JPH02166201A - Manufacture of high density sintered body - Google Patents

Manufacture of high density sintered body

Info

Publication number
JPH02166201A
JPH02166201A JP63321403A JP32140388A JPH02166201A JP H02166201 A JPH02166201 A JP H02166201A JP 63321403 A JP63321403 A JP 63321403A JP 32140388 A JP32140388 A JP 32140388A JP H02166201 A JPH02166201 A JP H02166201A
Authority
JP
Japan
Prior art keywords
powder
diameter
average particle
mold
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63321403A
Other languages
Japanese (ja)
Inventor
Jun Hirose
潤 廣瀬
Minoru Wakabayashi
稔 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP63321403A priority Critical patent/JPH02166201A/en
Publication of JPH02166201A publication Critical patent/JPH02166201A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture a sintered body having high density and high dimmensional accuracy by packing powder for sintering having different average particle diameters into a forming mold, exciting and sintering the obtd. high density powder packed body. CONSTITUTION:The large diameter powder having <=200mu the average particle diameter A and the small diameter having 0.5-20mu the average particle diameter C are mixed under condition of >=10 A/C so that blending ratio of the small diameter powder becomes 10-40wt.%. Successively, the mixed powder 5 is charged into a mold body 2 in the forming mold 1, and binder is impregnated under pressurizing to the powder packed body 5, and this is vibrated with an exciting machine 4 for the prescribed time to make the high density powder formed body, and after executing de-binder treatment, this is sintered. By this method, the sintered body having high density and high dimensional accuracy is manufactured at a low cost.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、金属やセラミンクなどの焼結用粉末を成形し
た後焼成して焼結体を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing a sintered body by molding a sintering powder such as metal or ceramics and then firing it.

(従来の技術) 金7属粉末やセラミック粉末などから成る焼結用粉末を
成形して成形体を作製し、該成形体を焼成して得た焼結
体に種々の後加工を施すことによって、機械部品や金型
などが製造されている。
(Prior art) By molding sintering powder made of metal powder, ceramic powder, etc. to produce a molded body, and performing various post-processing on the sintered body obtained by firing the molded body. , machine parts and molds are manufactured.

上記の成形体の作製方法として、第6図に示す金型プレ
スによる圧縮成形法がある。同法は底板22、型21お
よびポンチ23から形成された押し型20内に焼結用粉
末24を充てんし、圧縮機によってポンチに1000〜
7000kgf/aflの非常に高い圧力を加えて、粉
末をバインダーで継ぎとめあるいは一部の原料について
は粉末を塑性変形させることによって固化して粉末成形
体を得た後、該成形体を焼成して焼結体を製造する方法
であや。
As a method for producing the above-mentioned molded body, there is a compression molding method using a die press shown in FIG. In this method, a pressing mold 20 formed by a bottom plate 22, a mold 21, and a punch 23 is filled with sintering powder 24, and a compressor is used to compress the punch into
A very high pressure of 7000 kgf/afl is applied to solidify the powder by binding it with a binder or plastically deforming the powder for some raw materials to obtain a powder compact, and then the compact is fired. Aya on the method of manufacturing sintered bodies.

(発明が解決しようとする課題) 上述のような方法で得られた焼結体の後工程を省略する
、あるいはできるだけ少なくするには、焼結体を最終製
品形状または最終製品形状にできるだけ近く成形してお
くことが望ましい。そのため、焼結前の粉末成形体を最
終製品形状とほぼ相イ以形状に成形すると共に、該成形
体の焼成時の焼結収縮率が等方的であり、かつ該収縮率
をできるだけ小さくするために粉末成形体の密度(以下
、密度とは相対密度のことをいい、全容積に占める粉末
容積比率のことである。)分布を均一にすると同時に密
度をできるだけ高くすることが要求されている。
(Problems to be Solved by the Invention) In order to omit or minimize post-processing of the sintered compact obtained by the method described above, it is necessary to mold the sintered compact into the final product shape or as close to the final product shape as possible. It is desirable to keep it. Therefore, the powder compact before sintering is molded into a shape that is almost the same as the final product shape, and the sintering shrinkage rate during firing of the compact is isotropic, and the shrinkage rate is made as small as possible. Therefore, it is required to make the density distribution of the powder compact (hereinafter, density refers to relative density, and refers to the powder volume ratio to the total volume) distribution as high as possible. .

しかし、前述の金型プレス成形の場合には、粉末には流
体のようなパスカルの原理が成り立たないため、圧力の
不均一分布が生し、さらに粉末と押し型壁との摩擦など
によって粉末成形体の密度に部分的な不均一が生じるの
で、焼結収縮率が非等方的になって焼結体の変形や寸法
誤差の原因となる。また、粉末成形体密度を上げるため
に、1000〜7000kgf/c+flの非常に高い
圧力を必要とするので製造コストが高くなる。
However, in the case of the above-mentioned mold press molding, Pascal's principle does not hold true for powder as it does for fluids, so uneven pressure distribution occurs, and furthermore, due to friction between the powder and the mold wall, powder molding Since the density of the body is locally non-uniform, the sintering shrinkage rate becomes anisotropic, causing deformation of the sintered body and dimensional errors. Furthermore, in order to increase the density of the powder compact, a very high pressure of 1000 to 7000 kgf/c+fl is required, which increases the manufacturing cost.

本発明は上述の問題点に鑑みてなされたもので、高密度
で均一な密度分布を有する粉末充てん体を形成し、該充
てん体を焼成することによって、高密度で寸法精度の高
い焼結体を得る方法を提供することを目的としている。
The present invention has been made in view of the above-mentioned problems, and by forming a powder filling body with a high density and uniform density distribution and firing the filling body, a sintered compact with high density and high dimensional accuracy is obtained. The purpose is to provide a way to obtain

