JPS6312398A - Biological treatment - Google Patents

Biological treatment

Info

Publication number
JPS6312398A
JPS6312398A JP62064050A JP6405087A JPS6312398A JP S6312398 A JPS6312398 A JP S6312398A JP 62064050 A JP62064050 A JP 62064050A JP 6405087 A JP6405087 A JP 6405087A JP S6312398 A JPS6312398 A JP S6312398A
Authority
JP
Japan
Prior art keywords
granular
granular media
amount
medium
packed bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62064050A
Other languages
Japanese (ja)
Other versions
JPH0818030B2 (en
Inventor
Yuichi Fuchu
裕一 府中
Yutaka Yoneyama
豊 米山
Hitoshi Kimura
仁 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Research Co Ltd
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Research Co Ltd, Ebara Infilco Co Ltd filed Critical Ebara Research Co Ltd
Priority to JP6405087A priority Critical patent/JPH0818030B2/en
Publication of JPS6312398A publication Critical patent/JPS6312398A/en
Publication of JPH0818030B2 publication Critical patent/JPH0818030B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To stabilize a biological treatment by transferring granular media together with part of treated water from the lower part to the upper part of a granular medium packed bed and stripping the excess sludge stuck to the granular media during the transfer and discharging the separated excess sludge to the outside of the system. CONSTITUTION:The packed bed 4 of the granular media 3 to be stuck with microorganisms is formed in a tank 2 and the liquid 1 to be treated is passed in downward countercurrent. The aerobic biological treatment and filtration treatment are simultaneously executed in the packed bed 4. The granular media 3 are transferred together with part of the treated water from the lower part to the upper part of the packed bed 4 and the rate of the transfer is changed so as to meet the amt. of the microorganism sticking to the granular media 3. The excess sludge sticking to the granular media during the transfer is stripped therefrom. After the granular media and the excess sludge are separated, the separated granular media are returned to the upper part of the packed bed 4. The separated excess sludge 12 is discharged to the outside of the system. As a result, the clogging inevitably arising heretofore is prevented and the biological treatment is stably and effectively executed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、比較的汚濁の進行した河川水や湖沼水、もし
くは下水・し尿・産業廃水など、低濃度から高濃度に有
機物もしくは窒素等を含有する液体を微生物によって浄
化する生物処理技術に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is applicable to relatively polluted river water, lake water, sewage, human waste, industrial wastewater, etc., in which organic matter or nitrogen is added from a low concentration to a high concentration. This invention relates to biological treatment technology that uses microorganisms to purify contained liquids.

〔従来の技術〕[Conventional technology]

生物処理技術は、古くから数多くあり、今日においても
普及度の高いものである。なかでも、微生物付着用媒体
を用いたものは、近年、数々の技術進歩を遂げており、
特に、粒状物を媒体とした方法は高負荷運転が可能であ
るなど、非常に利用価値の高いものである。
Many biological treatment techniques have existed since ancient times and are still widely used today. Among these, those using microbial adhesion media have made numerous technological advances in recent years.
In particular, a method using granular materials as a medium is extremely useful as it allows for high-load operation.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、粒状物を微生物付着用媒体とすると、空
隙率が低いために目詰まりし易(、洗浄することが不可
欠になる。
However, when granular materials are used as a medium for microbial adhesion, they tend to become clogged due to their low porosity (and cleaning is essential).

例えば、礫間接触法のように、洗浄すると処理水中に多
量に余剰汚泥が混入したり、また、洗浄が過激であると
微生物量の減少が著しくなり、処理悪化の原因になる。
For example, in the case of the gravel-to-gravel contact method, when cleaning, a large amount of excess sludge gets mixed into the treated water, and when cleaning is too aggressive, the amount of microorganisms decreases significantly, causing deterioration of the treatment.

もち論、洗浄が不十分であると、すぐに目詰まりするこ
とになり、洗浄の程度を調節することが困難であった。
Of course, if the cleaning is insufficient, it will quickly become clogged, making it difficult to adjust the degree of cleaning.

