温度を低下させ、
同時に型6内の内圧を下げて成形を完了させる。
Knead the ceramic powder with a solvent in advance. This solvent is a low boiling point material such as water or alcohol, and a predetermined amount of the fluid material kneaded with this solvent is poured into the mold 6 through the nozzle 10 and pressurized with a plunger 18 at a pressure of about 500 kg/cd. Press. Due to this pressurization, excess solvent other than the solvent remaining between the powders is discharged to the outside through the strainer 12. Furthermore, the mold 6 is heated by the heater 14,
The solvent is vaporized and evaporated from the strainer 12, and at the same time its vapor pressure (in the case of methyl alcohol, 203.
At 5° C. and 40 atm), the solvent, including the liquid solvent, is discharged from the strainer 12. The time required for its discharge is several tens of minutes. In case (B), if air is removed from the exhaust hole 16 and the inside of the frame 4 is maintained in a vacuum state, vaporization of the solvent is promoted and the above-mentioned evacuation time can be further shortened. During heating, the plunger 18 continues to apply pressure to maintain contact between the initially solidified powder, but the pressure applied by the plunger 18 is 4 to 5 times the steam pressure, that is, at a mold temperature of 203.5°C. 160 kg weight/-
~200 kgf/d. The reason for this is that the mixed solvent acts as a lubricant for the material when it is supplied, so the coefficient of friction between the powder particles is low, and even when pressurized by the plunger 18, the internal stress of the material does not become uneven. This is because as the powder is discharged, the coefficient of friction between the powders and between the powder and the mold 6 increases, and as a result, excessive pressure causes uneven density of the material. After the solvent has been discharged, the heating by the heater 14 is stopped to lower the temperature of the mold 6,
At the same time, the internal pressure inside the mold 6 is lowered to complete the molding.

このようにしてセラミック粉末を成形することとしたの
で、エンジンバルブのような軸方向に長い形状の部材で
加圧により密度の不均一を発生させやすい場合であって
も、溶剤を速やかに排出できるので、セラミック粉末の
成形を短時間のうちに行なわせることができる。
By molding the ceramic powder in this way, the solvent can be quickly discharged even in the case of axially long parts such as engine valves, which tend to have non-uniform density due to pressurization. Therefore, the ceramic powder can be molded in a short time.

〈発明の効果〉 以上述べたように本発明によれば、溶剤に溶かした97
本を型内に流入し、これを加圧及び加)温し、ストレー
ナを通して前記溶剤を外部に排出させろようにしたので
、型内に流入した材料に不均一な加圧力を生じさせろこ
となく加圧でき、しかも内部に混在する溶剤を加温によ
り速やかに外部に排出させることができるので均一密度
を有する成形品を短時間のうちに成形できる。又本発明
にかかる成型装置では、成形用の型と、該型内を加圧す
るプランジャと、このプランジャから離れな箇所に設け
られたストレーナと、前記型を加温する加温路とから構
成したことにより均一な加圧状態で、且つ速かに溶剤を
祠料内から排出させることができるので粉体の成形加工
を速かに行なわせることができる。
<Effects of the Invention> As described above, according to the present invention, 97% dissolved in a solvent
The books flow into the mold, are pressurized and heated (heated), and the solvent is discharged to the outside through a strainer, so that the material that has flowed into the mold is not pressurized without causing uneven pressure. Since it is possible to pressurize the mold and to quickly discharge the solvent mixed inside to the outside by heating, a molded product having a uniform density can be molded in a short time. Furthermore, the molding apparatus according to the present invention includes a mold for molding, a plunger that pressurizes the inside of the mold, a strainer provided at a location apart from the plunger, and a heating path that heats the mold. As a result, the solvent can be quickly discharged from the abrasive material under a uniformly pressurized state, so that the molding process of the powder can be performed quickly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる成形装置の一実施例を示す断面
図である。 図  面  中、 2は成形装置、 4は枠体、 6は型、 10はノズル、 12はストレーナ、 14は加熱語、 16は排気孔、 18はプランジャである。
FIG. 1 is a sectional view showing an embodiment of a molding apparatus according to the present invention. In the drawing, 2 is a molding device, 4 is a frame, 6 is a mold, 10 is a nozzle, 12 is a strainer, 14 is a heating word, 16 is an exhaust hole, and 18 is a plunger.

Claims (2)

【特許請求の範囲】[Claims] (1)粉体の成形において、溶剤を混入した粉体を型内
に注入させた後これを加圧・加温し、前記溶剤を排出す
ることにより成形することを特徴とした粉体の成形方法
(1) In powder molding, the powder mixed with a solvent is injected into a mold, then pressurized and heated, and the solvent is discharged to form the powder. Method.
(2)成形用の型と、該型内の粉体を加圧する加圧用プ
ランジャと、このプランジャから離れな箇所に設けられ
たストレーナと、前記型を加熱する加熱器とを備えてな
ることを特徴とする粉体の成形装置。
(2) It comprises a mold for molding, a pressure plunger that pressurizes the powder in the mold, a strainer provided at a location remote from the plunger, and a heater that heats the mold. Characteristic powder molding equipment.
JP26988186A 1986-11-14 1986-11-14 Method and device for molding powdered body Pending JPS63125304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26988186A JPS63125304A (en) 1986-11-14 1986-11-14 Method and device for molding powdered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26988186A JPS63125304A (en) 1986-11-14 1986-11-14 Method and device for molding powdered body

Publications (1)

Publication Number Publication Date
JPS63125304A true JPS63125304A (en) 1988-05-28

Family

ID=17478507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26988186A Pending JPS63125304A (en) 1986-11-14 1986-11-14 Method and device for molding powdered body

Country Status (1)

Country Link
JP (1) JPS63125304A (en)

Similar Documents

Publication Publication Date Title
US4041123A (en) Method of compacting shaped powdered objects
FI94498B (en) Process for the preparation of shaped components from mixtures of thermosetting binders and powders having the desired chemical properties
JP2002523617A5 (en)
DE2945513C2 (en) Process for the production of moldings from silicon ceramic by hot isostatic pressing
JPS63125304A (en) Method and device for molding powdered body
US5445788A (en) Method of producing elements from powders
US4931238A (en) Method for manufacturing a sintered body with high density
US5215697A (en) Method of forming shaped body from fine particles with carrier fluid under pressure gradient
WO1988000174A1 (en) Process for removing additive from powder molding
US5225247A (en) Process for producing a gas purging plug with increased resistance to infiltration and oriented porosity
JPS63311082A (en) Production unit for high-density sintered body
JPH0825181B2 (en) Method for producing three-dimensional fiber-reinforced ceramic matrix composite material
JPH04310580A (en) Bonding of formed silicon carbide
JPH07242910A (en) Press sintering method using fluid powder
JP2712894B2 (en) Method of forming fine pieces
DE3047237A1 (en) Hot isostatic pressing of porous moulded ceramic blanks - esp. to compact turbine blades made of reaction-bonded silicon nitride
JPH0643132Y2 (en) Degreasing and pre-sintering equipment for powder preforms
JPS61252102A (en) Method of molding ceramic
JPH04368806A (en) Molding method for very fine pieces
JP2664779B2 (en) Casting method for fine ceramics
JPH02166201A (en) Manufacture of high density sintered body
JPH013077A (en) Method and apparatus for producing powder compacts
JPH058208A (en) Removing method of dispersion medium of powder molded body
JPH058209A (en) Molding method of powder body
JPH059507A (en) Method for molding powder