(課題を解決するための手段) 上記目的を達成するためになされた本発明は、成形型に
平均粒子径の異なる焼結用粉末を充てんし、加振して高
密度の粉末充てん体を得た後、該粉末充てん体を焼成し
て焼結体を得ることを発明の構成としている。そして高
密度の粉末充てん体を得るために焼結用粉末は平均粒子
径が200 μm以下の大径粉末と0.5〜207zm
の小径粉末との混合粉末であって、大径粉末の平均粒子
径をA、小径粉末の平均粒子径をCとしたときA/Cが
10以上で、混合粉末における小径粉末の配合比が重量
%で10〜40%とし、または平均粒子径が200μm
以下の大径粉末と20〜60μ川の中径粉末および0.
5〜20μMの小径粉末との混合粉末であって、大径粉
末の平均粒子径をA、中径粉末の平均粒子径をB、小径
粉末の平均粒子径をCとしたときA/Bが3以上かつB
/Cが3以上で、前記混合粉末における配合比が重量%
で大径粉末:60〜90%、中径粉末: 5〜30%、
小径粉末= 5〜30%とするのがよい。また、粉末充
てん体を焼成する場合には、該粉末充てん体を成形型に
収納した状態のまままたは該粉末充てん体を成形型に収
納した状態のまま仮焼結し、該仮焼結した粉末充てん体
を焼成するのがよく、さらに、粉末充てん体に成形型内
でバインダーを加圧含浸させて固化し、あるいは粉末充
てん体を成形型内で脱気した後パイングーを吸引含浸さ
せて固化し、該固化した粉末充てん体を焼成することに
よって、高密度で寸法精度の高い焼結体を得ることがで
きる。
(Means for Solving the Problems) The present invention, which has been made to achieve the above object, involves filling a mold with sintering powders having different average particle diameters, and vibrating the mold to obtain a high-density powder-filled body. After that, the powder-filled body is fired to obtain a sintered body. In order to obtain a high-density powder-filled body, the sintering powder is a large-diameter powder with an average particle diameter of 200 μm or less and a powder with an average particle diameter of 0.5 to 207 μm.
A mixed powder with a small-diameter powder of % 10 to 40%, or the average particle diameter is 200 μm
The following large diameter powders and medium diameter powders of 20-60μ and 0.
A mixed powder with a small-diameter powder of 5 to 20 μM, where A/B is 3 when the average particle diameter of the large-diameter powder is A, the average particle diameter of the medium-diameter powder is B, and the average particle diameter of the small-diameter powder is C. or more and B
/C is 3 or more, and the blending ratio in the mixed powder is % by weight
Large diameter powder: 60-90%, medium diameter powder: 5-30%,
It is preferable that small diameter powder = 5 to 30%. In addition, when firing a powder-filled body, the powder-filled body is pre-sintered while it is housed in a mold, or the powder-filled body is pre-sintered while it is housed in a mold, and the pre-sintered powder is It is preferable to sinter the filled body, and further, the powder filled body is impregnated with a binder under pressure in a mold and solidified, or the powder filled body is degassed in a mold and then suction impregnated with Pine Gu and solidified. By firing the solidified powder-filled body, a sintered body with high density and high dimensional accuracy can be obtained.

(作 用) 成形型に、平均粒子径(以下、平均粒子径とは粉末のフ
ルイ下累積重量が50%のときの粒径をいう。)の異な
る混合粉末で構成された焼結用粉末を充てんした後、加
圧することなく、前記成形型を上下または左右またはこ
れらの複合振動によって、一定時間振動する。この振動
によって、個々の粉末粒子が相互に位置を変えながら運
動し、大径粒子の間隙を中径あるいは小径粒子が埋めて
最密充てん構造を形成するので、高密度の粉末充てん体
を得ることができる。
(Function) A sintering powder composed of mixed powders with different average particle diameters (hereinafter, average particle diameter refers to the particle diameter when the cumulative weight under the sieve of the powder is 50%) is placed in a mold. After filling, the mold is vibrated vertically, horizontally, or by a combination thereof for a certain period of time without applying pressure. Due to this vibration, the individual powder particles move while changing their positions with respect to each other, and medium- or small-diameter particles fill the gaps between large-diameter particles and form a close-packed structure, making it possible to obtain a high-density powder-filled body. Can be done.

同時に、成形型内の粉末に加圧力を付与していないため
、圧力の不均一伝達や成形型の壁部との摩擦が生しにく
く、粉末のブリンジングも防止できるので、成形型内の
粉末充てん体の密度分布の不均一を、従来の金型プレス
による圧粉成形時の1710以下にすることができる。
At the same time, since no pressure is applied to the powder in the mold, uneven pressure transmission and friction with the mold wall are less likely to occur, and powder bridging can be prevented, making it easier to fill the powder in the mold. The non-uniformity of the density distribution of the body can be reduced to 1710 or less when compacting with a conventional mold press.

そして、高密度で均一な密度分布の粉末充てん体を得る
には、大径粒子(平均粒子径:A)と小径粒子(平均粒
子径:C)の2種から成る混合粉末の場合には、A/C
を10以」−とし2、混合粉末におりる小径粒子粉末の
配合比を重量%で10〜40%とすれば、両者から形成
される粉末充てん体の密度を75%以」−にすることが
できる。
In order to obtain a powder packed body with high density and uniform density distribution, in the case of a mixed powder consisting of two types of large diameter particles (average particle diameter: A) and small diameter particles (average particle diameter: C), A/C
If the ratio of small diameter particles in the mixed powder is 10 to 40% by weight, the density of the powder packed body formed from both should be 75% or more. Can be done.

さらに、大径粒子(平均粒子径:A)、  中径粒子(
平均粒子径、B)および小径粒子(平均粒子径:C)の
3種から成る混合粉末の場合には、A/Bを3以上かつ
B/Cを3以上とし、混合粉末における各粉末の配合比
を、重量%て大径粒子60〜90%、中径粒子: 5〜
30%、小径粒子: 5〜30%の範囲とすることによ
って75%以」−の密度を有する粉末充てん体を得るこ
とができる。
Furthermore, large diameter particles (average particle diameter: A), medium diameter particles (
In the case of a mixed powder consisting of three types of average particle diameter, B) and small diameter particles (average particle diameter: C), A/B is 3 or more and B/C is 3 or more, and the composition of each powder in the mixed powder is The ratio is 60 to 90% by weight for large particles, and 5 to 90% for medium particles.
30%, small-diameter particles: By setting it in the range of 5 to 30%, a powder packed body having a density of 75% or more can be obtained.

また、焼結性を加味した場合、各粉末の平均粒子径は、
金属、セラミック共、大径粒子が2007/m以F、中
径粒子が20〜60μm、 小径粒子が0.5〜20μ
mとすることが望ましい。
In addition, when taking sinterability into account, the average particle size of each powder is
For both metals and ceramics, large diameter particles are 2007/m or more F, medium diameter particles are 20 to 60 μm, and small diameter particles are 0.5 to 20 μm.
It is desirable to set it to m.

