JPS63122784A - Production of highly elastic coal block - Google Patents

Production of highly elastic coal block

Info

Publication number
JPS63122784A
JPS63122784A JP26744886A JP26744886A JPS63122784A JP S63122784 A JPS63122784 A JP S63122784A JP 26744886 A JP26744886 A JP 26744886A JP 26744886 A JP26744886 A JP 26744886A JP S63122784 A JPS63122784 A JP S63122784A
Authority
JP
Japan
Prior art keywords
coal
block
coal block
mold
compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26744886A
Other languages
Japanese (ja)
Inventor
Shigeru Kuwajima
桑島 滋
Yutaka Takahashi
裕 高橋
Takeshi Goto
毅 後藤
Takayuki Yurino
百合野 貴之
Takao Kamei
亀井 隆雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Kawasaki Steel Corp filed Critical Kawasaki Heavy Industries Ltd
Priority to JP26744886A priority Critical patent/JPS63122784A/en
Publication of JPS63122784A publication Critical patent/JPS63122784A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

PURPOSE:To improve modulus of elasticity of coal block and to make it possible to carbonize coal block in a chamber oven, by charging a mold with pulverized coal, compression molding the pulverized coal, releasing pressure from the coal block and further compressing the coal block to produce permanent set. CONSTITUTION:Pulverized coal is fed to a mold, compression molded, further molded to give coal block, from which pressure is released. The coal block is further compressed and permanent set is produced in the coal block. A highly elastic block which is fed to a chamber oven and carbonized into coke and has a little smaller dimension than that of the chamber oven. Consequently, self-stability of coal block and stability of handling are improved and cost of installation and power expense are reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高弾性石炭ブロックの製造方法に関し、特に
室炉内に装入乾留してコークスとする際に用いる該室炉
よりもやや小さい寸法の石炭ブロックを提供するための
技術であって、コークス工業の分野に適用される。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for manufacturing a highly elastic coal block, and in particular, the present invention relates to a method for producing a highly elastic coal block, and in particular, a coal block that is slightly smaller than the indoor furnace used for charging into an indoor furnace and carbonizing it to produce coke. A technique for providing dimensional coal blocks, applied in the field of coke industry.

そして、この明細書の以下の説明は、粉炭自身の弾性変
形挙動ではなく、成形された前記「石炭ブロック」とし
ての変形特性に着目して、好適な石炭ブロックを得る技
術についてのものである。
The following explanation of this specification is about a technique for obtaining a suitable coal block by focusing on the deformation characteristics of the molded "coal block" rather than the elastic deformation behavior of the powdered coal itself.

(従来の技術) 一般に、粉炭は加圧されると水分のみで圧密され任意の
形状に成形された圧粉体となる。この圧粉体の中の粉炭
粒子は水分を介して互いに接触しており、この接触の度
合いは成形軸方向の方が成形軸に直角な方向に比較する
と強いのが普通である(このことを第2図に示す)。
(Prior Art) Generally, when pulverized coal is pressurized, it is compacted with only moisture and becomes a green compact formed into an arbitrary shape. The powdered coal particles in this green compact are in contact with each other through moisture, and the degree of this contact is usually stronger in the direction of the compaction axis compared to the direction perpendicular to the compaction axis. (shown in Figure 2).

このような粉体を圧縮成形し、成形体として室炉に供す
る技術が既に幾つか提案されており、例えば、特公昭5
9−12710号公報で開示されている圧縮成形炭製造
技術は、横押し成形機を使用する場合、高さ方向におけ
る粉炭粒子の接触度合いが横方向と比較して弱くなる欠
点があった。
Several techniques have already been proposed in which such powder is compression-molded and subjected to a chamber furnace as a molded body.
The compression molded coal manufacturing technology disclosed in Japanese Patent No. 9-12710 has a drawback that when a horizontal press molding machine is used, the degree of contact between powdered coal particles in the height direction is weaker than in the lateral direction.

