JPS63124921A - Optical fiber hydrophone - Google Patents

Optical fiber hydrophone

Info

Publication number
JPS63124921A
JPS63124921A JP27136386A JP27136386A JPS63124921A JP S63124921 A JPS63124921 A JP S63124921A JP 27136386 A JP27136386 A JP 27136386A JP 27136386 A JP27136386 A JP 27136386A JP S63124921 A JPS63124921 A JP S63124921A
Authority
JP
Japan
Prior art keywords
optical fiber
core
hydrophone
stress
straight line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27136386A
Other languages
Japanese (ja)
Other versions
JPH061213B2 (en
Inventor
Yoshinori Hama
芳典 濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61271363A priority Critical patent/JPH061213B2/en
Publication of JPS63124921A publication Critical patent/JPS63124921A/en
Publication of JPH061213B2 publication Critical patent/JPH061213B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To wind an optical fiber in an uniform direction and to improve the sensitivity of an optical fiber hydrophone by constituting the hydrophone so that the optical fiber differ in size from the core to the outer shape of the section in a direction centered on the center of the core. CONSTITUTION:Curved flank parts 5 which are connected slipperily to the external surface of diaphragms 2 fitted to both surfaces are provided at two positions of a support frame 1. The wall of the support frame 1 is much thicker than the diaphragm 2, the optical fiber 3 is wound closely in contact with the flank parts 5 and diaphragms 2, and the parts contacting the diaphragms 2 are fixed with an epoxy adhesive. In this case, the optical fiber 3 is sectioned in an elliptic or long-circle external shape which is symmetrical about a straight line connecting a strain inducing part. Consequently, the optical fiber is wound in the uniform direction, so the high-density hydrophone is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光ファイバハイドロホンに関し、特に偏光面保
存形の光ファイバの偏光面を揃えて感度を上げた光ファ
イバハイドロホンに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an optical fiber hydrophone, and more particularly to an optical fiber hydrophone in which the polarization planes of polarization-preserving optical fibers are aligned to increase sensitivity.

〔従来の技術〕[Conventional technology]

光ファイバハイドロホンの従来の技術の一例について図
面を参照して説明する。第4図(a)〜(C)は光ファ
イバに加えられた外力と光ファイバのコアに加わる力と
の関係を示す説明図である。
An example of a conventional technique for an optical fiber hydrophone will be described with reference to the drawings. FIGS. 4(a) to 4(C) are explanatory diagrams showing the relationship between the external force applied to the optical fiber and the force applied to the core of the optical fiber.

まず、第4図(a)を見るにコア64が光ファイバの中
心にあり、その周囲にはコア64よシも低い屈折率のク
ラ、ドロ3で埋められ、断面の外形は一般に円となって
いる。この場合、コアを通る光は、いずれの方向に偏光
しても同一速度で伝搬する。しかし、第4図(b)のよ
うにクラッド63の中にこれを構成する材料に比べ熱膨
張係数の大きな材料で構成された応力付与部65を設は
九個波面保存形光ファイバでは加熱して形成された光フ
ァイバを冷却するときに応力付与部65は急激に縮小す
るため、応力付与部の周囲に対して張力(引張力)が加
わるまた、一般にコアの断面方向に加えられる張力また
は加圧力によシその方向に偏光した光の伝搬速度は変化
する。従ってコア64に対しても応力付与部65の方向
へ張力が働らき、そのため応力付与部を結んだ方向に偏
光した光と、これと直角方向に偏光した光とでは伝播速
度が異なり、それぞれ独立に伝搬するようになる。
First, as shown in FIG. 4(a), the core 64 is located at the center of the optical fiber, and the surrounding area is filled with a layer of dome 3, which has a lower refractive index than the core 64, and the outer shape of the cross section is generally a circle. ing. In this case, light passing through the core propagates at the same speed no matter which direction it is polarized. However, as shown in FIG. 4(b), nine stress-applying parts 65 made of a material with a larger coefficient of thermal expansion than the materials composing the cladding 63 are installed in the cladding 63. Since the stress-applying part 65 rapidly shrinks when the optical fiber formed by the process is cooled, tension (tensile force) is applied to the periphery of the stress-applying part. Depending on the pressure, the propagation speed of light polarized in that direction changes. Therefore, tension is applied to the core 64 in the direction of the stress-applying part 65, and therefore, the propagation speed of light polarized in the direction connecting the stress-applying parts and light polarized in the direction perpendicular to this is different, and each is independent. It begins to propagate to