さらに、目詰まり対策の別の方法としては、処理水や空
気を用いて逆流洗浄する方法も出現しているが、一度に
多量の処理水や空気を用いるため、逆流洗浄設備が膨大
になり、洗浄排水の処理についても別に考慮しなければ
ならないなど、多くの問題が残されていた。
Furthermore, as another method to prevent clogging, a method of backwashing using treated water or air has emerged, but since a large amount of treated water or air is used at once, the backwashing equipment becomes enormous. Many problems remained, including the need to separately consider the treatment of cleaning wastewater.

本発明は、粒状物を微生物付着用媒体として採用した場
合に、必然的に生じ、避けようのない根本的な問題点で
ある目詰まりについて、抜本的な解決策をもち、しかも
生物処理を安定して効果的に行うことのできる方法を提
供しようとするものである。
The present invention provides a drastic solution to clogging, which is a fundamental problem that inevitably occurs and cannot be avoided when granular materials are used as a microbial adhesion medium, and also stabilizes biological treatment. The aim is to provide a method that can be used effectively.

〔問題点を解決するための手段〕[Means for solving problems]

本発明では、上記問題点を解決するための手段として、
槽内に微生物付着用の粒状媒体の充填層を形成し、被処
理液を下向流に通水して前記充填層にて好気的生物処理
とt濾過処理とを同時に行う生物処理方法において、前
記粒状媒体を連続的あるいは間欠的に前記充填層の下方
から処理水の一部と共に上方へ移送し、その移送量を前
記粒状媒体に付着した微生物量に対応さ−せて変化させ
ると共に該移送中に前記粒状媒体に付着した余剰汚泥を
剥離し、さらにこの粒状媒体と余剰汚泥とを分離したの
ち、分離された粒状媒体を前記充填層上部に返送し、分
離された余剰汚泥を系外へ排出することを特徴とする生
物処理方法を提供するものである。
In the present invention, as a means for solving the above problems,
A biological treatment method in which a packed bed of granular media for adhesion of microorganisms is formed in a tank, and the liquid to be treated is passed in a downward flow to simultaneously perform aerobic biological treatment and T-filtration treatment in the packed bed. , the granular medium is continuously or intermittently transferred from below the packed bed upward together with a portion of the treated water, and the amount of the transferred medium is varied in accordance with the amount of microorganisms attached to the granular medium, and After peeling off the excess sludge that adhered to the granular media during transfer and further separating the granular media from the excess sludge, the separated granular media is returned to the upper part of the packed bed, and the separated excess sludge is removed from the system. The present invention provides a biological treatment method characterized by discharging to

〔作 用〕[For production]

以下に一実施B様を示す第1図を参照しながら、本発明
の詳細な説明する。
The present invention will be described in detail below with reference to FIG. 1 showing one embodiment B.

処理されるべき被処理液1は、処理槽2の上方部より流
入し、粒状媒体3にて形成された充+a層4内を下方向
に流れる。
The liquid to be treated 1 flows into the treatment tank 2 from the upper part and flows downward in the filled layer 4 formed of the granular medium 3 .

粒状媒体3としては、砂、砂利、フンスラサイト、活性
炭、軽量骨材、プラスチック炉材、人工石などの粒状で
かつ水中で多送可能であれば何でも良く、その適切な粒
径は水中での移動状態から判断され、比重1〜2のもの
では3〜6■−程度と比較的大粒径が良く、比重2〜3
のものでは1〜4鶴程度と比較的小粒径のものが良い。
As the granular medium 3, any suitable particle size may be used as long as it is granular and can be transported in large quantities underwater, such as sand, gravel, hunthrasite, activated carbon, lightweight aggregate, plastic furnace material, and artificial stone. Judging from the state of movement of
Among them, those with a relatively small particle size of about 1 to 4 grains are preferable.

