JPS63124352A - X-ray tube target - Google Patents

X-ray tube target

Info

Publication number
JPS63124352A
JPS63124352A JP26761086A JP26761086A JPS63124352A JP S63124352 A JPS63124352 A JP S63124352A JP 26761086 A JP26761086 A JP 26761086A JP 26761086 A JP26761086 A JP 26761086A JP S63124352 A JPS63124352 A JP S63124352A
Authority
JP
Japan
Prior art keywords
target
graphite
ceramics
fiber composite
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26761086A
Other languages
Japanese (ja)
Inventor
Akio Chiba
秋雄 千葉
Yasuo Matsushita
松下 安男
Kosuke Nakamura
浩介 中村
Masahisa Sofue
祖父江 昌久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP26761086A priority Critical patent/JPS63124352A/en
Publication of JPS63124352A publication Critical patent/JPS63124352A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable the manufacture of a target which resists high-speed rotation and has high performance and high efficiency by forming a X-ray target in a X-ray CT device so that it is composed of graphite/carbon fiber composite/ graphite. CONSTITUTION:Graphite 1, ceramics 3, a carbon fiber composite 2, ceramics 3, and graphite 1 are incorporated serially inside a metallic mold 4, and they are molded with a molding pressure 500 kg/cm<2> in order to uniformalize the thickness of the ceramics 3. Then the thickness after the sintering of the ceramics 3 is made 0.5 mm to 1 mm or so. This molded composite target is sintered by a hot press. The sintering conditions are as follows; this target is heated for about 15 min. until its temperature rises up to 1900 deg.C from a room temperature, and pressure 300 kg/cm<2> is applied to the target at 1900 deg.C, and moreover the target is heated up to 2150 deg.C at the rate of 10 deg.C/min, and after the target is held at 2150 deg.C for 30 min., it is cooled, and the pressure is released at 1500 deg.C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、X@CT装置用のX線管ターゲットに係り、
特に、高速回転に適するため1表裏面の黒鉛材を補強す
る目的で、中間部に高強度の炭素繊維複合材料を用い、
高強度、軽量化を図り、高速回転に樋適なX線管ターゲ
ットに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an X-ray tube target for an X@CT device,
In particular, in order to be suitable for high-speed rotation, a high-strength carbon fiber composite material is used in the middle part to reinforce the graphite material on the front and back surfaces.
This article relates to an X-ray tube target that has high strength, is lightweight, and is suitable for high-speed rotation.

〔従来の技術〕[Conventional technology]

医療診断機器として需要のあるX線撮影とコンピュータ
画像を組合せた全身用X線CT装置は、診断効率及び画
質の高性能化が望まれている。
Whole-body X-ray CT systems that combine X-ray photography and computer imaging are in demand as medical diagnostic equipment, and are desired to have improved diagnostic efficiency and image quality.

診断効率の向上(撮影時間の短縮)にはX線管ターゲッ
ト(回転陽極)の蓄熱熱容量を大きくする必要がある。
To improve diagnostic efficiency (shorten imaging time), it is necessary to increase the heat storage capacity of the X-ray tube target (rotating anode).

一方、画質の向上(高鮮明画像)にはターゲットへ大電
流を入力してX線の増加を図るため、ターゲットの電子
照射面の周速を大きくすることから高速回転が必要であ
る。
On the other hand, in order to improve image quality (highly clear images), a large current is input to the target to increase the amount of X-rays, which increases the circumferential speed of the electron irradiation surface of the target, which requires high-speed rotation.

熱容量は比熱、比重及び温度の積で計算され、熱容量を
大きくするには金属材料が適し、X線の発生効率が高く
、さらに、ターゲットの稼動時に加熱(1200℃〜1
300℃)されるため高融点で耐熱性に優れた材料が必
要である。これまでにW、Mo等が選択されてきたが比
重が大きく重なり、高速回転した場合、ベアリングの寿
命が短かくなる。
Heat capacity is calculated as the product of specific heat, specific gravity, and temperature. Metal materials are suitable for increasing heat capacity, have high X-ray generation efficiency, and are heated (1200℃ to 1200℃) during target operation.
(300°C), a material with a high melting point and excellent heat resistance is required. W, Mo, etc. have been selected so far, but their specific gravity greatly overlaps, and when rotating at high speed, the life of the bearing will be shortened.

これらの問題を解決するため、金属性ターゲットに黒鉛
の貼り合せ、あるいは、黒鉛単体等が考えられてきた。
In order to solve these problems, bonding graphite to a metallic target, or using graphite alone has been considered.

