JPH0771356B2 - Optical fiber hydrophone - Google Patents

Optical fiber hydrophone

Info

Publication number
JPH0771356B2
JPH0771356B2 JP62019117A JP1911787A JPH0771356B2 JP H0771356 B2 JPH0771356 B2 JP H0771356B2 JP 62019117 A JP62019117 A JP 62019117A JP 1911787 A JP1911787 A JP 1911787A JP H0771356 B2 JPH0771356 B2 JP H0771356B2
Authority
JP
Japan
Prior art keywords
optical fiber
diaphragm
hydrophone
sound insulation
fiber hydrophone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62019117A
Other languages
Japanese (ja)
Other versions
JPS63185300A (en
Inventor
克己 杉内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62019117A priority Critical patent/JPH0771356B2/en
Publication of JPS63185300A publication Critical patent/JPS63185300A/en
Publication of JPH0771356B2 publication Critical patent/JPH0771356B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光ファイバハイドロホンに関し、特に高水圧下
で使用のできる光ファイバハイドロホンに関する。
The present invention relates to an optical fiber hydrophone, and more particularly to an optical fiber hydrophone that can be used under high water pressure.

〔従来の技術〕[Conventional technology]

光ファイバハイドロホンの従来の技術の一例について図
面を参照して説明する。第6図(a)は従来の技術によ
る構造の一例を示す外観図、第6図(b)は第6図
(a)のX−Yで切断した構造を示す断面図である。
An example of a conventional optical fiber hydrophone will be described with reference to the drawings. FIG. 6 (a) is an external view showing an example of a conventional structure, and FIG. 6 (b) is a sectional view showing the structure taken along line XY in FIG. 6 (a).

偏平状の支持枠組41の偏平な両面に振動板42を接着・取
付などによって形成している。また両面に取付けられた
振動板42の表面を滑らかに接続する曲面状の側面部45が
2箇所にある。また支持枠組41の壁の厚みは振動板42の
厚みよりも十分厚く、内部には空間があり、支持枠組に
はさらに、光ファイバ43(特に偏波面保持型光ファイ
バ)を先に述べた側面部45と振動板42とに接しつつ密接
して巻回し、振動板42に接する部分は接着剤(例えばエ
ポキシ系合成樹脂)で固着している。
A diaphragm 42 is formed on both flat surfaces of a flat support frame 41 by bonding or attachment. Further, there are two curved side surface portions 45 for smoothly connecting the surfaces of the diaphragms 42 mounted on both sides. Further, the thickness of the wall of the support frame 41 is sufficiently thicker than the thickness of the diaphragm 42 and there is a space inside, and the optical fiber 43 (particularly the polarization-maintaining optical fiber) is further included in the side surface of the support frame. The part 45 and the vibration plate 42 are wound in close contact with each other while being in contact with each other, and the part in contact with the vibration plate 42 is fixed with an adhesive (for example, epoxy-based synthetic resin).

またハイドロホンが音波を受けるとき、ハイドロホンの
大きさが音波の波長に比べて十分小さいときは、ハイド
ロホンは圧力感動型となり、2個の振動板は同時に支持
枠組の内側または外側に引張られる。そのため、第4図
(a)を見るに、支持枠組1Aに取付けられた振動板2Aが
支持枠組1Aの外向きにふくらみ、振動板2Aに固着してい
る光ファイバ31Aは外側に引張られて、その断面の振動
板に平行な直径方向に応力が働くことになる。第4図
(b)にみるように、支持枠組1Bに取付けられた振動板
2Bが支持枠組1Bの内向きに凹み、振動2Aに固着している
光ファイバ31Bは内側に圧縮されて、その断面の振動板
に平行な直径方向に圧縮応力が働くことになる。
When the hydrophone receives a sound wave and the size of the hydrophone is sufficiently smaller than the wavelength of the sound wave, the hydrophone becomes pressure-sensitive and the two diaphragms are simultaneously pulled inside or outside the support framework. . Therefore, as shown in FIG. 4 (a), the diaphragm 2A attached to the supporting frame 1A bulges outward of the supporting frame 1A, and the optical fiber 31A fixed to the diaphragm 2A is pulled outward, Stress acts in the diametrical direction parallel to the diaphragm of that cross section. As shown in Fig. 4 (b), the diaphragm attached to the support framework 1B.
2B is recessed inward of the support framework 1B, the optical fiber 31B fixed to the vibration 2A is compressed inward, and a compressive stress acts in the diametrical direction parallel to the diaphragm of the cross section.

