JPS6312231B2 - - Google Patents

Info

Publication number
JPS6312231B2
JPS6312231B2 JP6242283A JP6242283A JPS6312231B2 JP S6312231 B2 JPS6312231 B2 JP S6312231B2 JP 6242283 A JP6242283 A JP 6242283A JP 6242283 A JP6242283 A JP 6242283A JP S6312231 B2 JPS6312231 B2 JP S6312231B2
Authority
JP
Japan
Prior art keywords
temperature
heat
absorber
hot water
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6242283A
Other languages
Japanese (ja)
Other versions
JPS59189261A (en
Inventor
Isao Takeshita
Nobuhiko Wakamatsu
Tsutomu Harada
Yoshiaki Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6242283A priority Critical patent/JPS59189261A/en
Publication of JPS59189261A publication Critical patent/JPS59189261A/en
Publication of JPS6312231B2 publication Critical patent/JPS6312231B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は吸収式ヒートポンプの原理による熱利
用機器に関するもので特に給湯機能を有する機器
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a heat utilization device based on the principle of an absorption heat pump, and particularly to a device having a hot water supply function.

従来例の構成とその問題点 まず第1図により吸収式ヒートポンプの原理を
説明する。1は発生器で、バーナ2でガスなどを
燃焼せしめて加熱を行うと冷媒を吸収液に吸収さ
せた溶液3から冷媒蒸気が発生し、配管4を経て
被暖房空間5に設けられた凝縮器6において凝縮
し、凝縮熱はフアン7によつて作られた風によつ
て室内空気を暖めるのに供せられる。ここで凝縮
した液化冷媒は、配管8を経て、被暖房空間5の
外に出、減圧弁9を経て戸外に設けられた蒸発器
10に送られる。蒸発温度をTeとし、外気温度
をTamとすれば、Te<Tamならば外気から熱を
うばつて蒸発器10内で冷媒は蒸発する。
Configuration of conventional example and its problems First, the principle of an absorption heat pump will be explained with reference to FIG. 1 is a generator, and when heating is performed by burning gas etc. with a burner 2, refrigerant vapor is generated from a solution 3 in which the refrigerant is absorbed into an absorption liquid, and the refrigerant vapor is passed through a pipe 4 to a condenser provided in a heated space 5. 6, and the heat of condensation is used by the wind generated by the fan 7 to warm the indoor air. The liquefied refrigerant condensed here goes out of the space to be heated 5 through a pipe 8, and is sent through a pressure reducing valve 9 to an evaporator 10 provided outdoors. If the evaporation temperature is Te and the outside air temperature is Tam, then if Te<Tam, the refrigerant evaporates in the evaporator 10 by extracting heat from the outside air.

蒸発器10は外気との熱交換をよくするよう
に、フアン11により強制的に蒸発器10に空気
が送られる。
Air is forcibly sent to the evaporator 10 by a fan 11 so as to improve heat exchange with the outside air.

蒸発した冷媒蒸気は配管12を経て吸収器13
に流入する。一方吸収器13には発生器1におい
て冷媒蒸気を放出し、冷媒含有量の減少した高温
の希溶液が、配管14を経て熱交換器15を通
り、後述の濃溶液と熱交換することにより、温度
を下げて流量調整弁16を通り、吸収器13内に
注がれる。
The evaporated refrigerant vapor passes through the pipe 12 to the absorber 13
flows into. On the other hand, refrigerant vapor is released in the generator 1 to the absorber 13, and the high-temperature dilute solution with reduced refrigerant content passes through the pipe 14 and the heat exchanger 15, and exchanges heat with the concentrated solution described below. The temperature is lowered and the water passes through the flow rate regulating valve 16 and is poured into the absorber 13.