一方、光ファイバに加わった外力がコアに及ぼす影響を
調べる。ここで応力付与部65を構成する材料が、クラ
ッド63を構成する材料に比べて弾性率が小さい(柔か
い)ときは両者に同一の力を加えたとき、大部分の力は
弾性率の大きな(剛い)材料からなるクラッド63に加
えられる。従って、第4図(C)において応力付与部6
5を結ぶ線と直角方向に元ファイバに対する圧縮力(引
張力でもよい)67を加えると、弾性率の小さい応力付
与部の加圧力の伝搬を無視して、応力付与部の間のせま
い部分に光ファイバに対する加圧力67の大部分が加え
られると考えてよい。よりて、コアに対する加圧力67
人は、光ファイバに対する加圧力67の大部分が現われ
る。また、応力付与部65を結ぶ勝に光ファイバに対す
る加圧力68(これは光ファイバの大きさまたは拡が9
に比べて受波した音波の波長がかな9大きければ上述の
加圧力67とほぼ同様となる)を加えると、弾性率の小
さい応力付与部65の加圧力の伝搬を無視すれば、応力
付与部65によって遮ぎられているコア64に対しては
、加圧力68に比べて相当小さい加圧力68Aが加わる
On the other hand, we will examine the effect of external force applied to the optical fiber on the core. Here, when the material forming the stress applying portion 65 has a lower elastic modulus (softer) than the material forming the cladding 63, when the same force is applied to both, most of the force is generated by the material having a large elastic modulus (softer) than the material forming the cladding 63. is added to the cladding 63 consisting of a rigid) material. Therefore, in FIG. 4(C), the stress applying part 6
When applying a compressive force (or tensile force) 67 to the original fiber in a direction perpendicular to the line connecting the points 5 to 5, the force will be applied to the narrow part between the stress applying parts, ignoring the propagation of the pressing force in the stress applying parts with a small elastic modulus. It may be considered that most of the pressing force 67 on the optical fiber is applied. Therefore, the pressing force on the core is 67
The person exerts most of the pressure force 67 on the optical fiber. In addition, the pressure force 68 applied to the optical fiber at the point where the stress applying part 65 is connected (this is determined by the size or spread of the optical fiber 9
If the wavelength of the received sound wave is Kana 9 larger than , it will be almost the same as the pressing force 67 mentioned above), and if the propagation of the pressing force in the stress applying part 65 with a small elastic modulus is ignored, the stress applying part A pressing force 68A, which is considerably smaller than the pressing force 68, is applied to the core 64 which is blocked by the pressing force 65.

従って、このような光ファイバを用いて水中音波の圧力
変化を測定する場合は、光ファイバの2個の応力付与部
65を結んだ方向と、これと直角方向に偏光した光を同
一振幅で光ファイバに送込む。一般にはこの2方向の中
間すなわち両者から45度の方向に偏光された光を光フ
ァイバに入力し、入力された偏光角と同一角度の偏光子
を通して、位相差変化を検出して、光ファイバに作用し
た外力もしくは外力変化量を取出している。
Therefore, when measuring pressure changes in underwater sound waves using such an optical fiber, light polarized in the direction connecting the two stress-applying parts 65 of the optical fiber and in the direction perpendicular to this is polarized with the same amplitude. into the fiber. Generally, light polarized in the middle of these two directions, that is, at a 45 degree angle from both directions, is input into an optical fiber, passed through a polarizer with the same polarization angle as the input polarization angle, and the change in phase difference is detected, and the light is connected to the optical fiber. Extracts the applied external force or the amount of external force change.