一方、通常の光ファイバはその中心にコアがあり、その
周囲をコアより屈折率が小さいクラッドで囲んだコアを
中心として同心円状の断面をもった構造となっている。
しかし光ファイバの偏光面を保存するためには、コアや
クラッドの配置に考慮が見られる。すなわち第5図
(a)に見るように光ファイバの断面がコア40の周囲に
楕円状のクラッドを配置しその周囲をサポート42で埋め
て外形を円形としたいわゆる楕円クラッド型や、コアの
みが楕円形をしている楕円コア型や、第5図(b)に見
るように光ファイバの断面がコア45の両側に同一の大き
さの2個の応力付与部46A・46Bを設けたいわゆるパンダ
型がある。
On the other hand, a normal optical fiber has a core at its center, and has a structure having a concentric cross section around the core surrounded by a clad having a refractive index smaller than that of the core.
However, in order to preserve the polarization plane of the optical fiber, it is necessary to consider the arrangement of the core and the clad. That is, as shown in FIG. 5A, a so-called elliptical clad type in which an optical fiber has an elliptical clad whose cross section is arranged around a core 40, and the periphery is filled with a support 42 so that the outer shape is circular, or only the core is formed. An elliptic core type having an elliptical shape or a so-called panda having two stress applying portions 46A and 46B of the same size on both sides of the core 45 as shown in FIG. 5 (b). There is a mold.

また、このような構造を持った光ファイバに外力を与え
たり、曲げや応力を加えると偏光面の回転が観測されて
いる。これにより光ファイバにかかる外力の変化を通し
て偏光面が回転しその回転量を検光子などを通して検出
することにより、振動板に作用した圧力すなわち音圧を
計測することができるものである。
Further, rotation of the polarization plane has been observed when an external force is applied to the optical fiber having such a structure, or bending or stress is applied. As a result, the polarization plane rotates due to a change in the external force applied to the optical fiber, and the amount of rotation is detected through an analyzer or the like, whereby the pressure acting on the diaphragm, that is, the sound pressure can be measured.

しかし、支持枠組41の内部に空間があり、その空間の一
部は板厚の薄い振動板で外面と接するよう構成されてい
るため、大きな外圧に耐えることができず従って水深の
浅い浅海での使用のみが可能である。
However, since there is a space inside the support framework 41 and a part of the space is configured to come into contact with the outer surface with a thin diaphragm, it cannot withstand a large external pressure, and therefore, in shallow water with a shallow water depth. Can only be used.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

本発明が解決しようとする従来の技術の問題点は上述の
ように、光ファイバハイドロホンを構成している支持枠
組と振動板で囲まれた内部の空間が存在するため大きな
外圧に耐えることができず深海(水深1000mで毎cm2当り
約100kgの圧力が生じる)で使用することが不可能であ
るという点にある。
As described above, the problem of the conventional technique to be solved by the present invention is that it can withstand a large external pressure due to the presence of the internal space surrounded by the supporting frame and the diaphragm that constitute the optical fiber hydrophone. It cannot be used in the deep sea (approx. 100 kg of pressure is generated per cm 2 at a water depth of 1000 m) and cannot be used.