上述の粉末充てん体の焼成に当っては、高耐火性材料か
ら形成された成形型を用いて、粉末充てん体を収納した
まま成形型ごと焼成することができる。
When firing the powder-filled body described above, a mold made of a highly refractory material can be used, and the mold can be fired together with the powder-filled body housed therein.

上記焼成方法によれば、バインダーを添加する必要がな
く、従って、脱ハインダー工程が不要となり、工程が短
縮できる。また、脱バインダー時のガス発生に伴う成形
体の割れ発生の要因も除去できる。
According to the above firing method, there is no need to add a binder, and therefore, a dehindering step is not necessary, and the process can be shortened. Furthermore, it is possible to eliminate the cause of cracks in the molded body due to gas generation during binder removal.

上記焼成に際して、低温で仮焼結して粉末成形体を形成
し、該成形体だけを焼成することもできる。この場合、
前述のメリットに加えて、高価な高耐火性材料から成る
成形型を必要とせず、安価に焼結体を製作することがで
きる。
In the above-mentioned firing, it is also possible to perform temporary sintering at a low temperature to form a powder compact, and then fire only this compact. in this case,
In addition to the above-mentioned advantages, a sintered body can be manufactured at low cost without requiring a mold made of an expensive highly refractory material.

一方、成形型内の粉末充てん体に、20kgf/c+f
l以下の低圧でバインダーを加圧含浸さ−U゛る。ある
いは、粉末充てん体を構成する粉末粒子間の空気を吸引
脱気した後バインダーを吸引含浸させて固化し、粉末成
形体を得ることもできる。
On the other hand, 20kgf/c+f was added to the powder filling body in the mold.
The binder is impregnated under pressure at a low pressure of less than 1 liter. Alternatively, a powder compact can be obtained by sucking and deaerating the air between the powder particles constituting the powder filling body, and then sucking and impregnating the binder and solidifying the binder.

上記の方法によれば、粉末粒子の接触点にバインダーが
介在することがないので、脱ハインダー工程が必要とな
るが、該]二程に伴う粉末成形体の密度の低下が防止で
きる。このため、粉末充てん体形成時の高密度および均
一な密度分布を損なうことなく、粉末成形体を得ること
ができる。該成形体を脱バインダー後焼成することによ
って、高密度で均一な密度分布の焼結体を得ることがで
きる。また、高価な高耐火性材料から成る成形型も必要
としない。
According to the above method, since there is no binder present at the contact point of the powder particles, a dehindering step is required, but a decrease in density of the powder compact due to the step [2] can be prevented. Therefore, a powder compact can be obtained without impairing the high density and uniform density distribution during formation of the powder-filled body. By firing the molded body after removing the binder, a sintered body with high density and uniform density distribution can be obtained. Also, molds made of expensive highly refractory materials are not required.

(実施例) 以下、本発明の高密度焼結体の製造方法について説明す
る。
(Example) Hereinafter, a method for manufacturing a high-density sintered body of the present invention will be described.

まず、本発明において使用する焼結用粉末について説明
する。
First, the sintering powder used in the present invention will be explained.

焼結用粉末の材質としては、粉砕法、水アトマイズ法、
ガスアトマイス法1 カーボニル法などによって作製さ
れる各種金属粉末、セラミック粉末あるいは金属粉末に
セラミック粉末を添加した粉末などを使用することがで
きる。
The material of the powder for sintering is pulverization method, water atomization method,
Gas Atomize Method 1 Various metal powders, ceramic powders, or powders in which ceramic powder is added to metal powders, etc., produced by the carbonyl method etc. can be used.

上記の材質から成り、平均粒子径の異なる粉末で構成さ
れた混合粉末を、成形型に充てんした後加振することに
よって、既述のように高密度の粉末充てんを得ることが
できる。そして、粒径の異なる二種類の粉末から成る混
合粉末の場合には、大径粒子粉末の平均粒子径へを20
07zm以下とし、小径粒子粉末の平均粒子径Cを0.
5〜20μmとするのがよく、さらにA/Cを10以」
−1混合粉末における小径粒子粉末の配合比を重量%で
10〜40%とするとよい。また、粒径の異なる三種類
の粉末から成る混合粉末の場合には、大径粒子粉末の平
均粒子径Aを200 μm以下とし、中径粒子粉末の平
均粒子径Bを20〜60μmとし、小径粒子粉末の平均
粒子径Cを0.5〜2071mとするのがよく、A/B
を3以上かつB/Cを3以上とし、混合粉末における各
粉末の配合比を、重量%で大径粒子:60〜90%、中
径粒子:5〜30%、小径粒子= 5〜30%とするの
がよい。
By filling a mold with a mixed powder made of the above-mentioned materials and having different average particle diameters and then shaking the mold, a high-density powder filling can be obtained as described above. In the case of a mixed powder consisting of two types of powder with different particle sizes, the average particle size of the large particle powder should be increased by 20
0.07 zm or less, and the average particle diameter C of the small diameter particle powder is 0.07 zm or less.
It is best to set it to 5 to 20 μm, and furthermore, the A/C should be set to 10 or more.
It is preferable that the blending ratio of the small diameter particle powder in the -1 mixed powder is 10 to 40% by weight. In addition, in the case of a mixed powder consisting of three types of powders with different particle sizes, the average particle size A of the large particle powder should be 200 μm or less, the average particle size B of the medium particle powder should be 20 to 60 μm, and the small particle size The average particle diameter C of the particle powder is preferably 0.5 to 2071 m, and A/B
is 3 or more and B/C is 3 or more, and the blending ratio of each powder in the mixed powder is, in weight%, large diameter particles: 60 to 90%, medium diameter particles: 5 to 30%, small diameter particles = 5 to 30%. It is better to