以上述べたように応力付与部65を結ぶ線の方向に光フ
ァイバに対する加圧力68を加えたときのコア64に生
ずる加圧力68Aよシも、圧力付与部65′jt結ぶ線
に対し直角方向に加圧力67金加えたときのコアに生ず
る加圧力67Aの方が相当大きい。従ってハイドロホン
として外部からの音圧を直接または間接に受けるときは
、加圧力67が加わる方法の採用が望ましいことが分か
る。
As described above, when the pressing force 68 is applied to the optical fiber in the direction of the line connecting the stress applying parts 65, the pressing force 68A generated on the core 64 is also perpendicular to the line connecting the stress applying parts 65'jt. When a pressing force of 67 gold is applied, the pressing force of 67 A generated in the core is considerably larger. Therefore, when receiving sound pressure from the outside directly or indirectly as a hydrophone, it is found that it is desirable to adopt a method of applying pressurizing force 67.

従来の技術では、光フアイバ単体で全方向から音波を受
け、上述した内部構造によシ発生するコアへの応力の異
方性を利用するか、第3図に示すように、受波音圧を適
当な方法でたわみ振動(曲げ振動ともいう)に変換した
振動板51に光7アイバ52t−密接して巻回し接着剤
53で固着することによシ、作用力56の方向に受ける
圧縮または引張力を利用している。しかし、光ファイバ
52は断面外形が円であるので、振動板51に固着する
ときは、断面に対して応力付与部の方向を揃えて配置す
ることは至難である。従ってこのような方法で光ファイ
バを配置させると、それぞれの光ファイバが直列に接続
されていたとしても、ばらばらの方向を向いた光ファイ
バの感度の平均的な値のみがあられれ、振動板を用いて
一方向の応力を増幅して光ファイバに加えて感度を増大
させようとする効果が低減してしまう。
In conventional technology, a single optical fiber receives sound waves from all directions, and either utilizes the anisotropy of stress on the core generated by the internal structure described above, or, as shown in Figure 3, receives sound waves from all directions. By closely winding the optical fibers 52t on the diaphragm 51, which has been converted into flexural vibration (also called bending vibration) by an appropriate method, and fixing it with adhesive 53, the compression or tension received in the direction of the acting force 56 is applied. It uses power. However, since the optical fiber 52 has a circular cross-sectional outline, when it is fixed to the diaphragm 51, it is extremely difficult to align the direction of the stress-applying portion with respect to the cross-section. Therefore, if the optical fibers are arranged in this way, even if the optical fibers are connected in series, only the average sensitivity of the optical fibers facing different directions will be lost, and the diaphragm will be distorted. The effect of increasing the sensitivity by amplifying the stress in one direction and adding it to the optical fiber is reduced.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明が解決しようとする従来技術の問題点は上述のよ
うに、光フアイバ全振動体に密接して巻回し固着したと
きに光ファイバの断面の方向が揃わないので振動体に光
ファイバを多数回巻回しても感度が上らないという点に
ある。
The problem of the prior art that the present invention aims to solve is, as mentioned above, that when all the optical fibers are tightly wound and fixed around a vibrating body, the cross-sectional directions of the optical fibers are not aligned, so a large number of optical fibers are attached to the vibrating body. The problem is that the sensitivity does not increase even if the winding is repeated.

従って本発明の目的は、上記欠点を解決した感度の高い
光ファイバハイドロホンを提供することにある。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a highly sensitive optical fiber hydrophone that overcomes the above-mentioned drawbacks.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の光ファイバハイドロホンは、コアと、その層重
を囲んで成るクラッドと、コアを中心として対称の位置
に2個の応力付与部とを備え、断面の外形と前記応力付
与部との相対関係が長さ方向に関して同一である光ファ
イバを振動体に密接して巻回し前記振動体に固着して成
るノーイドロホンにおいて、前記光ファイバの前記コア
から断面の外形までの寸法がコアを中心とした方向によ
って異なるよう構成される。
The optical fiber hydrophone of the present invention includes a core, a cladding surrounding the layers thereof, and two stress-applying parts at symmetrical positions with the core as the center, and the cross-sectional outline and the stress-applying parts are different from each other. In a noidrophone comprising an optical fiber having the same relative relationship in the longitudinal direction, closely wound around a vibrating body and fixed to the vibrating body, the dimension from the core of the optical fiber to the outer diameter of the cross section is centered on the core. It is configured differently depending on the direction in which it is viewed.