又、特開昭53−25602号公報で開示されている方
法は、上下方向にスタンパ−を落下させて突固める製造
技術であるが、上下方向と比較して横方向における粉炭
粒子の接触度合いは弱くなることが考えられる。
Furthermore, the method disclosed in Japanese Patent Application Laid-open No. 53-25602 is a production technique in which a stamper is dropped in the vertical direction to compact it, but the degree of contact between the powdered coal particles in the horizontal direction is less than that in the vertical direction. It is possible that it will become weaker.

もちろん、上記各従来技術の場合も成形圧力が高くなる
と圧縮強度が向上する。このことは、種々の形状を有す
る粉炭粒子どうしが互いに嵌合しあってその接触面積が
拡大されるためと考えられる。この場合でも成形軸方向
では粉炭粒子の嵌合がスムーズにいくのに対して成形軸
に直角な方向では圧密される力が小さいので、嵌合の度
合いが弱い。このため、成形軸直角方向では圧縮強度が
弱くなり、圧縮をうけると、塑性変形を起こす問題点が
あった。
Of course, in the case of each of the above-mentioned conventional techniques as well, as the molding pressure increases, the compressive strength improves. This is thought to be because powdered coal particles having various shapes fit into each other and their contact area is expanded. Even in this case, although the pulverized coal particles fit together smoothly in the direction of the forming axis, the degree of fitting is weak in the direction perpendicular to the forming axis because the consolidation force is small. For this reason, the compressive strength becomes weak in the direction perpendicular to the forming axis, and there is a problem in that plastic deformation occurs when compressed.

一方、成形圧力が低い場合、成形軸方向においても粉炭
粒子の接触度合が弱く、塑性変形を起こす問題点があっ
た。
On the other hand, when the compacting pressure is low, there is a problem in that the degree of contact between the powdered coal particles is weak even in the direction of the compacting axis, causing plastic deformation.

(発明が解決しようとする問題点) 弾性係数は、機械的性質の代表的指標である。(Problem that the invention attempts to solve) Elastic modulus is a typical indicator of mechanical properties.

この弾性係数の大きい材料は歪応力が大きいことを意味
する。そこで、この関数を石炭ブロックにあてはめて考
えると、弾性係数が大きい場合、歪が起こりにくいこと
を示してふり、石炭ブロックのハンドリング時の安全性
が向上すると考えられる。ここで言うハンドリングとは
、石炭ブロックの自立、横持ち詔よびコークス炉内への
装入等である。例えば石炭ブロックが座屈せずに安定し
て自立できることはハンドリング性が良好であることを
示している。かかるハンドリング性における座屈につい
ては、次式のように縦弾性係数Eが関与する。
A material with a large elastic modulus means a large strain stress. Therefore, when this function is applied to a coal block, it is thought that when the elastic modulus is large, it indicates that distortion is less likely to occur, which improves safety when handling the coal block. Handling here refers to the self-supporting of coal blocks, horizontal carrying, and charging into coke ovens. For example, the fact that a coal block can stably stand on its own without buckling indicates that it has good handling properties. Regarding buckling in such handling property, the longitudinal elastic modulus E is involved as shown in the following equation.

β=F (E) l:座屈する高さくm) 、E :縦弾性係数< kg
/ cm2)このEが大きい場合、座屈する高さβは高
くなる。
β=F (E) l: Buckling height m), E: Longitudinal elastic modulus < kg
/ cm2) When this E is large, the buckling height β becomes high.

石炭ブロックが同じ高さであれば、Eの大きい方が安定
的に自立できることを意味する。特に高さ方向が成形軸
に対して直角方向となる場合、Eが低いので自立が不安
定となる問題点がある。
This means that if the coal blocks are of the same height, the one with a larger E can stably stand on its own. In particular, when the height direction is perpendicular to the molding axis, there is a problem that the self-standing is unstable because E is low.

この点、前記特開昭53−25602号公報に開示の技
術の場合、突き固めケーキの高さくH)  と厚み(W
)との比(H/W)が14〜16倍、有利なのは15倍
と記載されているように、従来の突き固めケーキのHハ
シは16倍以下に制約されるという問題点があった。
In this regard, in the case of the technique disclosed in JP-A-53-25602, the height H) and thickness (W
) has been described as having a ratio (H/W) of 14 to 16 times, preferably 15 times, and there was a problem in that the H-height of conventional tamped cakes was limited to 16 times or less.