因みに、焼結用粉末として、第1図に示す粒度分布の、
平均粒子径140μmの大径粒子aと平均粒子径4μm
の小径粒子Cとから混合粉末(小径粒子の配合比20重
量%)を用いてタッピングしながら密度を測定した結果
、第2図に示すように、タッピング回数の増大に従って
密度の向上が認められ、タッピング回数100回で密度
が80%程度となった。さらに、前記二種類の粉末を用
い、両者の配合比を変えて種々の混合粉末を調整し、該
混合粉末を300回タンピングした後、密度を測定した
結果を第3図に示す。同図において密度の最大値として
83%を得た。また、小径粒子の配合比10〜40重量
%において、75%以上の密度が得られている。さらに
、前記二種類の粉末に平均粒子径40μmの中径粒子を
添加した混合粉末の密度を測定したところ82%を得た
。このときの混合粉末中の各粉末の配合比は、重量比で
、大径粒子:中径粒子:小径粒子が70 : 10 :
 20および60 : 20 : 20であった。
Incidentally, as the powder for sintering, the particle size distribution shown in Fig. 1 is used.
Large particle a with an average particle diameter of 140 μm and average particle diameter 4 μm
As a result of measuring the density while tapping using a mixed powder (compounding ratio of small diameter particles 20% by weight) from small diameter particles C, as shown in Fig. 2, it was observed that the density improved as the number of tapping increased, The density was approximately 80% after 100 tappings. Furthermore, various mixed powders were prepared using the two types of powders by changing the blending ratio of both powders, and after tamping the mixed powders 300 times, the density was measured. The results are shown in FIG. In the figure, the maximum density was 83%. Moreover, when the blending ratio of small-diameter particles is 10 to 40% by weight, a density of 75% or more is obtained. Further, when the density of a mixed powder obtained by adding medium-sized particles with an average particle size of 40 μm to the above two types of powder was measured, it was 82%. The blending ratio of each powder in the mixed powder at this time is large diameter particles: medium diameter particles: small diameter particles: 70:10:
20 and 60:20:20.

次に焼結用粉末の粉末充てん体の製造方法について説明
する。
Next, a method for manufacturing a powder filling body of sintering powder will be described.

第4回は本実施例に係る粉末充てん体の製造装置を示し
たもので、焼結用粉末の容器を形成する上方が開口した
型本体2の底部に、粉末充てん体に所定の形状を転写す
るための型板3を装着して形成された成形型1が、加振
[4に載置されている。
The fourth session shows the apparatus for producing a powder-filled body according to this embodiment, and a predetermined shape is transferred to the powder-filled body on the bottom of the mold body 2, which is open at the top and forms a container for sintering powder. A mold 1, which has been formed by attaching a template 3 for the purpose of the vibration, is placed on the excitation plate [4].

上記製造装置によって粉末充てん体を得るには、前述の
焼結用粉末5を成形型1に装入し、加振機4によって一
定時間振動すればよい。この場合、振動の振幅、振動数
および振動時間などの振動条件は、振動によって粉末粒
子が運動し、最密光てん構造を形成して粉末充てん体が
最高密度を有するよう、焼結用粉末の種類や配合比率に
よって適宜選択する。上記操作によって、成形型1内に
均一で高密度の粉末充てん体を容易に得ることができる
In order to obtain a powder-filled body using the manufacturing apparatus described above, the sintering powder 5 described above may be charged into the mold 1 and vibrated by the vibrator 4 for a certain period of time. In this case, the vibration conditions such as vibration amplitude, vibration frequency, and vibration time are such that the powder particles move due to vibration, form a close-packed optical fiber structure, and the powder filling has the highest density. Select as appropriate depending on the type and blending ratio. By the above operation, a uniform and high-density powder filling body can be easily obtained in the mold 1.

次に前記粉末充てん体から粉末成形体および焼結体を製
造する方法について説明する。
Next, a method for manufacturing a powder compact and a sintered body from the powder-filled body will be explained.

前記成形型lを焼結用粉末の焼結温度に耐える高耐火性
の材料から形成した場合、前述のようにして成形した粉
末充てん体を成形型1に収納したまま成形型1ごと焼成
して直接焼結体を得ることができる。上記の高耐火性の
材料としては、ステンレスやインコネルなどの耐熱性金
属材料やアルミナ、シリカなとの高耐火度のセラミック
材料あるいはグラファイトなどを使用することができる
When the mold 1 is made of a highly refractory material that can withstand the sintering temperature of the sintering powder, the powder-filled body molded as described above is stored in the mold 1 and fired together with the mold 1. A sintered body can be obtained directly. As the above-mentioned highly refractory material, heat-resistant metal materials such as stainless steel and Inconel, highly refractory ceramic materials such as alumina and silica, or graphite can be used.

さらに、前述のようにして成形した粉末充てん体を成形
型1に収納したまま低温で仮焼結して均一で高密度の粉
末成形体を形成した場合には、該成形体だけを焼成して
、前記の高価な高耐火性の材料から成形型を必要とせず
に均一で高密度の焼結体を得ることもできる。
Furthermore, if the powder-filled body formed as described above is temporarily sintered at a low temperature while being housed in the mold 1 to form a uniform and high-density powder compact, only the compact is fired. It is also possible to obtain a uniform, high-density sintered body from the above-mentioned expensive and highly refractory materials without the need for molds.

また、前述のようにして成形した成形型内の粉末充てん
体にバインダーを含浸させて固化し、均一で高密度の粉
末成形体を得ることもできる。該成形体を脱バイングー
処理後、焼成することによって高密度の焼結体を得るこ
・とができる。上記のバインダーとしては、アクリル系
樹脂、パラフィン系樹脂、酢酸セルロース系樹脂などの
他、フェノール樹脂などの熱硬化性樹脂などを適宜使用
することかで−きる。そして、上記バインダーを単独で
または水や有機溶剤などの溶媒に適宜溶解し、あるいは
希釈して使用することができる。
Alternatively, a powder-filled body formed in the mold as described above may be impregnated with a binder and solidified to obtain a uniform and high-density powder compact. A high-density sintered body can be obtained by firing the molded body after debinding treatment. As the above binder, in addition to acrylic resins, paraffin resins, cellulose acetate resins, etc., thermosetting resins such as phenolic resins can be used as appropriate. The above-mentioned binder can be used alone, or appropriately dissolved or diluted in a solvent such as water or an organic solvent.