〔実施例〕〔Example〕

次に本発明の実施例について図面を参照して詳細に説明
する。第1図(a)〜(b)は本発明の第一〜第二の実
施例を示す斜視図、第2図(a)〜(C)は本発明に使
用する元ファイバの構造と光ファイバを振動体へ密接し
て巻回した構造を示す斜視図である。
Next, embodiments of the present invention will be described in detail with reference to the drawings. Figures 1 (a) to (b) are perspective views showing the first to second embodiments of the present invention, and Figures 2 (a) to (C) are the structure of the original fiber used in the present invention and the optical fiber. FIG. 3 is a perspective view showing a structure in which a vibrator is tightly wound around a vibrating body.

まず本発明の概要について説明する。First, an overview of the present invention will be explained.

先に述べたように外部から圧力がかけられた時の元ファ
イバの最高感度の方向は、その中の応力付与部の位置と
密接な関係があシ、光ファイバのコアに関して対称の位
置にある応力付与部と、これらを囲んでいるクラッドの
弾性率の大小によって決定さnる。すなわち応力付与部
の弾性率が小さい(柔い)ときには、2個の応力付与部
を結んだ直線に対して直角方向から応力を受けることが
、光ファイバハイドロホンの感度を上げる要件となって
いる。
As mentioned earlier, the direction of maximum sensitivity of the original fiber when pressure is applied from the outside is closely related to the position of the stress-applying part within it, and it is located at a symmetrical position with respect to the core of the optical fiber. It is determined by the magnitude of the elastic modulus of the stress-applying portion and the cladding surrounding them. In other words, when the elastic modulus of the stress-applying part is small (soft), it is necessary to receive stress from a direction perpendicular to the straight line connecting the two stress-applying parts to increase the sensitivity of the optical fiber hydrophone. .

従って光ファイバの断面において、2個の応力付与部を
結ぶ直線またはこれと直角方向の直線の両側に平行な外
形を有するようにしたり、2個の応力付与部を結ぶ直線
に関して対称形な楕円または長円形の外形で構成するこ
とによシ、光7アイパハイドロホンを構成するため振動
体に密接して巻回するときに便利なようになしたもので
ある。
Therefore, in the cross section of the optical fiber, it is possible to have an outer shape that is parallel to both sides of a straight line connecting the two stress applying parts or a straight line perpendicular to this, or an ellipse or an ellipse that is symmetrical with respect to the straight line connecting the two stress applying parts. By configuring it with an oval outer shape, it is convenient for winding it closely around a vibrating body to construct a Hikari 7 Aipah hydrophone.

すなわち第2図(a)〜(C)を見るに、振動板31〜
33にそれぞれ光ファイバ21C〜23cを密接して並
べたもので、一般には第1図(a)のように巻回し、振
動板31〜33に第3図点線に示すような振動をなさし
めて光ファイバ210〜23cに対して第3図の作用力
56の如き外力を加えている。
That is, looking at FIGS. 2(a) to (C), the diaphragms 31 to
The optical fibers 21C to 23c are arranged in close proximity to each other around the diaphragms 31 to 33, and are generally wound as shown in FIG. An external force such as acting force 56 in FIG. 3 is applied to the fibers 210-23c.

従って光ファイバの応力付与部を結ぶ直線と直角の方向
に外力を受ける第2図(a)〜(C)の構成のときは応
力付与部21B〜23Bの弾性率がクラッドの弾性率よ
りも小さく(柔かく)、最大の感度が得られる。
Therefore, in the configurations shown in FIGS. 2(a) to (C) that receive external force in a direction perpendicular to the straight line connecting the stress applying parts of the optical fiber, the elastic modulus of the stress applying parts 21B to 23B is smaller than the elastic modulus of the cladding. (soft) for maximum sensitivity.

光ファイバの断面形状が応力付与部を結ぶ直線に関して
対称表楕円または長円形の外形としたものが第2図(a
)に示す構造であり、応力付与部を結ぶ直線の両側にこ
れと平行な外形を有するようにし九ものが第2図(b)
に示す構造であり、応力付与部の外側に応力付与部を結
ぶ直線と直交した平面を設けたものが第3図(C)に示
す構造である。
Figure 2 (a) shows an optical fiber whose cross-sectional shape is symmetrical with respect to the straight line connecting the stress-applying parts.
), and the outer shape is parallel to the straight line connecting the stress-applying parts on both sides, as shown in Figure 2(b).
The structure shown in FIG. 3(C) is a structure in which a plane perpendicular to the straight line connecting the stress applying parts is provided on the outside of the stress applying parts.