この石炭ブロックのハンドリングが横持ちの場合におい
ても、搬送の加速度および軌条の高低からくる上下振動
の影響をうけるので、該石炭ブロックの弾性係数が低い
と変形し崩壊する危険性が高くなる。また、石炭ブロッ
クをコークス炉内に装入する際はシューに乗せて移動す
るので、直接石炭ブロックを押すようなことはないが、
炉内の状況、例えば付着カーボンが石炭ブロック頂部に
接触することがある。このような場合、弾性係数が低い
と、付着カーボンによる衝撃をうけて変形し崩壊する危
険性もある。
Even when this coal block is handled horizontally, it is affected by the acceleration of conveyance and vertical vibration caused by the height of the rail, so if the elastic modulus of the coal block is low, there is a high risk of deformation and collapse. Also, when charging a coal block into a coke oven, it is moved on a shoe, so there is no need to push the coal block directly.
Conditions within the furnace, such as deposited carbon, may come into contact with the top of the coal block. In such a case, if the elastic modulus is low, there is a risk of deformation and collapse due to the impact of the deposited carbon.

つまり、本発明の目的は、石炭ブロックの弾性係数を向
上させ、上述した(形成後塑性変形する)問題点を解決
し、石炭ブロックの室炉乾留の工業化を実現することに
ある。
That is, an object of the present invention is to improve the elastic modulus of a coal block, solve the above-mentioned problem (plastic deformation after formation), and realize industrialization of indoor furnace carbonization of a coal block.

(問題点を解決するための手段) 粉炭粒子は、多角形、丸形、偏平形等の種々の形状を有
しており、粒径も異なる。従って、金型内に装入充填し
て圧縮すると成形の過程で粉炭粒子はそれぞれの形状の
影響をうけて理想的な最密充填を得るのは頗る困難であ
る。特に、金型内では成形圧力の一部が粉炭粒子と金型
壁面との摩擦に消費されることを考えると、工業的に採
算のとれる成形圧力には限界がある。従って、大きな成
形圧力を使用できないので、完全な弾性を示す石炭ブロ
ックは成形できず程度の差はあるが、石炭ブロックはす
べて塑性変形するという知見を得た。
(Means for solving the problem) Powdered coal particles have various shapes such as polygonal, round, and flat shapes, and have different particle sizes. Therefore, when the powdered coal particles are charged into a mold and compressed, the powdered coal particles are influenced by their respective shapes during the molding process, and it is extremely difficult to obtain ideal close packing. In particular, considering that a part of the compacting pressure in the mold is consumed by friction between the powdered coal particles and the wall surface of the mold, there is a limit to the compacting pressure that is industrially profitable. Therefore, since large molding pressures cannot be used, coal blocks exhibiting perfect elasticity cannot be molded, and it has been found that all coal blocks undergo plastic deformation to varying degrees.

さらに、成形した石炭ブロックを金型から取外し、該石
炭ブロックを構成する各粉炭粒子が金型の拘束を全く受
けずに自由にわずかに移動できる状態に維持して加圧す
ると、小さな加圧力で弾性係数の向上が期待できること
が判った。
Furthermore, if the formed coal block is removed from the mold and pressurized while maintaining the state in which each powdered coal particle constituting the coal block can freely move slightly without being constrained by the mold, a small pressurizing force can be applied. It was found that an improvement in the elastic modulus can be expected.

要するに本発明は、粉炭を金型内に装入して圧縮成形し
た石炭ブロックを圧力解放した後、さらに圧縮すること
により該石炭ブロックに永久歪を生ぜしめることを特徴
とする高弾性石炭ブロックの製造方法を、 課題解決手段として採用する。
In short, the present invention provides a highly elastic coal block characterized in that the coal block is compression-molded by charging powdered coal into a mold, the pressure is released, and then the coal block is further compressed to cause permanent deformation. Adopt manufacturing methods as a means to solve problems.

