JPS6312312A - Electric field ion exchange chromatography - Google Patents

Electric field ion exchange chromatography

Info

Publication number
JPS6312312A
JPS6312312A JP61156141A JP15614186A JPS6312312A JP S6312312 A JPS6312312 A JP S6312312A JP 61156141 A JP61156141 A JP 61156141A JP 15614186 A JP15614186 A JP 15614186A JP S6312312 A JPS6312312 A JP S6312312A
Authority
JP
Japan
Prior art keywords
ion
exchange membrane
water
substance
equifield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61156141A
Other languages
Japanese (ja)
Inventor
Yasuhiro Matsukuma
松熊 泰浩
Namiko Matsukuma
松熊 ナミ子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP61156141A priority Critical patent/JPS6312312A/en
Publication of JPS6312312A publication Critical patent/JPS6312312A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

PURPOSE:To easily and highly separate and purify a water-soluble substance in a short time by impressing an equifield on an ion-exchange membrane or a material having a unidirectional array of polar groups. CONSTITUTION:Water as solvent is pumped up by a metering pump 2 from a tank 1 to send water in fixed portions to a column cell 3. A DC or bipolar pulse voltage is impressed on two parallel metallic electrode plates 4 in the column cell 3 from a bipolar high-voltage pulse power source 5 to generate an equifield in the region between the parallel electrode plates 4 including an ion-exchange membrane 6. A substance to be separated and purified is injected from an injection port 7, and the substance is adsorbed on the ion-exchange membrane 6 impressed with the equifield. The equifield is then reduced to zero, and impurities are washed away. Subsequently, the substance is desorbed from the ion-exchange membrane 6 by changing the strength of the electric field in a continuous gradient or a discontinuous gradient.

Description

【発明の詳細な説明】 この発明は、直流電源あるいは両極性パルス電源を平行
金属板電極につなぐ事によって等電界を発生させ、その
等電界中のイオン交換膜あるいは極性基の配列に一定の
方向性を持った物に水溶性極性物質を吸着せしめ、その
後、電界の大きさや極性等を変えることによって脱離溶
出させる、水溶性物質の分離精製方法に関するものであ
る。
Detailed Description of the Invention This invention generates an equal electric field by connecting a DC power supply or a bipolar pulse power supply to parallel metal plate electrodes, and the arrangement of the ion exchange membrane or polar groups in the equal electric field has a fixed direction. This invention relates to a method for separating and purifying water-soluble substances, in which a water-soluble polar substance is adsorbed onto a substance having a polarity, and then desorbed and eluted by changing the magnitude and polarity of an electric field.

従来よりイオン交換膜はその選択的な イオン3看過↑ノ1によって電−(透析法、拡散透析法
及び電解法に利用8れている。 主として食IM製造と
か、食」n電解にJ、るり「1ル・)ノル力り製造技術
として使用されている。 このようにイオン交換体の選
択的イオン透過↑1は広範囲に利用されているが、吸着
やj脱着による分FA1粕製には使用されていない。
Conventionally, ion exchange membranes have been used in electrolytic dialysis, diffusion dialysis, and electrolytic methods due to their selective ionization.They are mainly used in food IM production and food electrolysis. The selective ion permeation ↑1 of ion exchangers is used in a wide range of applications, but it is used in the production of FA1 lees through adsorption and desorption. It has not been.

−・般に水溶性物71の分離箱;伎にはイオン交換樹脂
、セル「]−ス・イオン交換体、セファデックス・イオ
ン交換体等のイオン交換体によってi1′なわれている
。−こUらイオン交換体による分離精製は酸、JW塁、
あるいは塩の水溶液を通し、接触さけることによって吸
6及σ11り離溶出さUることにより?)なわれるもの
である。 これら酸、1n塁及び塩水溶液の取扱いはか
なり危険な仕手であり、これらは金属、その配管等を腐
蝕させるのでその取扱いには注意を要する、又、強酸必
るいは強J福塁溶液中では不安定な物′1″!1もあり
、分離粘製が困難な場合もある。 このようにイオン交
換体による分F4精製には多大の労力と日数及び経験が
一般に必要とされる。
- Generally, a separation box for water-soluble substances 71; in this case, it is made up of an ion exchanger such as an ion exchange resin, a cell ion exchanger, a Sephadex ion exchanger, etc. Separation and purification using U et al. ion exchanger is acid, JW base,
Or by passing the salt through an aqueous solution and avoiding contact with it to absorb and elute it? ). Handling these acids, 1N base and salt aqueous solutions is quite dangerous, and care must be taken when handling them as they corrode metals and their piping. There are some substances '1''!1 that are unstable, and separation and viscosity production may be difficult.As described above, purification of fraction F4 using an ion exchanger generally requires a great deal of effort, days, and experience.