従って上述のような構造とすることにより、光ファイバ
を振動板に密着して巻回し固定したとき、光ファイバの
最も感度のよい方向へ振動板からの外力が加わるように
構成されたものである。
Therefore, by adopting the above-mentioned structure, when the optical fiber is tightly wound and fixed around the diaphragm, the external force from the diaphragm is applied to the optical fiber in the direction of the highest sensitivity. .

次に、本発明の光ハイドロホンの実施例について第1図
(a) 、 (b)を参照して説明する。
Next, an embodiment of the optical hydrophone of the present invention will be described with reference to FIGS. 1(a) and 1(b).

まず、第一の実施例の構成と作動について説明する。第
1図(a)を参照するに第一の実施例は、支持枠組1と
、振動板2と、光ファイバ3とで構成され、支持枠組1
の両面に振動板2を接着などによって形成している。ま
た、両面に取付けられた振動板2の外面と滑らかに接続
された曲面状の側面部5を、支持枠組lの2箇所に有し
ている。支持枠組lの壁の厚みは振動板2の厚みより充
分厚く構成され、光ファイバ3を先に述べた側面部5と
振動板2とに接しつつ密接して巻回し、少なくとも振動
板2と接する部分はエポキシ系接着剤などで固着してい
る。従ってここでは先に述べた偏波面保存型の光ファイ
バ3として、第2図(a)〜(C)に示すいずれかの型
式のものを巻回すればよい。
First, the configuration and operation of the first embodiment will be explained. Referring to FIG. 1(a), the first embodiment is composed of a support framework 1, a diaphragm 2, and an optical fiber 3.
A diaphragm 2 is formed on both sides by adhesive or the like. Further, the support framework l has two curved side surfaces 5 that are smoothly connected to the outer surfaces of the diaphragm 2 attached to both sides. The wall thickness of the support framework l is configured to be sufficiently thicker than the thickness of the diaphragm 2, and the optical fiber 3 is wound closely while in contact with the side surface portion 5 and the diaphragm 2 mentioned above, so that it is in contact with at least the diaphragm 2. The parts are fixed with epoxy adhesive. Therefore, here, any of the types shown in FIGS. 2(a) to 2(C) may be wound as the polarization-maintaining optical fiber 3 described above.

次に、第二の実施例の構成と作動について説明する。第
1図(b)を参照するに第二の実施例は、支持枠組11
と、振動円筒12と、光ファイバ3とで構成され、振動
円筒12の両端を支持枠組11で固定しく一般には振動
円筒12の内側で支持枠組は一体化されている)、音波
を受波したときには、音波の圧力により振動円筒12の
周囲圧力が減少した場合に振動円筒12が太鼓状に太く
なったシ、その周囲圧力が増大した場合に振動円筒12
が鼓状に細くなったシする。従ってこの場合でも、振動
円筒12に接しつつ光7アイパ13を密接して巻回し、
少なくとも振動円筒12に接する部分をエポキシ系合成
樹脂の接着材などで固着しておけば、振動円筒12の光
フアイバ巻回部分の断面は、第3図の振動板51と同一
の動きをするとみなすことができる。従ってここでは、
先に述べた偏光面保存型の光ファイバ13には、第2図
(a)〜(C)に示すすべての型式の光ファイバが使用
でき、そのうちのいずれか一つを振動円筒12に巻回す
ればよい。
Next, the configuration and operation of the second embodiment will be explained. Referring to FIG. 1(b), the second embodiment has a support framework 11.
It consists of a vibrating cylinder 12, and an optical fiber 3, and both ends of the vibrating cylinder 12 are fixed with a support framework 11 (generally, the support framework is integrated inside the vibrating cylinder 12), and receives sound waves. Sometimes, when the surrounding pressure of the vibrating cylinder 12 decreases due to the pressure of sound waves, the vibrating cylinder 12 becomes thicker like a drum, and when the surrounding pressure increases, the vibrating cylinder 12 becomes thicker.
It becomes thin like a drum. Therefore, even in this case, the optical 7 eyeper 13 is tightly wound while being in contact with the vibrating cylinder 12.
If at least the part in contact with the vibrating cylinder 12 is fixed with an adhesive such as epoxy synthetic resin, the cross section of the optical fiber wound part of the vibrating cylinder 12 can be considered to move in the same way as the diaphragm 51 in FIG. 3. be able to. Therefore, here:
All types of optical fibers shown in FIGS. 2(a) to 2(C) can be used as the polarization-maintaining optical fiber 13 mentioned above, and any one of them can be wound around the vibrating cylinder 12. do it.