又吸収器13内には冷却水管17があり、溶液
を冷却することができる。吸収器13に注がれた
希溶液は冷媒蒸気を吸収し、溶液は濃溶液となる
が、この際多量の吸収熱を発生する。この吸収熱
は冷却水管17中を流れる水に奪われる。すなわ
ち水は加熱されて吸収器13を出る。この温水は
配管18を通つて被暖房空間5内に設けた放熱器
19に送られ、フアン20によつて作られた風に
よつて熱を室内空気に与え、水は冷却された配管
21、水ポンプ22を経て吸収器13にもどつて
くる。
A cooling water pipe 17 is also provided in the absorber 13 to cool the solution. The dilute solution poured into the absorber 13 absorbs the refrigerant vapor and becomes a concentrated solution, but at this time a large amount of absorbed heat is generated. This absorbed heat is taken away by the water flowing through the cooling water pipe 17. That is, the water leaves the absorber 13 heated. This hot water is sent to a radiator 19 provided in the heated space 5 through a pipe 18, and heat is given to the indoor air by the wind generated by a fan 20, and the water is cooled by a pipe 21, It returns to the absorber 13 via the water pump 22.

一方、吸収器の中で冷媒蒸気を吸収し、冷却水
で冷却された濃溶液は配管23を通り、溶液ポン
プ24で加圧され、熱交換器15で高温の希溶液
と熱交換することにより温められ発生器1内に送
りこまれサイクルが完結する。
On the other hand, the concentrated solution that absorbs refrigerant vapor in the absorber and is cooled with cooling water passes through the pipe 23, is pressurized by the solution pump 24, and is heat exchanged with the high-temperature dilute solution in the heat exchanger 15. It is heated and fed into the generator 1 to complete the cycle.

以上の説明から明らかなごとく、吸収式ヒート
ポンプにおいては発生器1においてバーナ2によ
り与えられた熱以外に蒸発器10において外気か
ら与えられた熱が、凝縮器6および熱交換器19
において被暖房空間5内の空気に移し与えられる
ことになるから、暖房出力はこの両者の和であ
り、有償の熱入力はバーナ2の熱入力のみである
から、成績係数すなわち暖房出力を加撚入力で割
つた値は1より大となり、省エネルギー機器とし
て今日非常に注目されている。
As is clear from the above explanation, in the absorption heat pump, in addition to the heat given by the burner 2 in the generator 1, the heat given from the outside air in the evaporator 10 is transferred to the condenser 6 and the heat exchanger 19.
Since the heating output is the sum of these two, and the only paid heat input is the heat input of the burner 2, the coefficient of performance, that is, the heating output, is The value divided by the input is greater than 1, and it is attracting a lot of attention today as an energy-saving device.

この吸収式ヒートポンプ装置の熱出力は凝縮器
における凝縮熱と、吸収器における吸収熱の二種
類が存在し、それらは熱エネルギーにかわりはな
いが、えられる温度が異るばかりでなく、凝縮熱
はある一定の温度で発生するのに対し吸収熱はあ
る温度の幅にわたつて発生するということが本質
的に異つており、その違いをよく考えて発生する
熱を利用しなければ、全体の性能を低下させ有効
な熱利用がはかれない。
There are two types of heat output of this absorption heat pump device: heat of condensation in the condenser and heat of absorption in the absorber. Although they are the same thermal energy, not only the temperature obtained is different, but also the heat of condensation The essential difference is that absorption heat is generated at a certain temperature, while absorbed heat is generated over a certain temperature range.If we do not carefully consider this difference and utilize the generated heat, the overall Performance is degraded and effective heat utilization cannot be achieved.