また、充填層4では、下方に配設された散気装置6によ
って空気5等の酸素含有気体が導入され、好気状態が維
持されており、被処理液1は充填層40粒粒状体3の表
面に付着した生物膜によって、好気的生物処理とろ過と
が同時に行われつつ、充填層4を下向するに従って徐々
に浄化され、処理水流出管7から処理水8として流出す
る。
Further, in the packed bed 4, an oxygen-containing gas such as air 5 is introduced by an aeration device 6 disposed below to maintain an aerobic state, and the liquid to be treated 1 is transferred to the packed bed 40 and granules 3. Due to the biofilm attached to the surface of the water, aerobic biological treatment and filtration are performed at the same time, and the water is gradually purified as it moves downward through the packed bed 4, and flows out as treated water 8 from the treated water outflow pipe 7.

ところで、粒状媒体3には浄化の過程において、被処理
液1中の浮遊物や増殖した微生物によって過剰な生物膜
が発生し付着する。この状態のままで前記の処理を′I
a′Irrtすると、充填l114内に存在する空隙部
が過剰な生物膜によって占められることになり、−FG
に言うところの“目詰まり状態”になり、通水不可能に
なる。
Incidentally, during the purification process, an excessive biofilm is generated and adhered to the granular medium 3 due to suspended matter in the liquid to be treated 1 and grown microorganisms. Continue the above process in this state.
a'Irrt, the voids present in the filling l114 will be occupied by excess biofilm, and -FG
It becomes what is called a "clogged condition" and water cannot flow through it.

そこで、生物膜が過剰に付着した粒状媒体3′は、充填
N4の下方から処理水8の一部と一緒に移送配管9に導
かれ、媒体移送装置10によって充填層4より上方にあ
る分離装置11まで移送される。媒体移送装置10とし
ては、無閉塞型ポンプもしくはエアーリフトが望ましく
、エジェクターなども使用することができる。
Therefore, the granular medium 3' with excessive biofilm adhering to it is guided from below the filling N4 to the transfer pipe 9 together with a part of the treated water 8, and is transferred by the medium transfer device 10 to the separation device located above the packed bed 4. Transferred to 11. As the medium transfer device 10, a non-obstructive pump or an air lift is desirable, and an ejector or the like may also be used.

粒状媒体3′の移送は、連続的に少量ずつ行ったり、あ
るいは間欠的に行うが、粒状媒体3′へ付着した生物膜
量の程度によって、粒状媒体3′の移送量を変化させる
。即ち、被処理液lの水質や水量などによって粒状媒体
3に付着する生物膜量が異なり、生物膜量が多い時には
粒状媒体3′の移送量を多くし、生物IP!!tが少な
い時には粒状媒体3′の移送量を少なくするように、媒
体移送装置10の駆動力を増減(媒体移送装置10とし
てエアリフトを使用するときは、その送気量を変化させ
る)させたり、移送配管の9中に設けた弁の開度を調節
するなどして、粒状媒体3・の移送量を変化させ、常に
適切な生物膜を維持して処理の安定化をはかる。
The granular medium 3' is transferred continuously in small amounts or intermittently, and the amount of granular medium 3' transferred is changed depending on the amount of biofilm attached to the granular medium 3'. That is, the amount of biofilm attached to the granular media 3 varies depending on the water quality and amount of the liquid to be treated l, and when the amount of biofilm is large, the amount of granular media 3' transferred is increased, and the biological IP! ! When t is small, the driving force of the medium transfer device 10 is increased or decreased (when an air lift is used as the medium transfer device 10, the air supply amount is changed) so as to reduce the transfer amount of the granular medium 3', By adjusting the opening degree of the valve provided in the transfer pipe 9, etc., the transfer amount of the granular medium 3 is changed, and an appropriate biofilm is always maintained to stabilize the treatment.