(作 用) 一般に、粉炭を成形した石炭ブロックを圧縮すると、第
3図にみられるように、永久ひずみを残す。横方向で成
形した実験ブロック(358’ X1000LX100
O’ ) mmを垂直方向(成形軸に対し直角をなす方
向)から圧縮力3トンで圧縮すると、縦変位4mmの永
久歪を残す。また、横方向から圧縮して成形した実験ブ
ロックを直立させて成形軸と同じ方向から圧縮すると、
圧縮軸方向に数mmの永久歪が観察された。
(Function) Generally, when a coal block made of powdered coal is compressed, permanent strain remains as shown in Figure 3. Experimental block molded in the horizontal direction (358'
O' ) mm is compressed in the vertical direction (perpendicular to the forming axis) with a compressive force of 3 tons, leaving a permanent strain with a longitudinal displacement of 4 mm. In addition, when an experimental block that was molded by compression from the lateral direction is held upright and compressed from the same direction as the molding axis,
Permanent strain of several mm was observed in the compression axis direction.

上述したように、粉炭粒子それ自体は弾性体のままであ
っても、多数の該粉炭粒子を圧縮成形した石炭ブロック
の方は、変形して永久歪を生ずる。
As described above, even if the pulverized coal particles themselves remain elastic, a coal block formed by compression molding a large number of pulverized coal particles deforms and develops permanent deformation.

それは該粉炭粒子は球形ばかりではなく不定形多面体も
あり、凹凸の形状をしているので、成形がすすむと粒子
どうしが嵌合する作用がある一方で、粉炭粒子間の摩擦
で拘束されておりそして金型壁面で拘束されているため
、粒子の移動が抑制される結果、充分な嵌合や接触度合
いが得られないことに起因する。そして、さらに成形を
続けると、粉炭粒子どうしが接触して重なった状態で加
圧される。その結果、次には粒子自身が弾性限界内で歪
を生ずる。この段階では成形圧力を零に戻していくと、
石炭ブロックはプレスヘッドをスプリングバックする。
This is because the powdered coal particles are not only spherical but also irregularly shaped polyhedrons, and have an uneven shape, so when forming progresses, the particles fit together, but on the other hand, they are restrained by friction between the powdered coal particles. Since the particles are restrained by the wall surface of the mold, movement of the particles is suppressed, and a sufficient degree of fitting and contact cannot be obtained. Then, when the molding is continued, the powdered coal particles contact each other and are pressed together in an overlapping state. As a result, the particles themselves in turn become strained within their elastic limits. At this stage, when the molding pressure is returned to zero,
The coal block springs back the press head.

そこで、金型壁面による拘束を除くために、成形された
石炭ブロックを金型から取り外した状態で圧縮してみた
ところ、壁面に接していた部分の粒子もわずかながら移
動して永久歪を生じ、嵌合性の良い接触状態に改善され
ることが判った。な右この場合、圧縮に要する加圧力は
壁面の摩擦力が無いので、有効に作用するため小さい加
圧力で効果をあげることができる。
Therefore, in order to remove the constraint from the mold wall, we tried compressing the molded coal block after removing it from the mold, but the particles in the part that was in contact with the wall also moved slightly, causing permanent deformation. It was found that the contact condition was improved to provide a good fit. In this case, the pressurizing force required for compression is effective because there is no frictional force on the wall surface, so a small pressurizing force can be effective.

成形軸方向においては、粉炭粒子は上記のように挙動す
るが、成形軸に直角な方向では加圧力が小さいので、粒
子の接触度合や嵌合は弱い。この場合成形軸に直角な方
向の粒子の接触度や嵌合を向上させるため、石炭ブロッ
クを金型に収納したままの状態で成形軸に直角な方向か
ら側壁を移動させるなどして圧縮することが有効となる
。しかし、金型成形ではその圧縮力の一部は金型壁面の
摩擦に消費される欠点が残る。
In the direction of the forming axis, the powdered coal particles behave as described above, but since the pressing force is small in the direction perpendicular to the forming axis, the degree of contact and fit of the particles is weak. In this case, in order to improve the degree of contact and fit of particles in the direction perpendicular to the molding axis, the coal block is compressed by moving the side wall from the direction perpendicular to the molding axis while it is still housed in the mold. becomes effective. However, mold molding still has the disadvantage that a portion of the compressive force is consumed by friction on the mold wall surface.