金属に黒鉛を貼り合せたターゲットは、上述したように
重く、ベアリングの寿命が短い。また、黒鉛単体では強
度が小さく高速回転ができない欠点があった。そこで、
軽量、高強度材料であるセラミックを黒鉛板と複合体と
したX線管ターゲットが開発されてきた。セラミック複
層ターゲットは黒鉛を補強するため、セラミックを厚く
する必要がある。黒鉛/セラミック/黒鉛の複合ターゲ
ットを作製するには、ホットプレスを用いて作製するが
、セラミックを厚くした場合、セラミックの微少な厚み
の変化、微細クラック。
As mentioned above, a target made of graphite bonded to metal is heavy and has a short bearing life. In addition, graphite alone had the disadvantage of low strength and inability to rotate at high speeds. Therefore,
An X-ray tube target has been developed that is a composite of ceramic, a lightweight, high-strength material, and a graphite plate. Ceramic multilayer targets require thicker ceramic to reinforce graphite. A graphite/ceramic/graphite composite target is produced using hot pressing, but when the ceramic is made thicker, minute changes in the thickness of the ceramic and minute cracks occur.

ボイドが発生しやすくなり、高速回転した場合。Voids are more likely to occur when rotating at high speed.

アンバランスが生じてターゲットが破壊したり、微少ク
ラックや′ボイドに回転応力が集中しターゲットの破壊
の原因となり、安定性に欠けている欠点があった。これ
らの欠陥を少なくするにはセラミックを薄くするか、黒
鉛材の接合材としてセラミックを用いることで解決され
る方向にある。つまり、セラミックを薄くすることで内
包されるガスは放出されやすくなり、セラミック内部の
ボイド発生が少ない。また、ホットプレス時に生じる中
心部と外周部の温度差は小さく熱応力によるクラックの
発生が少ない。一方、セラミックは黒鉛材の接合に用い
るため、従来の厚さに比べ非常に薄くなり、厚さの不均
一が少ない。しかし、上述したように、セラミックを薄
くした場合、黒鉛を補強することができなくなる。
The problem was that the target could be destroyed due to unbalance, or the rotational stress could concentrate on minute cracks or voids, causing the target to be destroyed, resulting in a lack of stability. In order to reduce these defects, the problem is being solved by making the ceramic thinner or by using ceramic as a bonding material for graphite materials. In other words, by making the ceramic thinner, the gas contained therein is released more easily, and fewer voids occur inside the ceramic. In addition, the temperature difference between the center and outer periphery that occurs during hot pressing is small, and cracks due to thermal stress are less likely to occur. On the other hand, since ceramic is used to bond graphite materials, it is much thinner than conventional thicknesses, and there is little non-uniformity in thickness. However, as mentioned above, if the ceramic is made thinner, it becomes impossible to reinforce the graphite.

〔問題点を解決するための手段〕[Means for solving problems]

セラミックを薄く、しかも、黒鉛の補強をするには高強
度、高温下でも安定、低比重の材料が必要である。そこ
で、これらの特性を兼ねそなえている炭素繊維複合材に
着目した。炭素繊維複合材料は、高強度で高温度で使用
しても安定しており、さらに、セラミックに比べ比重は
低く軽量化を図ることができ、高速回転してもベアリン
グの損傷も少なくなる。また、炭素繊維複合材料は、窒
化物、ホウ化物、炭化物、酸化物を含むセラミックを用
いてホットプレスすることにより、材質は黒鉛であり接
合は容易である。しかも、接合材として用いるためセラ
ミックの厚みを薄くしても問題はない。一方、セラミッ
クが薄いため、従来のセラミックをサンドイッチした構
造のターゲットを加工するより、加工は容易となり、加
工時の割れやクラックの発生が少なく安定したターゲッ
トが得られ、作業時間の短縮が可能となる。
In order to make ceramic thin and to reinforce it with graphite, a material with high strength, stability under high temperatures, and low specific gravity is required. Therefore, we focused on carbon fiber composite materials that have both of these properties. Carbon fiber composite materials have high strength and are stable even when used at high temperatures.Furthermore, they have a lower specific gravity than ceramics, making them lighter and less likely to damage bearings even when rotating at high speeds. Further, the carbon fiber composite material is made of graphite and can be easily joined by hot pressing using ceramics containing nitrides, borides, carbides, and oxides. Moreover, since it is used as a bonding material, there is no problem even if the thickness of the ceramic is made thin. On the other hand, since the ceramic is thinner, processing is easier than processing a target with a conventional ceramic sandwich structure, and a stable target with fewer cracks and cracks during processing can be obtained, reducing work time. Become.