本発明を使用すれば誰でも容易に短時間の内に水溶性物
質の分離精製を行なうことが出来る。
By using the present invention, anyone can easily separate and purify water-soluble substances within a short time.

それを図面について説明すれば、第1図に示すように、
タンク1から溶媒としての水を定量ポンプ2で汲みあげ
て一定量ずつカラム・セル3中に流しておき、カラム・
セル中の2枚の平行金属電極板4に両極性高圧パルス電
源5から直流あるいは両極性パルス電圧を加えることに
よってその平行金属電極板の間のイオン交換膜6を含む
領域に等電界を発生させる、注入ロアより分離精製しよ
うとする物質を注入し、等電界が作用しているイオン交
換膜にその物質を吸着させる、その後等電界をOにし、
不純物を洗い流す、続いて、電界の大きざを連続勾配か
不連続勾配で変えたり、極性やパルスの周期を変えるこ
とにより、その物質をイオン交換膜から脱臼1さぜる、
この様にして分離精製した物Y’fの濃度変化を検出器
8で測定し、記録する。 検出器としてはUV−検出器
又は化学計測における電導度計を使用する。
To explain this in terms of drawings, as shown in Figure 1,
Water as a solvent is pumped up from tank 1 using metering pump 2 and flows into the column cell 3 in fixed amounts.
Injection, in which a DC or bipolar pulse voltage is applied from a bipolar high-voltage pulse power source 5 to two parallel metal electrode plates 4 in the cell to generate an equal electric field in the region including the ion exchange membrane 6 between the parallel metal electrode plates. The substance to be separated and purified is injected from the lower part, and the substance is adsorbed on the ion exchange membrane where an isoelectric field is applied.Then, the isoelectric field is set to O.
Wash away impurities, then dislocate the material from the ion exchange membrane by varying the magnitude of the electric field with a continuous or discontinuous gradient, and by varying the polarity and pulse period.
Changes in the concentration of the product Y'f separated and purified in this manner are measured by the detector 8 and recorded. As a detector, a UV detector or a conductivity meter in chemical measurement is used.

両極性高圧パルス電源に関しては最近のパワー・エレク
1−[1ニクス(スイッチング素子としてのパワー・F
ET等)の発展によって容易に製作することができる。
Regarding bipolar high-voltage pulse power supplies, recent power electronics 1-[1nics (power F as a switching element)
With the development of ET, etc.), it can be easily manufactured.

イオン交換体はその粒子の表層部分にイオン交換基がラ
ンダムに色々な方向に分イ[シているため、電界による
物質の吸着や脱着は困難であるが、イオン交1’AFs
はa9い膜であるため、その極性括(スルホンv%、第
4級アンモニウム阜等)がある方向性を持つことになり
、電界による極性物質の吸、脱着が可能になっていると
考えられる。 この様にイオン交換体によるイオン交換
クロマミルグラフィにおいては吸脱ル物質として酸、塩
基、塩水溶液を使用し、連続濃度勾配あるいはバッチ法
による不連続濃度勾配液を調製して分離精製を行なうが
、電界イオン交換クロマトグラフィにおいては電界によ
って物質の吸脱着を行なうので、誰でも容易に短時間で
分離精製することができるし、電気機器装置による機械
化及びコンピュータ制御も容易である。
Ion exchangers have ion exchange groups randomly distributed in various directions on the surface of their particles, making it difficult to adsorb or desorb substances using an electric field.
Since it is a thin film, it has a certain directionality due to its polarity (sulfone v%, quaternary ammonium, etc.), and it is thought that it is possible to adsorb and desorb polar substances by an electric field. . In this way, in ion-exchange chromamilography using an ion exchanger, acids, bases, and salt aqueous solutions are used as adsorbing substances, and separation and purification is carried out by preparing a continuous concentration gradient solution or a discontinuous concentration gradient solution using a batch method. In electric field ion exchange chromatography, substances are adsorbed and desorbed by an electric field, so anyone can easily separate and purify the substance in a short time, and it is easy to mechanize using electrical equipment and control by computer.

電界イオン交換クロマミルグラフィにおいては溶媒とし
て比抵抗10〜100cm   の水(水道水、蒸溜水
、純水等)を使用することができるので電極反応による
ラジカル等の妨害物質の発生は非常に少ないし、流れる
電流も非常に小さいので熱の発生も少なく、平行金属板
電極に高電圧をかけることができる。 又、この高電圧
も両極性矩形波パルス等の交流電源を使うことができる
ため、電極反応による妨害物質の発生を少なくする事が
できる。 この様に電界イオン交換クロマトグラフィは
妨害となる電極反応を出来るだけ少なくする様に調節す
ることが出来る。
In electric field ion exchange chromamyllography, water (tap water, distilled water, pure water, etc.) with a specific resistance of 10 to 100 cm can be used as a solvent, so the generation of interfering substances such as radicals due to electrode reactions is extremely small. Since the current that flows is very small, little heat is generated, and a high voltage can be applied to the parallel metal plate electrodes. Furthermore, since an alternating current power source such as a bipolar square wave pulse can be used for this high voltage, it is possible to reduce the generation of interfering substances due to electrode reactions. In this way, field ion exchange chromatography can be adjusted to minimize interfering electrode reactions.