そこで、本発明は圧縮成形を終えた石炭ブロックを金型
から取り外して圧縮し永久歪を生せしめると、粉炭粒子
の嵌合状態や接触度合が金型内に収納させたまま全方位
成形するよりも改善され、粉炭粒子がもつ弾性を石炭ブ
ロックの方も示すようになる。(弾性を表わすパラメー
タとして機械工学では弾性係数を用いているので石炭ブ
ロックについても弾性係数と表現する) 以上説明したように、金型内成形された石炭ブロックは
、永久歪を生じやすい状態になっており、そのままでは
まだ弾性係数は小さい。しかし、本発明により永久歪を
生じやすい状態の該石炭ブロックを金型外で圧縮成形し
、永久歪を生じさせた場合は、弾性係数は大幅に改善(
大きくなる)される。
Therefore, in the present invention, when the coal block that has been compression molded is removed from the mold and compressed to create permanent deformation, the fitting state and degree of contact of the powdered coal particles is better than that of omnidirectional molding while stored in the mold. The properties of the coal blocks have also been improved, and the coal blocks now exhibit the same elasticity that pulverized coal particles have. (Since the elastic modulus is used in mechanical engineering as a parameter to express elasticity, the coal block is also expressed as the elastic modulus.) As explained above, the coal block formed in the mold is in a state where permanent deformation is likely to occur. As it is, the elastic modulus is still small. However, when the present invention compresses the coal block, which is prone to permanent deformation, outside the mold and causes permanent deformation, the elastic modulus is significantly improved (
become larger).

例えば、室炉用石炭ブロックの高さは6〜7mである。For example, the height of a coal block for a chamber furnace is 6 to 7 m.

この石炭ブロックは底部については上部から圧縮されて
いるので、ある程度は粉炭粒子の嵌合状態や接触度合が
向上して、弾性係数が大きいものの、上部は永久歪を生
じていないので弾性係数は小さい。
Since the bottom of this coal block is compressed from the top, the fit and contact degree of the powdered coal particles is improved to some extent, resulting in a large elastic modulus, but the upper part has no permanent strain, so the elastic modulus is small. .

粉炭粒子の接触度合いが強く、嵌合のよい成形軸方向に
おいても石炭ブロックは圧縮されると永久歪を残す性質
があり、この永久歪を残すことにより上述のごとく上部
の弾性係数を大幅に向上できる。
Even in the direction of the molding axis where the degree of contact between the powdered coal particles is strong and the fit is good, the coal block has the property of leaving a permanent strain when compressed, and by leaving this permanent strain, the elastic modulus of the upper part is greatly improved as mentioned above. can.

すなわち、座屈理論から考えると、上部は静的な自立が
困難となり座屈し易くなる。この状態で外力をうけると
変形しやすく永久歪を起して曲がった状態となり、自重
の均衡を失って容易に座屈する。
That is, considering the buckling theory, the upper part becomes difficult to stand on its own statically and is likely to buckle. When exposed to external force in this state, it easily deforms, causing permanent deformation and becoming bent, losing its own weight balance and easily buckling.

この点、本発明により石炭ブロックの弾性係数が大きく
なるように改善すると、上述の座屈を防止して操業上実
用に耐える石炭ブロックを製造できる。
In this regard, by improving the elastic modulus of the coal block according to the present invention to increase the elastic modulus, the above-mentioned buckling can be prevented and a coal block that can withstand practical operations can be manufactured.

本発明にかかる製造工程を第1図に基いて説明すると、
粉炭を金型へ装入して圧縮成形し、得られた石炭ブロッ
クは金型外に取り出して圧縮する工程からなる。圧縮の
方法は、プレスを使用することができる。石炭ブロック
を保護する目的でラバープレス等が望ましい。また、成
形機から出た石炭ブロックは、テーパーライナーで石炭
ブロック頂部から押え付けることにより圧縮でき、テー
パーライナーの高さ、傾斜角度は調整できるような機構
を採用するとよい。
The manufacturing process according to the present invention will be explained based on FIG.
The process consists of charging powdered coal into a mold, compression molding it, and taking the resulting coal block out of the mold and compressing it. As a compression method, a press can be used. A rubber press or the like is preferable to protect the coal block. Further, it is preferable to adopt a mechanism in which the coal block discharged from the molding machine can be compressed by pressing down from the top of the coal block with a taper liner, and the height and inclination angle of the taper liner can be adjusted.