以上のような方法によって光ファイバハイドロホンの感
度を上げることが極めて容易となった。
By the method described above, it has become extremely easy to increase the sensitivity of an optical fiber hydrophone.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように本発明の光ファイバハイドロ
ホンは、光ファイバハイドロホンの振動形状を応力付与
部を結んだ直線またはこれと直交する直線に関して対象
となる楕円または長円形もしくは平行線を断面の一部に
有する形状とすることによシ、光ファイバの方向を揃え
て巻回できるために極めて感度の高いハイドロホンが得
られるという効果がある。
As explained in detail above, the optical fiber hydrophone of the present invention has a vibration shape of the optical fiber hydrophone in a cross section of an ellipse, an oblong, or a parallel line with respect to a straight line connecting stress applying parts or a straight line orthogonal to this. By forming a part of the optical fiber into a shape, the optical fiber can be wound in the same direction, resulting in an extremely sensitive hydrophone.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(b)は本発明の第一〜第二の実施例の
構造を示す斜視図、第2図(a)〜(C)は本発明に使
用する光ファイバの構造と光ファイバを振動体へ密接し
て巻回した構造を示す斜視図、第3図は従来の技術によ
る光ファイバの構造と光ファイバを振動体へ密接して巻
回した構造の一例を示す斜視図、第4図(a)〜(C)
は光ファイバへ加圧された力と光ファイバのコアへ加圧
される力との関係を示す説明図。 1.11・・・・・・支持枠組、2・・・・・・振動板
、3,13・・・・・・光ファイバ、5・・・・・・側
面部、12・・・・・・振動円板に密接して巻回し固着
される光ファイバの断面l 二 壽圭)才千泉1 2:賑″vJ裁        3 茅 / 呵び) 筒。 2IC−23C: #:’7yJA: 第 21!r(匂 第 Z  f!IJCC)
FIGS. 1(a) to (b) are perspective views showing the structures of the first to second embodiments of the present invention, and FIGS. 2(a) to (C) are the structures of the optical fibers used in the present invention. A perspective view showing a structure in which an optical fiber is tightly wound around a vibrating body. FIG. 3 is a perspective view showing an example of a conventional optical fiber structure and a structure in which an optical fiber is tightly wound around a vibrating body. , Figures 4(a) to (C)
FIG. 2 is an explanatory diagram showing the relationship between the force applied to the optical fiber and the force applied to the core of the optical fiber. 1.11... Support framework, 2... Vibration plate, 3, 13... Optical fiber, 5... Side part, 12...・Cross section of an optical fiber that is tightly wound and fixed on a vibrating disk. 21!r (Nio Z f! IJCC)

Claims (4)