成形型内の粉末充てん体にバインダーを含浸させる方法
としては、20kgf/cnt以下の低圧力でバインダ
ーを加圧含浸する方法と、粉末充てん体中の空気を脱気
装置で吸引脱気した後バインダーを吸引含浸する方法と
がある。第5図は粉末充てん体にバインダーを吸引含浸
させる場合の実施要領を示したもので、既述の要領で型
本体2aおよび型板3から形成された成形型la内に、
均一で高密度の粉末充てん体5aを形成した後、該成形
型1aの上部開口に蓋11を設け、かつ下部に脱気装置
を装着する。成形型1aには脱気装置に連通ずる脱気孔
6が設けられており、真空ポンプ7により成形型la内
の空気が脱気される。一方蓋11にはバインダー供給孔
10が設けられており、脱気後、供給ポンプ8を介して
バインダー9が成形型Ia内に加圧供給され、粉末充て
ん体5aにバインダーを含浸させる。
There are two methods for impregnating the powder filling in the mold with the binder: pressurizing the binder with a low pressure of 20 kgf/cnt or less, and sucking and deaerating the air in the powder filling with a degassing device. There is a method of suction impregnation. FIG. 5 shows the procedure for sucking and impregnating a powder-filled body with a binder.
After forming a uniform, high-density powder filling body 5a, a lid 11 is provided at the upper opening of the mold 1a, and a deaerator is attached to the lower part. The mold 1a is provided with a deaeration hole 6 which communicates with a deaerator, and the air inside the mold 1a is degassed by a vacuum pump 7. On the other hand, the lid 11 is provided with a binder supply hole 10, and after degassing, the binder 9 is supplied under pressure into the mold Ia via the supply pump 8, and the powder filler 5a is impregnated with the binder.

図中12はバインダー送給用の、13は脱気用の各バル
ブである。
In the figure, 12 is a binder feed valve, and 13 is a deaeration valve.

尚、真空脱気時に、粉体層を空気が通過する際に、粉末
充てん体5a上面の粒子が飛散したり、粉末の充てん率
が高いために空気の通過抵抗が大きく粉末充てん体に割
れが発生したりするおそれがある。このため、真空脱気
は粉末充てん体底部から行ない、脱気中充てん体上面に
多孔板14を置いて1気圧以下の圧力を作用させておく
ことが望ましい。
In addition, when air passes through the powder layer during vacuum degassing, particles on the top surface of the powder packed body 5a may be scattered, or the powder packing may crack due to the high air passage resistance due to the high powder filling rate. There is a possibility that this may occur. For this reason, it is desirable that the vacuum degassing is performed from the bottom of the powder packing, and that a perforated plate 14 is placed on the top of the packing during degassing to apply a pressure of 1 atmosphere or less.

尚、特開昭61−10405号公報にはスラリー脱液法
が開示されている。同法は、セラミック粉末とバインダ
ーと水または有機溶剤とから構成されたスラリーを、型
内面の少なくとも一部にポーラス体を備えた成形型に注
入すると共に加圧し、スラリー中の液分をポーラス体を
介して絞り出して所期の形状に成形する方法である。同
法において、原料スラリーとして本発明の平均粒子径範
囲、平均粒子径比および配合比を満足するセラミック粉
末、金属粉末あるいはこれらの混合粉末から成るスラリ
ーを使用して粉末成形体を作製することが考えられる。
Incidentally, Japanese Unexamined Patent Publication No. 10405/1988 discloses a slurry deliquification method. In this method, a slurry composed of ceramic powder, a binder, and water or an organic solvent is injected into a mold that has a porous material on at least a portion of the inner surface of the mold and is pressurized. This is a method of squeezing out the material into the desired shape. In this method, a powder compact can be produced using a slurry made of ceramic powder, metal powder, or a mixed powder thereof that satisfies the average particle size range, average particle size ratio, and blending ratio of the present invention as a raw material slurry. Conceivable.

しかし、スラリーであっても一般の流体に見られるよう
に完全に均一な圧力分布は得られず、パスカルの原理は
成り立たない。すなわち、スラリーが充てんされた成形
型内の圧力分布には不均一が生じるので、粉末充てん体
の密度が部分的に不均一になる。また、脱液の進行に伴
い、スラリーは粉末のみの挙動に近づいて、粉末自身が
ブリッジを起こすために局所的な密度の不均一部分を生
ずる可能性がある。因みに、本発明の条件を満たす混合
粉末を用いてスラリー脱液法によって作製された粉末充
てん体の密度分布の不均一は、本発明の約2倍であった
However, even with slurry, it is not possible to obtain a completely uniform pressure distribution as seen with general fluids, and Pascal's principle does not hold true. That is, since the pressure distribution within the mold filled with the slurry is non-uniform, the density of the powder-filled body becomes partially non-uniform. Furthermore, as the deliquification progresses, the slurry approaches the behavior of only powder, and the powder itself may cause bridging, resulting in localized non-uniform density areas. Incidentally, the non-uniformity of the density distribution of the powder packed body produced by the slurry deliquification method using the mixed powder satisfying the conditions of the present invention was about twice that of the present invention.

またスラリー脱液法では成形圧力が100100O/c
+fl以下と低圧であるため、粉末成形体の密度は50
〜60%が限界である。これに対し、本発明では加圧す
ることなく75%以上の密度が容易に得られる。
In addition, in the slurry deliquid method, the molding pressure is 100,100 O/c.
Since the pressure is low, below +fl, the density of the powder compact is 50
~60% is the limit. In contrast, in the present invention, a density of 75% or more can be easily obtained without applying pressure.

さらに、上記低密度の粉末成形体から高密度の焼結体を
得るためには、焼成条件を変える(焼結温度を上げ、焼
成時間を長くするなどコスト高になる方向)必要があり
、これでは焼結時の収縮が大きく、焼結体の寸法安定性
が悪いなどの欠点がある。
Furthermore, in order to obtain a high-density sintered body from the above-mentioned low-density powder compact, it is necessary to change the firing conditions (increasing the sintering temperature, increasing the firing time, etc., which increases the cost). However, there are drawbacks such as large shrinkage during sintering and poor dimensional stability of the sintered body.

以下に具体的実施例について説明する。Specific examples will be described below.

〈実施例1〉 (1)脱気孔を有する成形型に型板を装着し、その中に
平均粒子径140μmの大径の鉄粉と平均粒子径4μm
の小径の鉄粉を、小径鉄粉の配合比が重量%で20%と
なるよう配合した混合粉末を装入した。
<Example 1> (1) A template is attached to a mold having a deaeration hole, and a large-diameter iron powder with an average particle diameter of 140 μm and an average particle diameter of 4 μm are placed inside the template.
A mixed powder containing small-diameter iron powder such that the blending ratio of small-diameter iron powder was 20% by weight was charged.

(2)次に、成形型を加振装置に装着し、上下方向に振
幅15+mn、振動数IHzで5分間振動して粉末充て
ん体を得た。
(2) Next, the mold was mounted on a vibrator and vibrated in the vertical direction at an amplitude of 15+mn and a frequency of IHz for 5 minutes to obtain a powder-filled body.