な右、予め圧縮して永久歪を残す方法としては圧縮力を
反復するケースと、圧縮力をかけて保持する方法とがあ
る。
As for the method of pre-compressing and leaving a permanent set, there are two methods: one is to repeatedly apply compression force, and the other is to apply compression force to hold the material.

さらに、第5図に示すような圧縮の方法もある。Furthermore, there is also a compression method as shown in FIG.

横型成形機5から出てきた石炭ブロック(成形ブロック
3、再圧縮ブロック4)は、成形機のプレス6軸方向、
即ち水平押出方向に対して上下方向から圧縮する天井プ
レス1と水平押出方向に対して直角な幅方向から圧縮す
る側壁プレス2よりなり、まず上下圧縮プレスにより圧
縮されたブロックは側壁プレスにより幅方向に再度圧縮
される。
The coal blocks (forming block 3, recompression block 4) that come out of the horizontal molding machine 5 are moved in the axial direction of the press 6 of the molding machine,
That is, it consists of a ceiling press 1 that compresses from above and below with respect to the horizontal extrusion direction, and a side wall press 2 that compresses from the width direction perpendicular to the horizontal extrusion direction.First, the block compressed by the vertical compression press is compressed in the width direction by the side wall press. is compressed again.

また天井プレス1により上下方向に圧縮する際、側壁は
可動側壁金型として、あらかじめ発生する横歪量に合わ
せた幅に調整する可動側壁とすることもよい。
Further, when compressing in the vertical direction by the ceiling press 1, the side wall may be a movable side wall mold, and may be a movable side wall whose width is adjusted in advance to match the amount of lateral strain generated.

(実施例) 実施例 1 横型成形機で表1の配合炭を成形して石炭ブロック(3
58’ X1000LX100O+mm)を製造した。
(Example) Example 1 The coal blend shown in Table 1 was molded using a horizontal molding machine to form a coal block (3
58' x 1000L x 100O+mm) was manufactured.

第1 成形条件 次に、該石炭ブロックを竪型プレスを用いて成形軸に直
角な方向から圧縮成形した。この時の縦変位と圧縮力の
関係を第3図に示した。商業用の室炉高さ7mより少し
大きい石炭ブロックを得るべく、圧縮力3トン(0,8
4kgf/cm2)で圧縮した場合、縦変位は6mmで
あった。このときの縦弾性係数Eは140kg/am2
 と計算された。この状態で圧縮力を減少させていくと
同図中の曲線■のごとくに縦変位が減少し、圧縮力が零
では4mmの永久歪が残った。
First Molding Conditions Next, the coal block was compression molded in a direction perpendicular to the molding axis using a vertical press. The relationship between longitudinal displacement and compressive force at this time is shown in Figure 3. In order to obtain a coal block slightly larger than the commercial furnace height of 7 m, a compression force of 3 tons (0.8
When compressed at 4 kgf/cm2), the longitudinal displacement was 6 mm. The longitudinal elastic modulus E at this time is 140 kg/am2
It was calculated that When the compressive force was decreased in this state, the vertical displacement decreased as shown by curve 2 in the figure, and when the compressive force was zero, a permanent strain of 4 mm remained.

次に、同じ圧縮力3トンを上記石炭ブロックにかけたと
ころ、同図の曲線■のごとく挙動した。
Next, when the same compressive force of 3 tons was applied to the above coal block, the coal block behaved as shown by the curve (■) in the figure.

この時の縦変位は約2.5mmであり、縦弾性係数Eは
330kg/cm2に向上した。曲線■と比較してEは
2.3倍向上している。そして、この圧縮力を減少させ
ていくと曲線■のごとく縦変位が減少したが、永久歪は
掻くわずかであった。
The longitudinal displacement at this time was about 2.5 mm, and the longitudinal elastic modulus E was improved to 330 kg/cm2. Compared to curve ■, E is improved by 2.3 times. As the compressive force was decreased, the vertical displacement decreased as shown by curve (2), but the permanent deformation was very small.