〔作用〕[Effect]

セラミックを薄くすることにより、セラミックの内部欠
陥を無くし、回転時におこる欠陥部への応力集中を無く
することにより高速回転が得られる。また、黒鉛材料を
補強する炭素繊維複合材料は、加工は容易であり、しか
も、セラミックは薄く加工時間が短縮、加工時のクラッ
ク、割れの防止が可能となる。
By making the ceramic thinner, internal defects in the ceramic are eliminated, and high-speed rotation can be achieved by eliminating stress concentration on defective parts that occurs during rotation. Furthermore, the carbon fiber composite material that reinforces the graphite material is easy to process, and ceramic is thin, which shortens processing time and prevents cracks and breaks during processing.

〔実施例〕〔Example〕

xivターゲットは稼動時に高速回転の他、大容量の電
子線を照射するため、1200℃程度まで加熱され、そ
れに耐える接合材料並びに黒鉛材と接合しやすい材料で
なければならない。そこで、高温に耐えるSiCに各焼
結助材を添加したセラミックスを用いた。実験に用いた
セラミック及び焼結助材を第1表に示す。
Since the xiv target rotates at high speed during operation and is irradiated with a large amount of electron beam, it is heated to about 1200° C., and the bonding material must be able to withstand this temperature and be easily bonded to the graphite material. Therefore, ceramics made by adding various sintering aids to SiC, which can withstand high temperatures, were used. Table 1 shows the ceramics and sintering aids used in the experiment.

第   1   表 SiCは平均粒径2μmのα−8iC粒末で各焼結助材
の粒径は0.05〜3μm程度のものを用い、その添加
量は0.5〜2重量%である。第1表に示すように、S
 3. CにBeOの添加は高熱伝導+ A QzOs
、 A Q Nは高強度、84Cは焼結体のち密化とそ
れぞれの特徴をもつものである。
Table 1 SiC uses α-8iC particles with an average particle size of 2 μm, and each sintering aid has a particle size of about 0.05 to 3 μm, and the amount added is 0.5 to 2% by weight. As shown in Table 1, S
3. Addition of BeO to C provides high thermal conductivity + A QzOs
, AQN has the characteristics of high strength, and 84C has the characteristics of densification of the sintered body.

SiC粉末と各助材の混合及び成形性を均一にするため
の造粒は、まず、主原料であるSiC粉末に焼結助材を
2重量%添加し、さらに、成形バインダーを加え混合機
により十分に焼結助剤を分散させてからドライスプレー
で平均粒径100〜120μmに造粒した。
Mixing of the SiC powder and each auxiliary material and granulation to make the moldability uniform are carried out by first adding 2% by weight of the sintering auxiliary material to the SiC powder, which is the main raw material, and then adding a molding binder and granulating it using a mixer. After sufficiently dispersing the sintering aid, the particles were granulated with a dry spray to an average particle size of 100 to 120 μm.

黒鉛材は第2表に示すものを用いた。The graphite materials shown in Table 2 were used.

第  2  表 黒鉛材は等散性黒鉛である。炭素繊維複合材料は黒鉛材
に比べて強度が大きく、またセラミックに比べても十分
に大きく黒鉛材を補強するのに十分である。このような
材料を用い第1図に示すように黒鉛/、セラミック3.
炭素繊維複合材2゜セラミック3.黒鉛1を全型内に組
込み、セラミックスの厚みを均一化するため、成形圧力
5001cg/cI#で成形した。このとき、セラミッ
クスの厚みは焼結後で0.5〜1■程度になるようにし
た。
Table 2 The graphite material is homodisperse graphite. The strength of carbon fiber composite material is greater than that of graphite material, and it is sufficiently greater than that of ceramic material, so that it is sufficient to reinforce graphite material. Using such materials, as shown in FIG. 1, graphite/ceramic 3.
Carbon fiber composite material 2° Ceramic 3. Graphite 1 was incorporated into the entire mold, and molding was performed at a molding pressure of 5001 cg/cI# in order to make the thickness of the ceramic uniform. At this time, the thickness of the ceramic was made to be about 0.5 to 1 inch after sintering.