(3)成形型を加振装置より取り外し、粉末充てん体の
上面に多孔板を置き、第5図の要領に従って粉末粒子間
の空気を真空脱気した。
(3) The mold was removed from the vibrator, a perforated plate was placed on the top surface of the powder-filled body, and the air between the powder particles was degassed under vacuum according to the procedure shown in FIG.

(4)バインダー供給孔からバインダー溶液を5 kg
f/caの圧力を作用させて粉末充てん体に対して重量
%で4%添加・含浸させた。このとき使用したバインダ
ーは、アクリル樹脂系ハンイダー(三井東圧化学製、商
品名ハインドセラムNΔ320)を水で希釈して体積比
60%に調整したものを用いた。
(4) Pour 5 kg of binder solution from the binder supply hole.
A pressure of f/ca was applied to add and impregnate the powder filler in an amount of 4% by weight. The binder used at this time was an acrylic resin binder (manufactured by Mitsui Toatsu Chemical Co., Ltd., trade name: Hind Ceram NΔ320) diluted with water to adjust the volume ratio to 60%.

(5)上記粉末充てん体を130°Cで1時間保持して
水分を除去すると共に固化し、粉末成形体を得た。この
とき、該成形体の密度は78%であり、成形体内各部の
密度の不均一は、従来の金型プレス成形が約10%であ
るのに対し、本実施例では0.5%以内に抑えることが
できた。
(5) The powder-filled body was held at 130° C. for 1 hour to remove moisture and solidify to obtain a powder compact. At this time, the density of the molded body is 78%, and while the density non-uniformity of each part of the molded body is approximately 10% in conventional mold press molding, in this example, the density is within 0.5%. I was able to suppress it.

(6)上記で得た粉末成形体を450°Cで1時間保持
して脱バインダー処理した後、1300″Cで1時間焼
成して焼結体を得た。該焼結体の焼成時の収縮は等方向
で、方向や部位による差はほとんど認められなかった。
(6) The powder compact obtained above was held at 450°C for 1 hour to remove the binder, and then fired at 1300"C for 1 hour to obtain a sintered body. The contraction was isodirectional, with almost no difference observed depending on direction or location.

また、焼結体の収縮量は線収縮量として従来の金型プレ
ス成形が約17%であるのに対し、本実施例では約2.
5%であり、著しい寸法安定性の向上が認められた。
In addition, the amount of linear shrinkage of the sintered body is about 17% in conventional die press molding, but in this example, it is about 2.
5%, and a significant improvement in dimensional stability was recognized.

〈実施例2〉 (1)ムライト製容器を成形型として、その中に平均粒
子径140μmの大径鉄粉と平均粒子径4μmの小径鉄
粉を、小径鉄粉の配合比が重量%で20%となるように
配合した混合粉末を装入した。
<Example 2> (1) Using a mullite container as a mold, large-diameter iron powder with an average particle diameter of 140 μm and small-diameter iron powder with an average particle diameter of 4 μm were placed in the mold, and the mixing ratio of the small-diameter iron powder was 20% by weight. % mixed powder was charged.

(2)上記成形型を加振装置に装着し、上下方向に振幅
15 mm、振動数IHzで3分間振動して粉末充てん
体を得た。
(2) The mold was mounted on a vibration device and vibrated vertically at an amplitude of 15 mm and a frequency of IHz for 3 minutes to obtain a powder-filled body.

(3)成形型内に上記粉末充てん体を収納したまま13
00°Cで1時間焼成して焼結体を得た。該焼結体は、
実施例1と同様に、焼成時の収縮は等方向で部位による
差はほとんど認められず、高密度で寸法安定性の高い焼
結体が得られた。
(3) With the powder filling body stored in the mold 13
A sintered body was obtained by firing at 00°C for 1 hour. The sintered body is
As in Example 1, the shrinkage during firing was uniform and showed almost no difference depending on the location, and a sintered body with high density and high dimensional stability was obtained.

(発明の効果) 本発明によれば、成形型に平均粒子径の異なる焼結用粉
末から成る混合粉末を充てんし、加振することによって
前記粉末が運動し、最終的には最密光てん構造を形成す
るため、高密度の粉末充てん体を極めて容易に得ること
ができる。また、粉末を加圧しないので、加圧に伴う粉
末充てん体内の圧力の不均一分布や成形型の壁部との摩
擦が生じにくく、粉末のブリッジングも防止できるので
、成形型内の粉末充てん体の密度分布の均一を図ること
ができる。従って、均一で高密度の粉末充てん体を極め
て容易に得ることができ、該充てん体を焼成することに
よって高密度で寸法精度の高い焼結体を容易に製作する
ことができる。
(Effects of the Invention) According to the present invention, a mold is filled with a mixed powder consisting of sintering powders having different average particle diameters, and the powder is moved by vibration, and finally a close-packed optical fiber is formed. Due to the formation of the structure, dense powder packings can be obtained very easily. In addition, since the powder is not pressurized, uneven distribution of pressure inside the powder packing body due to pressurization and friction with the mold wall are less likely to occur, and bridging of the powder can be prevented, so the powder filling inside the mold is less likely to occur. It is possible to achieve uniform density distribution in the body. Therefore, a uniform and high-density powder-filled body can be obtained very easily, and by firing the packed body, a high-density and highly dimensionally accurate sintered body can be easily manufactured.

そして、前記混合粉末が粒径の異なる二種類の粉末から
構成される場合には、大径粉末の平均粒子径Aを200
μm以下とし、小径粉末の平均粒子径Cを0,5〜20
μmとしたとき、A/Cを10以上とし、前記混合粉末
における小径粉末の配合比を重量%で10〜40%とす
ることによって、密度75%以上の高密度の粉末充てん
体を容易に得ることができる。
When the mixed powder is composed of two types of powders with different particle sizes, the average particle size A of the large-diameter powder is set to 200.
μm or less, and the average particle diameter C of the small diameter powder is 0.5 to 20
When expressed as μm, by setting the A/C to 10 or more and setting the blending ratio of small-diameter powder in the mixed powder to 10 to 40% by weight, a powder packed body with a high density of 75% or more can be easily obtained. be able to.