【特許請求の範囲】[Claims] (1)コアと、その周囲を囲んで成るクラッドと、コア
を中心として対称の位置に2個の応力付与部とを備え、
断面の外形と前記応力付与部との相対関係が長さ方向に
関して同一である光ファイバを振動体に密接して巻回し
固着したハイドロホンにおいて、 前記光ファイバのコアから外形までの寸法がコアを中心
とした方向によって異なることを特徴とする光ファイバ
ハイドロホン。
(1) Comprising a core, a cladding surrounding the core, and two stress applying parts at symmetrical positions around the core,
In a hydrophone in which an optical fiber whose cross-sectional outline and the relative relationship with the stress-applying portion are the same in the longitudinal direction is tightly wound and fixed around a vibrating body, the dimension from the core to the outside of the optical fiber is the same as the core. An optical fiber hydrophone that differs depending on the direction of its center.
(2)2個の応力付与部を結ぶ直線の両側に前記直線と
平行な断面外形をその一部に有することを特徴とする特
許請求の範囲第1項記載の光ファイバハイドロホン。
(2) The optical fiber hydrophone according to claim 1, wherein a part of the fiber hydrophone has a cross-sectional outline parallel to the straight line on both sides of the straight line connecting the two stress applying parts.
(3)2個の応力付与部を結ぶ直線に関し対称形である
楕円または長円形の断面外形を有することを特徴とする
特許請求の範囲第1項記載の光ファイバハイドロホン。
(3) The optical fiber hydrophone according to claim 1, characterized in that the optical fiber hydrophone has an elliptical or oblong cross-sectional outline that is symmetrical with respect to a straight line connecting the two stress-applying parts.
(4)2項の応力付与部の少なくとも一方の外側に、応
力付与部を結ぶ直線と直交する平面部を有することを特
徴とする特許請求の範囲第1項記載の光ファイバハイド
ロホン。
(4) The optical fiber hydrophone as set forth in claim 1, wherein at least one of the stress applying portions as set forth in claim 2 has a flat portion on the outside thereof that is orthogonal to a straight line connecting the stress applying portions.
JP61271363A 1986-11-13 1986-11-13 Optical fiber hydrophone Expired - Lifetime JPH061213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61271363A JPH061213B2 (en) 1986-11-13 1986-11-13 Optical fiber hydrophone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61271363A JPH061213B2 (en) 1986-11-13 1986-11-13 Optical fiber hydrophone

Publications (2)

Publication Number Publication Date
JPS63124921A true JPS63124921A (en) 1988-05-28
JPH061213B2 JPH061213B2 (en) 1994-01-05

Family

ID=17499028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61271363A Expired - Lifetime JPH061213B2 (en) 1986-11-13 1986-11-13 Optical fiber hydrophone

Country Status (1)

Country Link
JP (1) JPH061213B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105300505A (en) * 2015-10-14 2016-02-03 中国船舶重工集团公司第七一五研究所 Wide-band high-sensitivity planar optical fiber vector hydrophone

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311610U (en) * 1986-07-07 1988-01-26

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311610U (en) * 1986-07-07 1988-01-26

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105300505A (en) * 2015-10-14 2016-02-03 中国船舶重工集团公司第七一五研究所 Wide-band high-sensitivity planar optical fiber vector hydrophone

Also Published As

Publication number Publication date
JPH061213B2 (en) 1994-01-05

Similar Documents

Publication Publication Date Title
Dobrucki et al. Theory of piezoelectric axisymmetric bimorph
Bucaro et al. Fiber optic acoustic transduction
EP0291200B1 (en) Fiber optic inter-mode coupling single-sideband frequency shifter
Bouwstra et al. On the resonance frequencies of microbridges
JPS60102503A (en) Interferometer sensor
CA1257925A (en) Acousto-optic frequency shifter
US9197969B2 (en) Optical microphone
AU2007248397B2 (en) Tri axis high frequency fiber optic acoustic sensor
Toda et al. Theory of curved, clamped, piezoelectric film, air-borne transducers
CA1267310A (en) Acousto-optic frequency shifter utilizing multi-turn optical fiber
JPS63124921A (en) Optical fiber hydrophone
US11280691B2 (en) Optical fibre pressure sensing apparatus employing longitudinal diaphragm
Maurel et al. Multimodal method for the scattering by an array of plates connected to an elastic half-space
JPS63208809A (en) Polarization maintaining optical fiber
CA1283570C (en) Acousto-optic fiber-optic frequency shifter using periodic contact with a surface acoustic wave
JPS63124922A (en) Optical fiber hydrophone
Huang Theoretical and experimental vibration analysis for a piezoceramic disk partially covered with electrodes
Knudsen et al. Bandwidth limitations due to mechanical resonances of fiber-optic air-backed mandrel hydrophones
Cochran et al. A theory of the piezoelectric slotted cylinder projector
US8537476B2 (en) Support system for vibrating optical assembly
CN110940365B (en) Mechanical amplification structure for increasing sensitivity of interference type optical fiber sensor
Nakamura et al. Optical fiber coupler array for multi-point sound field measurements
Wang et al. Performance analysis and enhancement of a PVDF-based PP sound intensity probe
JPH0771356B2 (en) Optical fiber hydrophone
JPS61200525A (en) Fiber optics phase modulator

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term