従って本発明の目的は、上記欠点を解決した深海の高水
圧で使用できる光ファイバハイドロホンを提供すること
にある。
Therefore, an object of the present invention is to provide an optical fiber hydrophone which can solve the above-mentioned drawbacks and can be used under high water pressure in deep sea.

〔問題点を解決すための手段〕[Means for solving problems]

本発明の光ファイバハイドロホンは、偏平状の支持枠組
の偏平な両面に振動板を形成し、前記両面の振動板の表
面を滑らかな曲面で接続する少なくとも2箇所の側面部
を有し、前記曲面を通して光ファイバを密接して巻回し
前記振動板に固着してなる光ファイバハイドロホンにお
いて、前記振動板の間に気泡を散在せしめた弾性体が網
状に織られている繊維と繊維との間に空間を有している
繊体の両面が樹脂のコーティングを施したオニオンスキ
ンペーパーから成る遮音体を挿入し、前記支持枠組と前
記振動板で囲まれた空間に前記遮音体と液体とを満たす
と共に前記支持枠組を貫通する音響管を有して構成され
る。
The optical fiber hydrophone of the present invention has vibrating plates formed on both flat surfaces of a flat supporting frame, and has at least two side surface portions that connect the surfaces of the vibrating plates on both surfaces with smooth curved surfaces. In an optical fiber hydrophone in which an optical fiber is closely wound through a curved surface and fixed to the diaphragm, an elastic body in which air bubbles are scattered between the diaphragms is woven in a mesh space between the fibers. Insert a sound insulation body made of onion skin paper on both sides of which has a resin coating, and fill the sound insulation body and the liquid in the space surrounded by the support framework and the vibration plate, and It is configured with an acoustic tube penetrating the support framework.

〔実施例〕〔Example〕

次に本発明について実施例を示す図面を参照して詳細に
説明する。第1図は本発明の一実施例の構造を示す外観
図、第2図(a)は第1図をX−Yで切断した構造を示
す断面図、第2図(b)は遮音体の構造の一例を示す説
明図、第3図は本発明を使用した測定系の構成を示すブ
ロック図である。
Next, the present invention will be described in detail with reference to the drawings illustrating an embodiment. FIG. 1 is an external view showing the structure of an embodiment of the present invention, FIG. 2 (a) is a sectional view showing the structure of FIG. 1 taken along the line XY, and FIG. 2 (b) is a sound insulator. FIG. 3 is an explanatory diagram showing an example of the structure, and FIG. 3 is a block diagram showing the configuration of a measurement system using the present invention.

まず、本発明の概要について説明する。First, the outline of the present invention will be described.

本発明の目的である高水圧用の光ファイバハイドロホン
を構成するためには、光ファイバハイドロホンの支持枠
組と振動板からなる内部空間に耐高水圧性を持たせる必
要がある。例えば、内部空間を油などの液体で満たして
内外圧平衡型とし、液体の圧縮率による体積変動は可動
できる薄いゴム膜などで仕切って構成することができ
る。
In order to construct the optical fiber hydrophone for high water pressure which is the object of the present invention, it is necessary to provide the internal space formed by the support framework of the optical fiber hydrophone and the diaphragm with high water pressure resistance. For example, the internal space may be filled with a liquid such as oil to form an internal / external pressure equilibrium type, and the volume variation due to the compressibility of the liquid may be partitioned by a movable thin rubber film or the like.

また、振動板から見れば、両面の振動板から同一の圧力
が加えられるので、振動板の間に液体があり振動板の動
きが制限されてしまう。従って、この方法によれば、光
ファイバハイドロホン自体の耐高水圧性が得られるが極
めて感度が下るということになる。
Further, when viewed from the diaphragm, the same pressure is applied from the diaphragms on both sides, so that there is liquid between the diaphragms and the movement of the diaphragms is restricted. Therefore, according to this method, the high water pressure resistance of the optical fiber hydrophone itself is obtained, but the sensitivity is extremely lowered.