さらに、粒状媒体3′の移送について述べる。Furthermore, the transport of the granular medium 3' will be described.

fit  粒状媒体3′を連続的に移送する場合被処理
液1の水質や水量が比較的変動しない時には、媒体移送
装置lOを連続運転して粒状媒体3′の連続的移送を行
う。しかし、生物膜の発生が少ない時には連続的移送に
よって生物膜が過度に剥離されて処理能力が低下するこ
とがあるから、粒状媒体3′の移送量を少なくする。こ
のように生物膜発生の程度によっては、粒状媒体3′の
移送量を変化させるが、粒状媒体3′の連続的移送にお
いては、各種実験の結果、粒状媒体3′の移送量は1日
当り充填層4を形成する全粒状媒体3の1.5〜3倍量
の範囲が適当であり、生物膜の維持を適切にし、安定な
処理が可能となる。
fit When the granular medium 3' is continuously transferred When the water quality and water amount of the liquid to be treated 1 are relatively unchanged, the medium transfer device IO is continuously operated to continuously transfer the granular medium 3'. However, when the amount of biofilm generated is small, continuous transfer may cause the biofilm to be excessively peeled off and the processing capacity may be reduced, so the amount of granular medium 3' transferred is reduced. In this way, the amount of granular media 3' transferred is changed depending on the degree of biofilm formation, but in the case of continuous transfer of granular media 3', as a result of various experiments, the amount of granular media 3' transferred per day is A suitable range is 1.5 to 3 times the amount of the entire granular medium 3 forming the layer 4, which allows proper maintenance of the biofilm and enables stable treatment.

(2)粒状媒体3′を間欠的に移送する場合被処理液1
の水質や水量が大きく変動すると、粒状媒体3′の移送
量を、連続的移送の場合よりももつと変化させる必要が
生しる。このような時には、タイマーを用いたり、ある
いは通水抵抗の上昇を検出して媒体移送装置10を間欠
的に運転すれば良い。特にこの場合には、タイマーを自
由に設定することは勿論のこと、媒体移送装置10の最
高効率点で運転することが可能になり、省エネルギーに
もなる。
(2) When the granular medium 3' is transferred intermittently, the liquid to be treated 1
If the water quality or amount of water varies greatly, it becomes necessary to change the amount of granular medium 3' transferred more than in the case of continuous transfer. In such a case, the medium transfer device 10 may be operated intermittently by using a timer or by detecting an increase in water flow resistance. Particularly in this case, the timer can of course be set freely, and the medium transfer device 10 can be operated at its highest efficiency point, resulting in energy savings.

さらに、粒状媒体3′の移送量は、1日当り全粒状媒体
3の1/4 fitから8倍量の範囲であることが望ま
しい6本来、粒状媒体3′の移送量は、その汚濁程度、
言い換えれば被処理液1の性状や処理条件によって変化
させるべき性質のものであるが、次の理由により上限と
下限とが存在する。即ち、BoD10II1g/e程度
の比較的静滑な試水の場合では、充填層4の通水抵抗の
上昇が1時間当り数關程度であり、充填層4内のSS捕
捉の面から判断すると、粒状媒体3′の移送量は1日当
り全粒状媒体3の1/10i程度で十分である。しかし
ながら、長期間実験を継続すると、粒状媒体3に付着し
た生物膜は粘着性が強いため、粒状媒体同士が結合して
大きな塊になり、移送が困難になることがしばしば生じ
た。様々な条件で実験を繰り返して行った結果、粒状媒
体3′の移送量は1日当り全粒状媒体3の1/41ft
以上であれば、前述の問題が生じないことが判明した。
Furthermore, it is desirable that the amount of granular media 3' to be transported is in the range of 1/4 fit to 8 times the amount of the total granular media 3 per day.6 Originally, the amount of granular media 3' to be transported depends on the degree of contamination,
In other words, it is a property that should be changed depending on the properties of the liquid to be processed 1 and processing conditions, but there are upper and lower limits for the following reason. That is, in the case of comparatively quiet and smooth test water with a BoD of about 10II 1g/e, the water flow resistance of the packed bed 4 increases by several degrees per hour, and judging from the viewpoint of SS capture in the packed bed 4, The amount of granular media 3' to be transported is approximately 1/10i of the total granular media 3 per day. However, when experiments were continued for a long period of time, the biofilm attached to the granular media 3 was highly adhesive, so the granular media often bonded together and formed large clumps, making transportation difficult. As a result of repeated experiments under various conditions, the amount of granular media 3' transferred per day was 1/41 ft of the total granular media 3.
It has been found that the above-mentioned problem does not occur.