さらに、前記混合粉末が粒径の異なる三種類の粉末から
構成される場合には、大径粉末の平均粒子径Aを200
71m以下とし、中径粉末の平均粒子径Bを20〜60
μlとし、小径粒子径の平均粒子径Cを0.5〜20μ
mとしたとき、A/Bを3以上がつB/Cを3以上とし
、前記混合粉末における各粉末の配合比を重量%で大径
粉末+60〜90%、中径粉末: 5〜30%、小径粉
末: 5〜30%とすることによって密度75%以上の
高密度の粉末充てん体を容易に得ることができる。
Furthermore, when the mixed powder is composed of three types of powders with different particle sizes, the average particle size A of the large-diameter powder is set to 200.
71 m or less, and the average particle size B of the medium-sized powder is 20 to 60.
μl, and the average particle size C of small particles is 0.5 to 20 μl.
m, A/B is 3 or more and B/C is 3 or more, and the blending ratio of each powder in the mixed powder is large diameter powder + 60 to 90% by weight, medium diameter powder: 5 to 30%. , small-diameter powder: By setting the content to 5 to 30%, a high-density powder packed body with a density of 75% or more can be easily obtained.

上述の粉末充てん体を、高耐火性材料で作製された成形
型内に形成すれば、該成形型ごと焼成して焼結体を得る
ことができるので、バインダーを添加する必要がなく、
脱バインダー工程も不要であるうえ、脱バインダー時の
ガス発生に伴う成形体の割れ発生の要因も除去できる。
If the powder-filled body described above is formed in a mold made of a highly refractory material, a sintered body can be obtained by firing the mold together, so there is no need to add a binder.
There is no need for a binder removal process, and the cause of cracks in the molded body due to gas generation during binder removal can be eliminated.

従って、製造工程が短縮でき、脱バインダーを伴う不良
も発生しない。
Therefore, the manufacturing process can be shortened, and defects associated with binder removal do not occur.

また、粉末充てん体を低温で仮焼結して粉末成形体を形
成し、該成形体のり高温で焼成して焼結体を得ることも
できる。この場合、前述のメリットに加えて、高価な高
耐火性材料で作製された成形型を必要としないので、よ
り安価に高密度焼結体を製造することができる。
Alternatively, the powder-filled body can be pre-sintered at a low temperature to form a powder compact, and the compact can be fired at a high temperature to obtain a sintered body. In this case, in addition to the above-mentioned advantages, a mold made of an expensive highly refractory material is not required, so a high-density sintered body can be manufactured at a lower cost.

一方、成形型内の粉末充てん体に、バインダーを加圧含
浸させる。あるいは、粉末充てん体内の空気を脱気した
後バインダーを吸引含浸させて固化し、粉末成形体を得
ることができる。この場合、粉末充てん体を構成する粉
末粒子の接触点にバインダーが介在しないので、脱バイ
ンダー工程が必要ではあるが、該工程に伴う粉末成形体
の密度の低下が防止できる。このため粉末充てん体形成
時の均一で高い密度を損なうことなく粉末成形体を得る
ことができる。該成形体を脱バインダー後、焼成するこ
とによって、高密度で寸法精度の極めて高い焼結体を得
ることができる。この場合、バインダーで固化した粉末
成形体だけを焼成するので、前述の高価な高耐火性材料
から作製された型や仮焼結用の型などの耐熱性を有する
型を全く必要とせず、極めて安価に焼結体の製造ができ
る。
On the other hand, the powder filling body in the mold is impregnated with a binder under pressure. Alternatively, a powder compact can be obtained by deaerating the air in the powder filling body and then sucking and impregnating the powder with a binder and solidifying it. In this case, since the binder is not present at the contact points of the powder particles constituting the powder-filled body, although a binder removal process is necessary, it is possible to prevent the density of the powder compact from decreasing due to this process. Therefore, a powder compact can be obtained without impairing the uniform and high density during the formation of the powder-filled body. By firing the molded body after removing the binder, a sintered body with high density and extremely high dimensional accuracy can be obtained. In this case, only the powder compact solidified with the binder is fired, so there is no need for any heat-resistant molds such as molds made from the aforementioned expensive highly refractory materials or molds for temporary sintering. Sintered bodies can be manufactured at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本実施例に係る平均粒子径の異なる二種類の粉
末の粒度分布を示すグラフ、第2図は第1図の粉末から
成る混合粉末におけるタッピング回数と相対密度との関
係を示すグラフ、第3図は第1図の粉末から成る混合粉
末における小径粉末の配合割合と相対密度との関係を示
すグラフ、第4図は本実施例に係る粉末充てん体の製造
装置を示す一部縦断面図、第5回は本実施例に係るバイ
ンダー吸引添加の要領を示す説明図、第6図は従来例の
金型ブレス成形を示す説明図である。 特許出願人  株式会社 神戸製鋼所 (に11) h \f (%)imrで 針
Fig. 1 is a graph showing the particle size distribution of two types of powders with different average particle diameters according to this example, and Fig. 2 is a graph showing the relationship between the number of tappings and the relative density of a mixed powder consisting of the powders in Fig. 1. , FIG. 3 is a graph showing the relationship between the proportion of small-diameter powder and the relative density in the mixed powder made of the powders shown in FIG. 1, and FIG. FIG. 6 is an explanatory diagram showing the method of suctioning and adding the binder according to the present example, and FIG. 6 is an explanatory diagram showing conventional mold press molding. Patent applicant: Kobe Steel, Ltd. (Ni11) h \f (%) Needle with imr

Claims (7)