そこで、支持枠組の内側に空気層をおくことが考えられ
る。ところが気泡の入った硝子玉をエポキシ樹脂で固め
たようなものでは、音波のような交番圧力が加えられた
とき硝子玉の壁が弾性変形しないので、気泡の役目をし
ない。従って気泡と接する他の物体との境界に可とう性
があるようにする必要がある。気体の入った細長い繊維
状の細胞の豊富なオニオンスキンペーパーを必要に応じ
積層し、ゴムシートまたはエポキシ樹脂などでコーティ
ングしたものは、この目的を満足でき、かつ外部圧力に
対して気体の入った部分がつぶれ難い。
Therefore, it is conceivable to place an air layer inside the support framework. However, in the case where glass beads containing air bubbles are hardened with an epoxy resin, the walls of the glass beads do not elastically deform when an alternating pressure such as a sound wave is applied, and thus do not serve as air bubbles. Therefore, it is necessary to make the boundary between the bubble and another object in contact with the elastic body flexible. The onion skin paper rich in elongated fibrous cells containing gas was laminated as needed and coated with a rubber sheet or epoxy resin, etc., which fulfills this purpose and contains gas against external pressure. The part is hard to collapse.

従って、高圧下で振動板の振動を妨げる負荷とならない
ようにする効果すなわち遮音効果を保たせることができ
る。
Therefore, it is possible to maintain the effect of not becoming a load that hinders the vibration of the diaphragm under high pressure, that is, the sound insulation effect.

ここで本発明の一実施例の構成と作動について説明す
る。第1図を参照するに本実施例は支持枠組1と、振動
板2と、光ファイバ3と、音響管4と、遮音体6とで構
成されている。
Here, the configuration and operation of one embodiment of the present invention will be described. With reference to FIG. 1, this embodiment comprises a support frame 1, a diaphragm 2, an optical fiber 3, an acoustic tube 4, and a sound insulator 6.

偏平状の支持枠組1の偏平な両面に振動板2を接着・取
付などによって形成している。また両面に取付けられた
振動板2の表面と滑らかに接続する曲面状の側面部5を
支持枠組1の2箇所に有している。また支持枠組1の壁
の厚みは振動板2の厚みより十分厚く構成され、支持枠
組1を貫通して使用周波数が減衰域となっている音響管
4を備えている。音響管4の外部に開放されている部分
には、ゴムなどによる内外部の液体の通過を防止する薄
膜などが張られていると共に、海中の生物などの騒音に
よる高周波音を減衰させるものであります。支持枠組1
にはさらに、偏波面保持型の光ファイバ3を先に述べた
側面部5と振動板2とに接しつつ密接して巻回し、少な
くとも振動板2と接する部分はエポキシ系合成樹脂の接
着剤で固着している。以下支持枠組1の内部の構成と全
般の作動ならびに測定系について述べる。
The vibration plate 2 is formed on both flat surfaces of the flat support frame 1 by adhesion or attachment. Further, the support frame 1 is provided with curved side surface portions 5 at two positions which are smoothly connected to the surfaces of the diaphragms 2 attached to both surfaces. Further, the thickness of the wall of the support frame 1 is configured to be sufficiently thicker than the thickness of the diaphragm 2, and the acoustic tube 4 which penetrates the support frame 1 and has a used frequency in an attenuation range is provided. A thin film that prevents the passage of internal and external liquids such as rubber is placed on the outside of the acoustic tube 4, and it also attenuates high-frequency sounds due to the noise of living organisms in the sea. . Support framework 1
In addition, the polarization-maintaining optical fiber 3 is wound closely while being in contact with the side surface portion 5 and the diaphragm 2 described above, and at least the portion in contact with the diaphragm 2 is made of an epoxy synthetic resin adhesive. It is stuck. The internal structure of the support framework 1 and the overall operation and measurement system will be described below.