一方、粒状媒体同士の結合を防ぐ目的で粒状媒体3′の
移送量を極端に多(したところ、今度は粒状媒体3の表
面に生物が付着しにくくなり、処理能力を低下させるこ
とになった。そこで、試行錯誤的に移送量の上限値を求
めたところ、1日当り全粒状媒体3の8倍以内であれば
、処理悪化を招くような生物付着量の減少は認められな
いことが分かった。
On the other hand, in order to prevent the granular media from bonding with each other, the amount of granular media 3' transferred was extremely large (as a result, it became difficult for organisms to adhere to the surface of the granular media 3, resulting in a decrease in processing capacity). Therefore, we determined the upper limit of the transfer amount through trial and error, and found that if it was within 8 times the total amount of granular media per day, no reduction in the amount of biofouling that would cause deterioration of treatment would be observed. .

さらに、媒体移送装置IOとしてエアリフトを用いた場
合の性能曲線の例を第2図に示す、すなわち、内径31
1×高さ2600■鳳、浸漬比1.0のエアリフト管を
例にとれば、送気量が非常に少ない時は、粒状媒体3′
が全く移送できないが、送気量を徐々に増大させていく
と粒状媒体3′の移送it(揚量)も増加しはじめる。
Furthermore, an example of a performance curve when an air lift is used as the medium transfer device IO is shown in FIG.
1 x Height 2600 x 2600cm, taking as an example an airlift pipe with an immersion ratio of 1.0, when the air flow rate is very small, the granular media 3'
cannot be transferred at all, but as the air supply amount is gradually increased, the transfer it (lift amount) of the granular medium 3' also begins to increase.

しかし、更に送気量を増やしても場景は横ばいになる。However, even if the amount of air supplied is further increased, the scene remains the same.

つまり、この曲線は上に凸になる。そこで、原点を通る
直線の接点でエアリフトを稼動させることが最もエネル
ギ効率が高いことになる。
In other words, this curve is convex upward. Therefore, the highest energy efficiency is achieved by operating the air lift at a point of contact in a straight line passing through the origin.

また、移送配管9もしくは媒体移送装置10においては
、粒状媒体3′は強力な攪拌を受けるため、粒状媒体3
′に付着した過剰な生物膜が剥離することになる。特に
、粒状媒体3′は処理水8の一部でスラリー化されてい
るから、原水(被処理液1)を使用する場合に比べて洗
浄効果が高くなる。
In addition, in the transfer pipe 9 or the medium transfer device 10, the granular medium 3' is subjected to strong agitation, so the granular medium 3'
Excessive biofilm adhering to ′ will be peeled off. In particular, since the granular medium 3' is slurried with a portion of the treated water 8, the cleaning effect is higher than when raw water (liquid to be treated 1) is used.

分M装置11では、洗浄済の粒状媒体3と過剰な生物膜
(余剰汚泥) 12とが分離され、粒状媒体3は充填W
J4の上部に戻り、余剰汚泥12は槽外に排出される0
分離装置11としては、効果的に粒状媒体3と余剰汚泥
12とを分離すれば良く、液体サイクロン、パンフルプ
レートを組み合わせたものなど、何でも良いが、粒状媒
体3と余剰汚泥12との沈降速度差を利用する方法が好
ましい。
In the separation M device 11, washed granular media 3 and excess biofilm (excess sludge) 12 are separated, and the granular media 3 is filled with W
Returns to the upper part of J4, and excess sludge 12 is discharged outside the tank.
The separation device 11 may be any device as long as it effectively separates the granular media 3 and excess sludge 12, such as a combination of a hydrocyclone or a panful plate, but it may be used depending on the sedimentation rate of the granular media 3 and excess sludge 12. A method that utilizes the difference is preferable.

また、分離装置11の設置場所は、槽外でも槽内でもよ
いが、第1図・示例のように槽内で水面下に設置するの
が効果的である。
The separation device 11 may be installed outside the tank or inside the tank, but it is effective to install it below the water surface in the tank as shown in FIG. 1.