[実施例1 強Jn林性染料塩酸Jnであるメチレンブルー\aの分
離11’J”14について実施した。
[Example 1 Separation 11'J''14 of methylene blue \a, which is a strong Jn forest dye hydrochloric acid Jn, was carried out.

図21こ示すようにカラム・ヒル3はポリアクリル仮装
の内容積が幅9mm、横45mm、縦100mmの直方
体の容器である。 この中に2枚の平行金属板電4へ4
(厚さ°0,3mmのステンレス M、 I[1,)を
平行に入れる、電(へ間の距離は7mmである、電(〜
の各々の一喘にネジを取り付【プ、それに両4〜性パル
ス電源5からの電線を繋ぐ、そしてその2枚の平行金属
板電極の間に、イオン交換膜6、セレミオンC,M、V
、(旭硝子、陽イオン交換膜Na型)を平行に等間隔に
入れ、これら電)へとイオン交換膜をこの容器に封入し
たものをカラム・セルとして以下の実験に使用した。 
カラム・ヒルに繋いでいるチ]ブを通して溶媒として1
00CrTl  の水を常時、流速Q、 5rT11 
、/’mi nの速さで流しておく。
As shown in FIG. 21, the column hill 3 is a rectangular parallelepiped container made of polyacrylic masquerade and having an internal volume of 9 mm in width, 45 mm in width, and 100 mm in length. In this, there are two parallel metal plate electrodes 4 to 4.
(Stainless steel M, I [1,
Attach a screw to each pane of the ion exchange membrane 6, Selemion C, M, V
(Asahi Glass Co., Ltd., Na-type cation exchange membranes) were placed in parallel at equal intervals, and the ion exchange membranes were sealed in this container, which was used as a column cell in the following experiments.
1 as a solvent through the tube connected to the column hill.
00CrTl water at all times, flow rate Q, 5rT11
, /'min speed.

次にその電極間に直流電圧60Vをかける(電流30m
A程度)。 次に粗製メチレンブルー溶液を注入ロアよ
り注入し、そのまま2分間程流してイオン交換膜に吸着
させる。 その後電圧をOVにもどし、しばらく水を流
して不純物を洗い流してしまう。 それから、両極性矩
形波パルス電圧(+側のパルス幅周期3秒、−側のパル
ス幅周期20秒)をかけ、そのパルス電圧を徐々に上げ
ていく、±60V程度に上げる時、メチレンブルーが溶
出してくるので、これを集めて精製メチレンブルーとし
た。
Next, apply a DC voltage of 60 V between the electrodes (current of 30 m
Grade A). Next, a crude methylene blue solution is injected from the injection lower and allowed to flow for about 2 minutes to be adsorbed onto the ion exchange membrane. After that, the voltage is returned to OV and water is run for a while to wash away impurities. Then, a bipolar rectangular wave pulse voltage (pulse width period of 3 seconds on the + side, pulse width period of 20 seconds on the - side) is applied, and the pulse voltage is gradually increased. When raised to about ±60V, methylene blue is eluted. This was collected and used as purified methylene blue.

本発明の効果として誰でも容易に短時間で高度な水溶性
物質の分離精製を行なうことができる点にあると考えら
れる。
It is believed that one of the effects of the present invention is that anyone can easily perform high-level separation and purification of water-soluble substances in a short period of time.

遺伝子工学関連のバイオテクノロジーにおいて蛋白質等
の水溶性物質の分離精製がしばしば行われているが、非
常に労力と時間を要するので、問題となっている3、 
ここに本発明を!;611j Vる111史に一層の発
II5か明j!tされる。
Separation and purification of water-soluble substances such as proteins is often carried out in biotechnology related to genetic engineering, but this is a problem because it requires a lot of effort and time.
The invention is here! ;611j Vru 111 history has a further development II 5 or clear j! t will be done.