次に、本発明の中心となる支持枠組1の内側にある遮音
体6と、これに関連する構成と作動を設明する。
Next, the sound insulation 6 inside the support framework 1 which is the center of the present invention, and the configuration and operation related thereto will be described.

第2図(a)および(b)を見るに、支持枠組1と振動
板2とに囲まれた内部の空間には気体の入った細長い繊
維状の細胞(維管束がところどころでつぶれたような状
況の場合もある)を含んだオニオンスキンペーパ8を重
ねてプレスして、ゴムシートまたエポキシ樹脂などのコ
ーティング材10でコーティングし積層した遮音体6を包
有しており、支持枠組1に固定のために突起1Aを設けて
固定している。なお、これら内部の空間の残余の部分に
は、水(海水)の音響インピーダンスとの差の大きな油
(例えば変圧器油)などの液体15ど満たしている。遮音
体は2枚作りそれぞれ振動板2に押付ける方法をとって
もかまわない。
As shown in FIGS. 2 (a) and 2 (b), in the inner space surrounded by the support framework 1 and the diaphragm 2, gas-containing elongated fibrous cells (like a vascular bundle was crushed in some places) Depending on the situation) onion skin paper 8 is stacked and pressed, and it has a sound insulation 6 which is coated and laminated with a rubber sheet or a coating material 10 such as epoxy resin, and is fixed to the support framework 1. Therefore, the protrusion 1A is provided and fixed. The remaining portion of these internal spaces is filled with 15 liquids such as oil (for example, transformer oil) having a large difference from the acoustic impedance of water (seawater). It is also possible to make two sound insulators and press them against the diaphragm 2.

また第2図(c)を見るに、遮音体6の他の例として、
コーティング材に合成ゴム・合成樹脂を用い、その中に
気泡9を散在せしめ(硝子玉を用いない)ものとするこ
とができる。
Further, as shown in FIG. 2C, as another example of the sound insulation body 6,
It is possible to use a synthetic rubber or a synthetic resin as the coating material and disperse the bubbles 9 therein (without using a glass ball).

以上2例の遮音体6は、いずれも高水圧下でも気泡の径
が圧力により小さくなるものの、遮音に充分な気泡を含
有することができるため、高水圧下で良好な遮音特性を
保持することが可能である。
Although the sound insulators 6 of the above two examples each have a small bubble diameter due to the pressure even under high water pressure, since they can contain bubbles sufficient for sound insulation, they must maintain good sound insulation characteristics under high water pressure. Is possible.

次に、本発明の光ファイバハイドロホン21を使用した測
定系の説明をする。
Next, a measurement system using the optical fiber hydrophone 21 of the present invention will be described.

第3図を見るに、光源11から波長の制御されたコヒーレ
ントな単色光(いわゆるレーザ光)を発生する。そのレ
ーザ光はレンズ13Aで平行光線を放射し、偏光子12であ
らかじめ定められた方向(光ファイバのX軸とY軸の中
間45度の角)に偏光され、レンズ13Bでふたたび集束さ
れ、光ファイバ14Aを通して光ファイバハイドロホン21
に入力する。光ファイバハイドロホン21はその周囲に音
波が存在するとき、その圧力のため光ファイバ出射端で
の偏光状態が変化するが、検光子17であらかじめ定めら
れた方向(一般に偏光子の偏光角と同一方向にする)の
偏光成分のみを通過させる構造とし、レンズ18Bで集束
してフォトダイオード19で検出することにより、光ファ
イバハイドロホン21に加えられた音波の強度に対応する
信号を、出力信号22として出力する。
As shown in FIG. 3, coherent monochromatic light (so-called laser light) having a controlled wavelength is generated from the light source 11. The laser light is emitted as parallel rays by the lens 13A, is polarized by the polarizer 12 in a predetermined direction (an angle of 45 degrees between the X axis and the Y axis of the optical fiber), and is focused again by the lens 13B. Fiber optic hydrophone 21 through fiber 14A
To enter. When a sound wave is present around the optical fiber hydrophone 21, the polarization state at the exit end of the optical fiber changes due to the pressure of the sound wave. However, the optical fiber hydrophone 21 has a predetermined direction (generally the same as the polarization angle of the polarizer). The optical signal is output from the output signal 22 corresponding to the intensity of the sound wave applied to the optical fiber hydrophone 21 by focusing with the lens 18B and detecting it with the photodiode 19. Output as.