分離装置11を槽内水面下に設置した場合には、粒状媒
体3の沈陣速度は一般に5〜20m/win程度と速い
ものであるから、重力によって余剰汚泥12と分離され
ながら、そのまま充填層4に容易に戻り、分N装212
から槽内までの閉塞事故を起こしやすい配管等を省略す
ることができ、また、分離装置11をバッフルプレート
などを組み合わせたものとし、槽内水を導くようにすれ
ば、余剰汚泥12の槽外への排出が円滑化される。
When the separator 11 is installed below the water surface in the tank, the sinking speed of the granular media 3 is generally as fast as about 5 to 20 m/win, so the granular media 3 is separated from the excess sludge 12 by gravity and is directly transferred to the packed bed. 4, easily return to 212 minutes
It is possible to omit pipes that are likely to cause blockages from the tank to the inside of the tank, and if the separation device 11 is combined with a baffle plate or the like to guide the water inside the tank, excess sludge 12 can be removed from the tank. This facilitates the discharge of

なお、第1図示例では、移送配管9を槽外に設けている
が、槽内に配設することもできる。
In the first illustrated example, the transfer piping 9 is provided outside the tank, but it can also be provided inside the tank.

〔実施例〕〔Example〕

次に、本発明と従来法との比較例を示す、従来法として
は、目詰まり対策として逆流洗浄を行う特開昭56−9
1889号に示される方法を用いた。
Next, we will show a comparative example between the present invention and the conventional method.
The method described in No. 1889 was used.

この比較例は、何れも下水−次処理水を原水とし、処理
水量100 r/ /日、BODa荷3−w/rd・日
前後で処理した場合である0表1に設67iiについて
、表2に処理結果についての比較を示す。
In both of these comparative examples, sewage-subprocessed water is used as raw water, the amount of treated water is 100 r/day, and the BODa load is 3-w/rd day. shows a comparison of the processing results.

(以下余白) kL」苅呟枇較 ※ 充填材として、比重1.5、粒径3〜51のアンス
ラサイトを使用した。
(The following is a margin) Comparison of "kL" *Anthracite with a specific gravity of 1.5 and a particle size of 3 to 51 was used as a filler.

以下余白) 聚り濾匹稈駁曳煎 以下余白) これら表1及び表2からも明らかなように、本発明によ
れば、処理水槽、排水貯槽、逆洗ポンプ、逆洗ブロワな
どの付帯設備が不要となり、著しく設備が簡略化される
一万、処理水質は各方法ともほぼ同様であるが、余剰汚
泥排出量にその差異が大きくあられれた。従来法に比べ
ると、充填材移送用ブロワの送風量を2段階に切り換え
た連続移送では約60%、タイマーによる間欠移送では
約40%程度になり、余剰汚泥排出量が著し減少できた
As is clear from these Tables 1 and 2, according to the present invention, incidental equipment such as a treatment water tank, a wastewater storage tank, a backwash pump, a backwash blower, etc. Although the treated water quality was almost the same for each method, there was a large difference in the amount of excess sludge discharged. Compared to the conventional method, the amount of excess sludge discharged was significantly reduced by approximately 60% in continuous transfer in which the air flow rate of the filler transfer blower was switched to two stages, and by approximately 40% in intermittent transfer using a timer.