【特許請求の範囲】[Claims] (1)成形型に平均粒子径の異なる焼結用粉末を充てん
し、加振して高密度の粉末充てん体を得た後、該粉末充
てん体を焼成して焼結体を得ることを特徴とする高密度
焼結体の製造方法。
(1) A mold is filled with sintering powders having different average particle diameters, and the powder is vibrated to obtain a high-density powder-filled body, and then the powder-filled body is fired to obtain a sintered body. A method for manufacturing a high-density sintered body.
(2)焼結用粉末は、平均粒子径が200μm以下の大
径粉末と0.5〜20μmの小径粉末との混合粉末であ
って、大径粉末の平均粒子径をA,小径粉末の平均粒子
径をCとしたときA/Cが10以上で、混合粉末におけ
る小径粉末の配合比が重量%で10〜40%である請求
項(1)記載の製造方法。
(2) The sintering powder is a mixed powder of a large-diameter powder with an average particle diameter of 200 μm or less and a small-diameter powder with an average particle diameter of 0.5 to 20 μm, where the average particle diameter of the large-diameter powder is A, and the average particle diameter of the small-diameter powder is 2. The manufacturing method according to claim 1, wherein A/C is 10 or more when the particle size is C, and the blending ratio of the small diameter powder in the mixed powder is 10 to 40% by weight.
(3)焼結用粉末は、平均粒子径が200μm以下の大
径粉末と20〜60μmの中径粉末および0.5〜20
μmの小径粉末との混合粉末であって、大径粉末の平均
粒子径をA,中径粉末の平均粒子径をB,小径粉末の平
均粒子径をCとしたときA/Bが3以上かつB/Cが3
以上で、前記混合粉末における配合比が重量%で大径粉
末:60〜90%,中径粉末:5〜30%,小径粉末:
5〜30%である請求項(1)記載の製造方法。
(3) Powder for sintering includes large-diameter powder with an average particle diameter of 200 μm or less, medium-diameter powder with an average particle diameter of 20 to 60 μm, and powder with an average particle diameter of 0.5 to 20 μm.
A mixed powder with a small-diameter powder of μm, where the average particle diameter of the large-diameter powder is A, the average particle diameter of the medium-diameter powder is B, and the average particle diameter of the small-diameter powder is C, and A/B is 3 or more. B/C is 3
In the above, the blending ratio in the mixed powder is as follows: large-diameter powder: 60-90%, medium-diameter powder: 5-30%, small-diameter powder:
The manufacturing method according to claim 1, wherein the content is 5 to 30%.
(4)粉末充てん体を焼成する場合に、該粉末充てん体
を成形型に収納した状態のまま焼成する請求項(1)記
載の製造方法。
(4) The manufacturing method according to claim (1), wherein when firing the powder-filled body, the powder-filled body is fired while being housed in a mold.
(5)粉末充てん体を焼成する場合に、該粉末充てん体
を成形型に収納した状態のまま仮焼結し、該仮焼結した
粉末充てん体を焼成する請求項(1)記載の製造方法。
(5) The manufacturing method according to claim (1), wherein when firing the powder-filled body, the powder-filled body is pre-sintered while being housed in a mold, and the pre-sintered powder-filled body is fired. .
(6)粉末充てん体に成形型内でバインダーを加圧含浸
させて固化し、該固化した粉末充てん体を焼成する請求
項(1)記載の製造方法。
(6) The manufacturing method according to claim (1), wherein the powder-filled body is impregnated with a binder under pressure in a mold and solidified, and the solidified powder-filled body is fired.
(7)粉末充てん体を成形型内で脱気した後バインダー
を吸引含浸させて固化し、該固化した粉末充てん体を焼
成する請求項(1)記載の製造方法。
(7) The manufacturing method according to claim (1), wherein the powder-filled body is degassed in a mold, and then the binder is suction-impregnated and solidified, and the solidified powder-filled body is fired.
JP63321403A 1988-12-19 1988-12-19 Manufacture of high density sintered body Pending JPH02166201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63321403A JPH02166201A (en) 1988-12-19 1988-12-19 Manufacture of high density sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63321403A JPH02166201A (en) 1988-12-19 1988-12-19 Manufacture of high density sintered body

Publications (1)

Publication Number Publication Date
JPH02166201A true JPH02166201A (en) 1990-06-26

Family

ID=18132161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63321403A Pending JPH02166201A (en) 1988-12-19 1988-12-19 Manufacture of high density sintered body

Country Status (1)

Country Link
JP (1) JPH02166201A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6348081B1 (en) 1999-09-29 2002-02-19 Daido Tokushuko Kabushiki Kaisha Granulated powder for high-density sintered body, method for producing high-density sintered body using the same, and high-density sintered body
JP2005283268A (en) * 2004-03-29 2005-10-13 Tdk Corp Powder evaluation method, rare earth sintered magnet, and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56123301A (en) * 1979-11-26 1981-09-28 Gould Inc High density sintered powder alloy and its manufacture
JPS6256553A (en) * 1985-09-06 1987-03-12 Sumitomo Electric Ind Ltd High-strength sintered steel and its production
JPS62283875A (en) * 1986-02-14 1987-12-09 株式会社 ウイテツクジヤパン Manufacture of sintered body of particulate material
JPH01165706A (en) * 1987-12-22 1989-06-29 Kawasaki Steel Corp Sintered compact having double phase structure and manufacture thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56123301A (en) * 1979-11-26 1981-09-28 Gould Inc High density sintered powder alloy and its manufacture
JPS6256553A (en) * 1985-09-06 1987-03-12 Sumitomo Electric Ind Ltd High-strength sintered steel and its production
JPS62283875A (en) * 1986-02-14 1987-12-09 株式会社 ウイテツクジヤパン Manufacture of sintered body of particulate material
JPH01165706A (en) * 1987-12-22 1989-06-29 Kawasaki Steel Corp Sintered compact having double phase structure and manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6348081B1 (en) 1999-09-29 2002-02-19 Daido Tokushuko Kabushiki Kaisha Granulated powder for high-density sintered body, method for producing high-density sintered body using the same, and high-density sintered body
JP2005283268A (en) * 2004-03-29 2005-10-13 Tdk Corp Powder evaluation method, rare earth sintered magnet, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US6042780A (en) Method for manufacturing high performance components
US6502623B1 (en) Process of making a metal matrix composite (MMC) component
EP0053618B1 (en) Process of manufacturing sintered metallic compacts
JPS6164801A (en) Molding method of powder of metal, ceramics or the like
JPH06144948A (en) Production of ceramic porous body
US5174952A (en) Process for the powder-metallurgical production of a workpiece
JPH02166201A (en) Manufacture of high density sintered body
RU2713254C1 (en) Method of making articles from metal powders
WO2000016937A1 (en) Alloy powder, alloy sintered compact and method for their production
PL375094A1 (en) Method of preparing iron-based components by compaction with elevated pressures
JPH0445205A (en) Manufacture of powder molded body
WO2006114849A1 (en) Miniature bearing and method for manufacturing the same
WO1990001385A1 (en) Process for making a consolidated body
JPH05228913A (en) Method and device for forming ceramic
JP2829164B2 (en) Manufacturing method of hollow body
JPH0726094U (en) Powder molding equipment
JPH0219430A (en) Production of metallic porous body
JPH02141502A (en) Manufacture of metal sintered product
JPH01287203A (en) Method for compacting powder and mold for compacting powder
JPH05200711A (en) Method for molding powder
JPH07173508A (en) Production of air and water-permeable sintered compact
JP2002530522A (en) Manufacturing method of soft magnetic sintered member
JPH0336611B2 (en)
Takahashi et al. Uniformity of density and improvement in dimensional precision of sintered compacts by flow compaction of alumina granules
JPH11291213A (en) Method for forming castable refractory block