以上のような方法で、本発明の光ファイバハイドロホン
を用いた深海の音圧計測が可能となる。
The sound pressure measurement in the deep sea using the optical fiber hydrophone of the present invention can be performed by the above method.

〔発明の効果〕〔The invention's effect〕

以上詳細に説明したように本発明の光ファイバハイドロ
ホンは、光ファイバハイドロホンの振動板の内側に気泡
を散在せしめた弾性体、例えば積層されたオニオンスキ
ンペーパをゴムシートまたはエポキシ樹脂などでコーテ
ィングした遮音体、あるいは合成ゴム・含成樹脂の中に
気泡を散在せしめた遮音体などを設けることができるの
で、大きな外圧が掛かる深海で使用が可能となるという
効果がある。
As described in detail above, the optical fiber hydrophone of the present invention is an elastic body in which air bubbles are scattered inside the diaphragm of the optical fiber hydrophone, for example, a laminated onion skin paper is coated with a rubber sheet or an epoxy resin. Since it is possible to provide a sound insulation body, or a sound insulation body in which air bubbles are dispersed in synthetic rubber / compound resin, it is possible to use it in the deep sea where a large external pressure is applied.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の構造を示す外観図、第2図
(a)は第1図のXYで切断した構造を示す断面図、第2
図(b),(c)は遮音体の構造の一例を示す説明図、
第3図は本発明を使用した測定系の構成を示すブロック
図、第4図(a)および(b)は振動板の振動時の光フ
ァイバの状況を示す説明図、第5図(a)および(b)
は偏光面保存光ファイバの構造例を示す断面図、第6図
(a)は従来の技術による構造の一例を示す外観図、第
6図(b)は第6図(a)のXYで切断した構造を示す断
面図。 1……支持枠組、2……振動板、3……光ファイバ、4
……音響管、5……側面部、6……遮音体。
FIG. 1 is an external view showing the structure of one embodiment of the present invention, FIG. 2 (a) is a sectional view showing the structure taken along line XY in FIG. 1, and FIG.
(B) and (c) are explanatory views showing an example of the structure of the sound insulation body,
FIG. 3 is a block diagram showing the configuration of a measurement system using the present invention, FIGS. 4 (a) and 4 (b) are explanatory views showing the state of the optical fiber when the diaphragm vibrates, and FIG. 5 (a). And (b)
Is a cross-sectional view showing an example of the structure of a polarization-maintaining optical fiber, FIG. 6 (a) is an external view showing an example of the structure according to the prior art, and FIG. 6 (b) is cut at XY in FIG. 6 (a). A sectional view showing the structure. 1 ... Support frame, 2 ... Vibration plate, 3 ... Optical fiber, 4
…… Sound tube, 5 …… Side part, 6 …… Sound insulation.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】扁平状の支持枠組の扁平な両面に振動板を
形成し、前記両面の振動板の表面を滑らかな曲面で接続
する少なくとも2箇所の側面部を有し、前記曲面を通し
て光ファイバを密接して巻回し前記振動板に固着してな
る光ファイバハイドロホンにおいて、前記振動板の間に
気泡を散在せしめた弾性体が網状に織られている繊維と
繊維との間に空間を有している繊体の両面に樹脂のコー
ティングを施したオニオンスキンペーパーから成る遮音
体を挿入し、前記支持枠組と前記振動板とで囲まれた空
間に前記遮音体と液体とを満たすと共に前記支持枠組を
貫通する音響管を有して成ることを特徴とする光ファイ
バハイドロホン。
1. A vibration plate is formed on both flat surfaces of a flat support frame and has at least two side surface portions that connect the surfaces of the vibration plates on both sides with smooth curved surfaces, and the optical fiber is passed through the curved surfaces. In an optical fiber hydrophone that is closely wound around and fixed to the diaphragm, an elastic body in which air bubbles are scattered between the diaphragms has a space between the fibers and is woven in a net shape. Insert a sound insulation body made of onion skin paper with resin coating on both sides of the fibrous body, fill the sound insulation body and the liquid in the space surrounded by the support framework and the diaphragm, and An optical fiber hydrophone having an acoustic tube penetrating therethrough.
JP62019117A 1987-01-28 1987-01-28 Optical fiber hydrophone Expired - Lifetime JPH0771356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62019117A JPH0771356B2 (en) 1987-01-28 1987-01-28 Optical fiber hydrophone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62019117A JPH0771356B2 (en) 1987-01-28 1987-01-28 Optical fiber hydrophone