なお、充填材移送用ブロワの送風量を変化させず、充填
材移送量を常に一定量とした場合についても実験したと
ころ、余剰汚泥排出量は従来法と同様か、むしろ多くな
ることがあった。さらに、長期間運転をm続すると、生
物量の減少によるものと思われるが、処理水質が悪化す
る傾向も認められた。
In addition, when we conducted an experiment in which the amount of air blown by the filler transfer blower was not changed and the amount of filler transferred was always constant, we found that the amount of excess sludge discharged was the same as with the conventional method, or even increased. . Furthermore, when the plant was operated for a long period of time, the quality of the treated water tended to deteriorate, probably due to a decrease in biomass.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、粒状物を生物付着
媒体として採用した生物処理において、粒状媒体はスラ
!J−a’E下で少量づつ移送されながら、強力な攪拌
力が与えられ、確実に余剰汚泥が剥離される。また、こ
のスラリーの分散媒は処理水と同様のものであり、原水
を分散媒とするものに比べて洗浄効果が高く、洗浄のた
めの特別な用水を利用する必要もなく、そのために粒状
媒体と余剰汚泥の分離が容易であり、従来必然的に生じ
ていた目詰まりを防止することができ、同時に余剰汚泥
の排出量も著しく削減できる。
As described above, according to the present invention, in biological treatment using granular materials as a bioadhesion medium, the granular media can be used as a slurry! While being transferred little by little under J-a'E, a strong stirring force is applied to ensure that excess sludge is removed. In addition, the dispersion medium of this slurry is the same as the treated water, so it has a higher cleaning effect compared to those using raw water as a dispersion medium, and there is no need to use special water for cleaning, so granular media It is easy to separate the excess sludge from the sludge, which prevents clogging that conventionally inevitably occurs, and at the same time significantly reduces the amount of excess sludge discharged.

さらに、余剰汚泥剥離のための粒状媒体の移送量を変化
させ、生物処理に必要な微生物を常に適切に維持するこ
とができるから、安定した効果的な生物処理が可能にな
る。
Furthermore, since the amount of granular media transferred for removing excess sludge can be changed and the microorganisms required for biological treatment can be maintained appropriately at all times, stable and effective biological treatment is possible.

加えて、従来法のように逆洗を1テう必要がないため9
、逆洗に要する付帯設備が大巾に削減でき、極めて合理
的な処理を行うことができるものである。
In addition, there is no need to perform one round of backwashing as in the conventional method.9
, the amount of incidental equipment required for backwashing can be greatly reduced, and extremely rational processing can be performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施態様を示す構成説明図で、第2
図はエアリフトの性能曲線の一例を示す線図である。 1・・・被処理液、2・・・処理槽、3,3′・・・粒
状媒体、4・・・充填層、5・・・空気、6・・・散気
装置、7・・・処理水流出管、8・・・処理水、9・・
・移送配管、10・・・媒体移送装置、11・・・分離
装置、12・・・余剰汚泥。
FIG. 1 is a configuration explanatory diagram showing one embodiment of the present invention, and the second
The figure is a diagram showing an example of an airlift performance curve. DESCRIPTION OF SYMBOLS 1... Liquid to be treated, 2... Processing tank, 3, 3'... Granular medium, 4... Filled bed, 5... Air, 6... Air diffuser, 7... Treated water outflow pipe, 8... Treated water, 9...
- Transfer piping, 10...Medium transfer device, 11...Separation device, 12...Excess sludge.

Claims (3)

【特許請求の範囲】[Claims] (1)槽内に微生物付着用の粒状媒体の充填層を形成し
、被処理液を下向流に通水して前記充填層にて好気的生
物処理とろ過処理とを同時に行う生物処理方法において
、前記粒状媒体を連続的あるいは間欠的に前記充填層の
下方から処理水の一部と共に上方へ移送し、その移送量
を前記粒状媒体に付着した微生物量に対応させて変化さ
せると共に該移送中に前記粒状媒体に付着した余剰汚泥
を剥離し、さらにこの粒状媒体と余剰汚泥とを分離した
のち、分離された粒状媒体を前記充填層上部に返送し、
分離された余剰汚泥を系外へ排出することを特徴とする
生物処理方法。
(1) Biological treatment in which a packed bed of granular media for adhesion of microorganisms is formed in the tank, and the liquid to be treated is passed in a downward flow to perform aerobic biological treatment and filtration treatment at the same time in the packed bed. In the method, the granular medium is continuously or intermittently transferred from below the packed bed upward together with a portion of the treated water, and the amount of the transferred medium is varied in accordance with the amount of microorganisms attached to the granular medium. After peeling off excess sludge adhering to the granular medium during transfer and further separating the granular medium from the excess sludge, returning the separated granular medium to the upper part of the packed bed,
A biological treatment method characterized by discharging separated excess sludge to the outside of the system.
(2)前記粒状媒体が連続的に移送されるものであて、
その移送量を1日当り全粒状媒体量の1.5〜3倍量の
範囲内で変化させる特許請求の範囲第1項記載の生物処
理方法。
(2) the granular medium is continuously transported;
2. The biological treatment method according to claim 1, wherein the amount transferred is varied within a range of 1.5 to 3 times the total amount of granular media per day.
(3)前記粒状媒体が間欠的に移送されるものであって
、その移送量を1日当り全粒状媒体量の1/4〜8倍量
の範囲内で変化させる特許請求の範囲第1項記載の処理
方法。
(3) The granular medium is intermittently transferred, and the amount of the granular medium transferred is varied within a range of 1/4 to 8 times the total amount of granular media per day. processing method.
JP6405087A 1986-03-28 1987-03-20 Biological treatment method Expired - Lifetime JPH0818030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6405087A JPH0818030B2 (en) 1986-03-28 1987-03-20 Biological treatment method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6878086 1986-03-28
JP61-68780 1986-03-28
JP6405087A JPH0818030B2 (en) 1986-03-28 1987-03-20 Biological treatment method