圧縮力3トンで3回目の圧縮を行った結果を第4図に示
した。縦弾性係数Eは360 kg / cm2とさら
に向上した。この場合石炭ブロックは弾性体に近い挙動
を示した。このように成形を終えた石炭ブロックを、金
型外において予め圧縮して、永久ひずみを残すことによ
り、縦弾性係数Eは大幅に向上した。
Figure 4 shows the results of the third compression with a compression force of 3 tons. The longitudinal elastic modulus E was further improved to 360 kg/cm2. In this case, the coal block behaved almost like an elastic body. By pre-compressing the coal block that had been formed in this way outside the mold to leave a permanent strain, the modulus of longitudinal elasticity E was significantly improved.

このケースでは金型壁面で拘束されていない状態で圧縮
しているので、圧縮力は3トン(0,84kgf 70
m”)と小さくて済み、効果的に縦弾性係数Eを向上さ
せることができた。
In this case, compression is performed without being restrained by the mold wall, so the compression force is 3 tons (0.84 kgf 70
m”), and the longitudinal elastic modulus E could be effectively improved.

実施例 2 表1の粉炭を横型成形機で成形圧力51kgf /cm
2で成形した。成形機からとり出した石炭ブロック(3
58” X100OLX100O” ) minを直立
させて、成形軸と同じ方向から圧縮力2.2トン(0,
61kgf/cm2)で圧縮した。1回目の圧縮におけ
る縦変位は5.9mmで、この縦弾性係数Eは100 
kg/cm2と計算された。圧縮力を零に戻すと3.5
mmの永久歪が残った。
Example 2 The powdered coal shown in Table 1 was molded using a horizontal molding machine at a pressure of 51 kgf/cm.
It was molded in 2. Coal block taken out from the molding machine (3
58"
61 kgf/cm2). The longitudinal displacement in the first compression was 5.9 mm, and the longitudinal elastic modulus E was 100.
It was calculated as kg/cm2. When the compression force is returned to zero, it becomes 3.5.
A permanent strain of mm remained.

圧縮力2.2トンで2回目の圧縮を行った結果、縦変位
は約2.4mmで、このときのEは250 kg/cm
2に向上した。圧縮力を零に戻すと永久歪はわずかであ
った。
As a result of the second compression with a compression force of 2.2 tons, the vertical displacement was approximately 2.4 mm, and E at this time was 250 kg/cm.
Improved to 2. When the compression force was returned to zero, the permanent strain was small.

(発明の効果) 本発明によると次のような効果が期待できる。(Effect of the invention) According to the present invention, the following effects can be expected.

(1)  石炭ブロックの自立安定性およびハンドリン
グの安定性が向上する。すなわち、これまで不可能と言
われていた石炭ブロックは、高さくH)と厚み(III
)の比(H/W)が16を超えても、自立安定性を確保
できる。従って、本発明により、既設大型コークス炉で
大型の石炭ブロックを乾留できるようになる、低順な微
粘結炭の多量使用できる他、生産性を約15%向上でき
るというメリットを享受し得る。
(1) The self-supporting stability and handling stability of the coal block are improved. In other words, the coal block, which was previously said to be impossible, has a height (H) and a thickness (III).
) Even if the ratio (H/W) exceeds 16, self-sustaining stability can be ensured. Therefore, according to the present invention, a large coal block can be carbonized in an existing large coke oven, a large amount of low-grade slightly coking coal can be used, and productivity can be improved by about 15%.