成形した複合体ターゲットは、ホットプレスにより焼結
した。焼結条件は室温から1900℃まで約15℃で昇
温し、その時点で圧力300 kg/dを加え、さらに
、2150℃まで10℃/minで昇温し、2150℃
で30分保持してから冷却した。加圧力の解放は冷却温
度1500℃で除圧した。5はパンチ。
The shaped composite target was sintered by hot pressing. The sintering conditions were to raise the temperature from room temperature to 1900°C at a rate of about 15°C, at which point a pressure of 300 kg/d was applied, and then to raise the temperature to 2150°C at a rate of 10°C/min.
It was held for 30 minutes and then cooled. The pressure was released at a cooling temperature of 1500°C. 5 is punch.

ホットプレス後のターゲットは第2図に示すような形状
に加工した。従来の構造であるセラミック3を黒鉛1で
、サンドイッチした構造のターゲットは孔の加工等が困
難、あるいは、長時間を要したが本実験の複合ターゲッ
トはセラミック3が薄く加工も容易であった。また、ホ
ットプレス後の断面を111察してもセラミック3部に
欠陥は無く、いずれの焼結助材でも黒鉛/、炭素繊維複
合材料2、黒鉛1の接合は良好であった。
The target after hot pressing was processed into the shape shown in FIG. With a target having a conventional structure in which ceramic 3 is sandwiched with graphite 1, machining holes is difficult or takes a long time, but in the composite target of this experiment, the ceramic 3 was thin and machining was easy. Further, even when observing the cross section after hot pressing, there was no defect in the ceramic part 3, and the bonding of graphite/carbon fiber composite material 2 and graphite 1 was good with all the sintering aids.

X線管用ターゲットへ大容量の電子線を照射するには1
0.OOOrpm  (平均周速62 m / s )
の高速回転が必要であり、安全率を二倍にとると破壊回
転数は30.OOOrpm以上が要求されるため、本実
験で作製した複合X線管用ターゲットの回転数を30、
OOOrpm以上を目標として回転試験をした。その結
果、回転数30.00Orpmをクリアすることができ
た。また、炭素繊維は低比重のためターゲットは軽量と
なり、ベアリングの損傷が少なく、高寿命のX線管用タ
ーゲットとなる。6は中心孔。
To irradiate a large capacity electron beam to an X-ray tube target 1
0. OOOrpm (average circumferential speed 62 m/s)
High speed rotation is required, and if the safety factor is doubled, the number of rotations at failure will be 30. Since OOO rpm or more is required, the rotation speed of the composite X-ray tube target prepared in this experiment was set to 30,
A rotation test was conducted with the goal of OOOrpm or higher. As a result, it was possible to clear the rotational speed of 30.00 Orpm. In addition, carbon fiber has a low specific gravity, making the target lightweight, less bearing damage, and a long-life target for X-ray tubes. 6 is the center hole.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、高速回転に耐え、高性能、高効率のタ
ーゲットが作製可能となる。一方、炭素繊維複合材は加
工が容易となる。
According to the present invention, it is possible to produce a target that can withstand high-speed rotation, has high performance, and is highly efficient. On the other hand, carbon fiber composite materials are easier to process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の黒鉛/セラミック/炭素繊
維複合材料/セラミック/黒鉛の成形構成の断面図、第
2図は本発明のX線管ターゲットの構成断面図である。 1・・・黒鉛、2・・・炭素繊維複合材料、3・・・セ
ラミック、4・・・金型、5・・・パンチ、6・・・中
心孔。
FIG. 1 is a sectional view of a molded structure of graphite/ceramic/carbon fiber composite material/ceramic/graphite according to an embodiment of the present invention, and FIG. 2 is a sectional view of the structure of an X-ray tube target of the present invention. DESCRIPTION OF SYMBOLS 1...Graphite, 2...Carbon fiber composite material, 3...Ceramic, 4...Mold, 5...Punch, 6...Center hole.

Claims (1)