tlo水にはウランか無限に含まれていると占われてい
る。 現在、y−タン酸やイオン交換(か1脂ににるi
/+j水からのウラン回収実験が行われているが、その
操作の繁雑さ、回収率の低さ故に、いまだ十分な結果は
得られていない。 ここに“し本発明を応用することが
できると考えられる。
It is predicted that the tlo water contains an infinite amount of uranium. Currently, y-tanic acid and ion exchange (or
/+j Experiments to recover uranium from water have been conducted, but sufficient results have not yet been obtained due to the complexity of the operations and low recovery rate. It is believed that the present invention can be applied here.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施の一例を示ず系統図である。 第2図は本発明の実施の一例を示り“部分断面斜視図で
必る。 1は中に水の入ったタンク 2は定量ポンプ 
3はカラム・セル 4は平11金属板電(〜 5は両極
性高圧パルス電源(O〜±160V)  6はイオン交
46A膜 7は注入口 8は検出蔦(化学計測に一引プ
る電尊磨計) 特、;4出願人 公11ζ泰浩 第4図 (O〜ヨ160V) 5 雨曝性高圧パルス電源 (O〜±160V)
FIG. 1 is a system diagram showing an example of the implementation of the present invention. Figure 2 shows an example of the implementation of the present invention and is a partially sectional perspective view. 1 is a tank with water inside, 2 is a metering pump.
3 is a column cell 4 is a flat metal plate electrode (~ 5 is a bipolar high voltage pulse power supply (O~±160V) 6 is an ion exchanger 46A membrane 7 is an injection port 8 is a detection tube (a voltage that is useful for chemical measurement) 4 Applicant: Yasuhiro Public 11ζ Figure 4 (O~YO 160V) 5 Rain-exposed high voltage pulse power supply (O~±160V)

Claims (1)

【特許請求の範囲】[Claims] イオン交換膜あるいは極性基の配列に一定の方向性を持
つた物に等電界をかけることによつて物質を吸着及び脱
着溶出させる分離精製を行なう方法。
A separation and purification method in which substances are adsorbed, desorbed, and eluted by applying an equal electric field to an ion exchange membrane or other material that has a certain directionality in the arrangement of polar groups.
JP61156141A 1986-07-04 1986-07-04 Electric field ion exchange chromatography Pending JPS6312312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61156141A JPS6312312A (en) 1986-07-04 1986-07-04 Electric field ion exchange chromatography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61156141A JPS6312312A (en) 1986-07-04 1986-07-04 Electric field ion exchange chromatography

Publications (1)

Publication Number Publication Date
JPS6312312A true JPS6312312A (en) 1988-01-19

Family

ID=15621219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61156141A Pending JPS6312312A (en) 1986-07-04 1986-07-04 Electric field ion exchange chromatography

Country Status (1)

Country Link
JP (1) JPS6312312A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0394299A (en) * 1989-05-17 1991-04-19 American Teleph & Telegr Co <Att> Voice recognition method and method of training of voice recognition apparatus
JP2007526110A (en) * 2003-12-09 2007-09-13 セパレーション デザイン グループ、エルエルシー Sorption methods, equipment, and systems

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0394299A (en) * 1989-05-17 1991-04-19 American Teleph & Telegr Co <Att> Voice recognition method and method of training of voice recognition apparatus
JP2007526110A (en) * 2003-12-09 2007-09-13 セパレーション デザイン グループ、エルエルシー Sorption methods, equipment, and systems

Similar Documents

Publication Publication Date Title
US5192432A (en) Flow-through capacitor
US5196115A (en) Controlled charge chromatography system
US4596641A (en) Electrochemical deionization
JPH11505463A (en) Method and apparatus for capacitive deionization and electrochemical purification and regeneration of electrodes
JP3302443B2 (en) Flat-plate flow-through type electric double layer capacitor and liquid processing method using the same
Frilette Electrogravitational transport at synthetic ion exchange membrane surfaces
JPH06506867A (en) Electrodeionization equipment
JP2011504411A5 (en)
JPS62501033A (en) Improvement of separation electrophoresis method and equipment
US20070261962A1 (en) Separation Systems with Charge Mosaic Membrane
JP5868421B2 (en) Electrodeionization equipment
CA2037988A1 (en) Continuous flow method and apparatus for separating substances in solution
GB2148325A (en) Electro-elution
NL2020640B1 (en) Deionization device and method for at least partially deionizing a feed liquid in which an electrolyte is dissolved, and apparatuses using such devices
JPS6312312A (en) Electric field ion exchange chromatography
CN111320243A (en) Membrane-free electrodeionization method and device with current perpendicular to water flow direction
JP6676266B2 (en) Electric regeneration type deionizer
US3790461A (en) Separation of a liquid containing charged particles or/and polarizable molecules
CN105753114B (en) A kind of multi-chamber Electro Sorb desalting technology and device for realizing continuous desalination production water
CN1169728C (en) Electric adsorption liquid treatment device
CN1562485A (en) Preparation and application of ion exchange membrane of electric active nickel ferricyanide
JPS5820289A (en) Device for changing concentration of salt in liquid
CN2498142Y (en) Electrochemical adsorption liquid treating apparatus
EP4206670A1 (en) A novel configuration for ultra high pressure electrolytic eluent generators
CN211004705U (en) Electric membrane extraction device for separating or enriching metal ions