(2)金型壁面で石炭ブロックを拘束していない状態で
圧縮するのでわずかな圧縮力で永久歪を残すことができ
る。従って、設備費および電力費が安くなる利点がある
(2) Since the coal block is compressed without being restrained by the mold wall surface, permanent deformation can be left with a small compression force. Therefore, there is an advantage that equipment costs and power costs are reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の工程図、 第2図は、成形軸方向と成形軸に直角な方向の圧縮強度
の関係を示すグラフ、 第3図は、圧縮した場合に生じる永久歪の存在を説明す
るグラフ、 第4図は、予め圧縮して永久歪を残した石炭ブロックに
ついて、さらに圧縮成形した場合の縦変位と圧縮力との
関係を示すグラフ、 第5図は、圧縮方法の一実施例を示す横型圧縮成形機の
断面図である。 1・・・天井プレス   3.4・・・石炭ブロック2
・・・側壁プレス   5・・・横型成形機6・・・成
形機のプレス 第3 [Z! 第4図
Figure 1 is a process diagram of the present invention. Figure 2 is a graph showing the relationship between compressive strength in the direction of the molding axis and the direction perpendicular to the molding axis. Figure 3 shows the presence of permanent strain that occurs when compressed. Figure 4 is a graph showing the relationship between longitudinal displacement and compression force when compression molding is performed on a coal block that has been compressed in advance to leave a permanent strain. Figure 5 is a graph showing one implementation of the compression method. It is a sectional view of a horizontal compression molding machine showing an example. 1...Ceiling press 3.4...Coal block 2
... Side wall press 5 ... Horizontal molding machine 6 ... Press No. 3 of the molding machine [Z! Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1、粉炭を金型内に装入して圧縮成形した石炭ブロック
を圧力解放した後、さらに圧縮することにより該石炭ブ
ロックに永久歪を生ぜしめることを特徴とする高弾性石
炭ブロックの製造方法。
1. A method for producing a highly elastic coal block, which comprises charging powdered coal into a mold and compression-molding the coal block, releasing the pressure, and then further compressing the coal block to cause permanent deformation in the coal block.
JP26744886A 1986-11-12 1986-11-12 Production of highly elastic coal block Pending JPS63122784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26744886A JPS63122784A (en) 1986-11-12 1986-11-12 Production of highly elastic coal block

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26744886A JPS63122784A (en) 1986-11-12 1986-11-12 Production of highly elastic coal block

Publications (1)

Publication Number Publication Date
JPS63122784A true JPS63122784A (en) 1988-05-26

Family

ID=17444984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26744886A Pending JPS63122784A (en) 1986-11-12 1986-11-12 Production of highly elastic coal block

Country Status (1)

Country Link
JP (1) JPS63122784A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60197790A (en) * 1984-03-19 1985-10-07 Kawasaki Heavy Ind Ltd Preparation of compression formed coal block for coke oven and equipment therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60197790A (en) * 1984-03-19 1985-10-07 Kawasaki Heavy Ind Ltd Preparation of compression formed coal block for coke oven and equipment therefor

Similar Documents

Publication Publication Date Title
US2386604A (en) Method of molding under pressure metallic powders
JPH0443961B2 (en)
US1510745A (en) Briquette and method of making same
US4666389A (en) Apparatus for forming compacts from solid particles
KR20200036847A (en) Method for obtaining compact material and compact material obtained thereby
AU599040B2 (en) Method and apparatus for forming shaped pieces of insulation
JPS63122784A (en) Production of highly elastic coal block
JP2006104528A (en) Solidified material of steelmaking dust, and manufacturing method therefor
Crawford et al. Cold compaction of polymeric powders
US3671618A (en) Method for dry pressing ceramic tile
JP4704061B2 (en) Solidified product of steelmaking dust and method for producing the same
SU1726128A1 (en) Method of powder compaction into shapes
JP2003305593A (en) Method for producing powder molding
RU2291030C1 (en) Consumable electrode semi-continuous pressing method and die for perfoming the same
JP3521088B2 (en) Molding method of metal powder for powder metallurgy
CN215241555U (en) Automatic moulding cold isostatic compaction mould
Timokhova Design specifics of quasi-isostatic molds
JP2642195B2 (en) Manufacturing method of compacts from sewage sludge incineration ash
RU2307179C2 (en) Charge material briquetting method
SU1595630A1 (en) Method of producing articles from chip waste
US3577509A (en) Prevention of slumping in the manufacture of a tar bonded refractory
JPS5949287A (en) Method and apparatus for continuous compression molding of coking coal
JPS6386803A (en) Production of tungsten green compact and sintered body
JPS6318006A (en) Production of sintered parts
RU2011473C1 (en) Method of producing composite powder materials with ceramic additives