Publications (2)

Publication Number Publication Date
JPS63185300A JPS63185300A (en) 1988-07-30
JPH0771356B2 true JPH0771356B2 (en) 1995-07-31

Family

ID=11990528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62019117A Expired - Lifetime JPH0771356B2 (en) 1987-01-28 1987-01-28 Optical fiber hydrophone

Country Status (1)

Country Link
JP (1) JPH0771356B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4976143B2 (en) * 2006-09-29 2012-07-18 古河電気工業株式会社 Impact vibration detector

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50121727U (en) * 1974-03-19 1975-10-04
JPS59148832A (en) * 1983-02-15 1984-08-25 Hitachi Ltd Optical fiber type underwater sound detector
JPS6141208U (en) * 1984-08-20 1986-03-15 沖電気工業株式会社 fiber optic hydrophone

Also Published As

Publication number Publication date
JPS63185300A (en) 1988-07-30

Similar Documents

Publication Publication Date Title
US4530078A (en) Microbending fiber optic acoustic sensor
JP5819394B2 (en) Optical fiber compatible acoustic sensor
CN106573274B (en) Multi-cell transducer
US4700100A (en) Flexural disk resonant cavity transducer
JP2002365106A (en) Instrument for measuring flow rate, clamp-on type ultrasonic flowmeter
US5825489A (en) Mandrell based embedded planar fiber-optic interferometric acoustic sensor
CN1019444B (en) Singnal sensor insensible to static pressure change
CN112113653B (en) Folded beam type optical fiber laser hydrophone
GB2113417A (en) Acousto-optical fibre transducer
JPH01142424A (en) Non-echo coating for sound wave
JP5504276B2 (en) Sonic transducer and sonar antenna with improved directivity
US5574699A (en) Fiber optic lever towed array
GB2450238A (en) Acoustic waveguides
CN102620808A (en) Local resonance type phononic crystal filtering optical fiber hydrophone
JPH0771356B2 (en) Optical fiber hydrophone
Lagakos et al. Planar flexible fiber-optic acoustic sensors
Brown et al. Fiber optic flexural disk microphone
Hansen et al. Modelling of hydrophone based on a DFB fiber laser
JPS57198000A (en) Electroacoustic transducer
EP1015854A1 (en) Hydrophone with compensation for statical pressure and method for pressure wave measurement
JP3263897B2 (en) High water pressure cylindrical optical fiber acoustic sensor
JPS59148832A (en) Optical fiber type underwater sound detector
JP2818931B2 (en) High water pressure cylindrical optical fiber acoustic sensor
Garrett et al. General purpose fiber optic hydrophone made of castable epoxy
JP3237051B2 (en) High water pressure cylindrical optical fiber acoustic sensor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term