Publications (2)

Publication Number Publication Date
JPS6312398A true JPS6312398A (en) 1988-01-19
JPH0818030B2 JPH0818030B2 (en) 1996-02-28

Family

ID=26405182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6405087A Expired - Lifetime JPH0818030B2 (en) 1986-03-28 1987-03-20 Biological treatment method

Country Status (1)

Country Link
JP (1) JPH0818030B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03174298A (en) * 1989-12-01 1991-07-29 Ebara Res Co Ltd Method for filtering by biological membrane
JPH0418987A (en) * 1990-05-11 1992-01-23 Ebara Corp Biomembrane filtration method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54115555A (en) * 1978-02-27 1979-09-08 Kubota Ltd Device for disposing of waste water

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54115555A (en) * 1978-02-27 1979-09-08 Kubota Ltd Device for disposing of waste water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03174298A (en) * 1989-12-01 1991-07-29 Ebara Res Co Ltd Method for filtering by biological membrane
JPH0418987A (en) * 1990-05-11 1992-01-23 Ebara Corp Biomembrane filtration method

Also Published As

Publication number Publication date
JPH0818030B2 (en) 1996-02-28

Similar Documents

Publication Publication Date Title
JP5945342B2 (en) Method and reactor for biological purification of wastewater
DK175924B1 (en) Process and reactor for purifying water
KR101404179B1 (en) Fluidized membrane bioreactor
JP2004526561A (en) Process and backflow loop reactor for sewage purification
JP3244365B2 (en) Fluid bed carrier recovery method
JP4512576B2 (en) Wastewater treatment by aerobic microorganisms
JPS6312398A (en) Biological treatment
JPS6349297A (en) Waste water treatment device
CN209583901U (en) Biochemistry pool MBBR technique coupling denitrification deep-bed filter denitrification dephosphorization system
JPH02207882A (en) Device for treating sewage or the like
JPH10202281A (en) Waste water treating device
JPH0418988A (en) Biomembrane filter device for organic sewage
JPH0641677Y2 (en) Upflow type continuous biofilm filter
JPH10211499A (en) Apparatus for treating wastewater
JPH0639391A (en) Method for treating waste water
JPS60122095A (en) Biological treatment device
KR0142581B1 (en) Wastewater Biofiltration Treatment Apparatus and Method Using Biofiltration Material
JPS62277195A (en) Biological cleaning method for water
JPH10192878A (en) Wastewater treatment apparatus
JPH05138185A (en) Treatment of organic sewage and equipment
JPH0466193A (en) Biological treatment apparatus of organic sewage
JPH04197493A (en) Method and apparatus for filtering sewage
JPS5849492A (en) Removing method for bod and ss from organic waste water
JPH01115497A (en) Waste water treating device
JPH04247299A (en) Method for treating organic sewage and device therefor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term