【特許請求の範囲】 1、X線CT装置用のX線管ターゲットにおいて、黒鉛
/炭素繊維複合材/黒鉛で構成したことを特徴とするX
線管ターゲット。 2、特許請求の範囲第1項において、 前記炭素繊維複合体の繊維配列は、縦及び横に等間隔に
配列した平織織布とし、1枚及び二枚以上で重ね角度を
5度から90度まで重ねたことを特徴とするX線管ター
ゲット。 3、特許請求の範囲第1項において、 前記繊維複合体の繊維配列は、うず巻状に配列としたこ
とを特徴とするX線管ターゲット。 4、黒鉛/炭素繊維複合材料/黒鉛の接合はセラミック
スを用い、前記セラミックスは酸化物、炭化物、ほう化
物、窒化物を0.5〜2重量%含むセラミックからなる
ことを特徴とするX線管ターゲット。
[Scope of Claims] 1. An X-ray tube target for an X-ray CT device, characterized in that it is composed of graphite/carbon fiber composite material/graphite.
line tube target. 2. In claim 1, the fiber arrangement of the carbon fiber composite is a plain woven fabric arranged at equal intervals vertically and horizontally, and the stacking angle of one sheet or two or more sheets is from 5 degrees to 90 degrees. An X-ray tube target characterized by overlapping layers. 3. The X-ray tube target according to claim 1, wherein the fibers of the fiber composite are arranged in a spiral shape. 4. An X-ray tube characterized in that graphite/carbon fiber composite material/graphite is bonded using ceramics, and the ceramics are ceramics containing 0.5 to 2% by weight of oxides, carbides, borides, and nitrides. target.
JP26761086A 1986-11-12 1986-11-12 X-ray tube target Pending JPS63124352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26761086A JPS63124352A (en) 1986-11-12 1986-11-12 X-ray tube target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26761086A JPS63124352A (en) 1986-11-12 1986-11-12 X-ray tube target

Publications (1)

Publication Number Publication Date
JPS63124352A true JPS63124352A (en) 1988-05-27

Family

ID=17447107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26761086A Pending JPS63124352A (en) 1986-11-12 1986-11-12 X-ray tube target

Country Status (1)

Country Link
JP (1) JPS63124352A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009022292A2 (en) 2007-08-16 2009-02-19 Philips Intellectual Property & Standards Gmbh Hybrid design of an anode disk structure for high power x-ray tube configurations of the rotary-anode type

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009022292A2 (en) 2007-08-16 2009-02-19 Philips Intellectual Property & Standards Gmbh Hybrid design of an anode disk structure for high power x-ray tube configurations of the rotary-anode type
WO2009022292A3 (en) * 2007-08-16 2009-11-12 Philips Intellectual Property & Standards Gmbh Hybrid design of an anode disk structure for high power x-ray tube configurations of the rotary-anode type
US8553844B2 (en) 2007-08-16 2013-10-08 Koninklijke Philips N.V. Hybrid design of an anode disk structure for high prower X-ray tube configurations of the rotary-anode type

Similar Documents

Publication Publication Date Title
AT502587B1 (en) SYSTEMS, METHODS, AND EQUIPMENT FOR A COMPOSITE X-RAY AGENT
JPS6026260B2 (en) Structure for rotating anode X-ray tube
JP2012532409A (en) Anode disk element with heat dissipation element
CN107190178A (en) A kind of titanium matrix composite and preparation method thereof
JPS63124352A (en) X-ray tube target
US8948344B2 (en) Anode disk element comprising a conductive coating
JPS6010414B2 (en) Anodic target bonding method
JPS5857247A (en) Rotary anode for x-ray tube and its manufacture
JP6386051B2 (en) Method for manufacturing rotary anode target for X-ray tube, method for manufacturing X-ray tube, and method for manufacturing X-ray inspection apparatus
JPH09213248A (en) Manufacture of carbon-carbon compound material
Duan et al. Joining of Graphite to Ti6Al4V Alloy Using Cu‐Based Fillers
AT5079U1 (en) METHOD FOR JOINING A HIGH TEMPERATURE MATERIAL COMPONENT COMPOSITE
Lian et al. Progress in the Development of CFC/CuCrZr Components for HL-2M Divertor
CN106575592B (en) Rotary anode and method for producing a rotary anode
JPS6166349A (en) Rotary anode target for x-ray tube and its manufacturing method
Deng et al. Influence of thermal shock and environment temperature on mechanical properties of C/SiC/GH783 joint brazed with Cu-Ti+ Mo
US20100027754A1 (en) Creep-resistant rotating anode plate with a light-weight design for rotating anode x-ray tubes
JP2002329470A (en) Rotating anode for x-ray tube, and its manufacturing method
CN111018555A (en) Connecting material for connecting silicon carbide with crack self-healing characteristic and application thereof
JP2015089966A (en) Sputtering target material and its manufacturing method
Solntsev et al. Development of a Precipitation-Hardened Nichrome Powder Alloy and Technique for Fabricating a Prototype Metallic Thermal Protection Structure
JPWO2018025746A1 (en) Rotary charge conversion film for ion beam charge conversion device and ion beam charge conversion method
JPS63174251A (en) Rotary anode target for x-ray tube
CN114799460A (en) Method for preparing multilayer composite anode matrix by diffusion bonding
JPS63160142A (en) Rotary target for x-ray tube