さらに詳しく説明すると、吸収式ヒートポンプ
の成績係数は凝縮温度が低い程改善されるが、発
生する熱を利用する立場から言えばあまり低い温
度の熱は役に立たない。具体的な数字をあげれば
凝縮温度は45℃位がよい値で、50℃は最高限界と
考えてよいであろう。したがつてこれを用いて水
などを加熱すれば、たかだかえられる水温は45℃
位と考えられる。この熱を直接部屋の暖房などに
使う場合は、必要な室温が20〜25℃とこの熱源温
度よりかなり低いから、凝縮温度45〜50℃は十分
利用しうる熱源であるが、これを給湯に用いると
すれば、えられる水温が40〜45℃では低すぎる温
度である。また、この温水を用いて暖房を行うと
暖房かえり温水温度は室温から考えて30〜35℃が
限度であり、温度差が小であるが、発生する熱量
は全熱量の40%程度を占めている。
To explain in more detail, the coefficient of performance of an absorption heat pump improves as the condensation temperature decreases, but from the perspective of utilizing the generated heat, heat at a very low temperature is not useful. To give specific numbers, a good condensing temperature is around 45℃, and 50℃ can be considered the highest limit. Therefore, if you use this to heat water, etc., the temperature of the water you can reach is at most 45℃.
It is considered to be a rank. If this heat is used directly to heat a room, the required room temperature is 20-25℃, which is considerably lower than this heat source temperature, so the condensation temperature of 45-50℃ is a heat source that can be fully used. If it were to be used, the resulting water temperature would be 40-45°C, which is too low. In addition, when this hot water is used for heating, the temperature of the hot water is limited to 30 to 35 degrees Celsius considering the room temperature, and although the temperature difference is small, the amount of heat generated accounts for about 40% of the total amount of heat. There is.

一方、吸収器における吸収熱の発生は、サイク
ルの設定条件によるが、45〜60℃程度の範囲で連
続的に発生するものであり、最低温度が低い方が
吸収式ヒートポンプサイクルの成績係数は向上す
る。従つて吸収器を冷却する液体の入口温度は40
℃以下が必要である。
On the other hand, the generation of absorbed heat in the absorber occurs continuously in the range of 45 to 60℃, depending on the cycle setting conditions, and the lower the minimum temperature, the better the coefficient of performance of the absorption heat pump cycle. do. Therefore, the inlet temperature of the liquid cooling the absorber is 40
℃ or less is required.

出口温度は冷却液の流量によるが、60℃以上が
可能である。又発生する熱量は全発熱量の60%程
度を占める。
The outlet temperature depends on the flow rate of the coolant, but it can be 60℃ or higher. Also, the amount of heat generated accounts for about 60% of the total calorific value.

従来吸収式ヒートポンプにおいては、第2図に
示すごとく、凝縮器も吸収器も液冷却とし、凝縮
器25の冷却管26と吸収器27の冷却管28を
直列に接続し、まず始めに凝縮器で、次に吸収器
で加熱する。このような構成で暖房を行う場合、
各熱での温度上昇の比率はそれぞれの出力熱量の
比になるから、凝縮器に入る暖房かえり温度が35
℃であれば、凝縮器で5℃昇温するとすれば、吸
収器で7.5℃上昇することになり吸収器出口液温
は47.5℃ということになる。
In the conventional absorption heat pump, as shown in Fig. 2, both the condenser and the absorber are liquid cooled, and the cooling pipe 26 of the condenser 25 and the cooling pipe 28 of the absorber 27 are connected in series. Then, it is heated in an absorber. When heating with this configuration,
Since the ratio of temperature rise for each heat is the ratio of each output heat amount, the heating return temperature entering the condenser is 35
℃, if the temperature is raised by 5℃ in the condenser, the temperature will rise by 7.5℃ in the absorber, and the liquid temperature at the absorber outlet will be 47.5℃.

このように吸収器出口液温が低いのは吸収器に
とつて最適な液量はもつと少いのにもかかわらず
低い凝縮温度からの熱をすべて取出すために液循
環量を多くしすぎていることに由来する。なお第
2図において29は発生器、30は蒸発器であ
る。
The reason why the absorber outlet liquid temperature is so low is because the amount of liquid circulated is too high to extract all the heat from the low condensing temperature, even though the optimum amount of liquid for the absorber is small. It comes from being there. In FIG. 2, 29 is a generator, and 30 is an evaporator.

従つて、吸収式ヒートポンプを有効に利用する
ためは、これを暖房に用いる時は、凝縮器は直接
被暖房空間の空気と熱交換させ、吸収器の熱のみ
温水として搬送するのがよい。
Therefore, in order to effectively utilize an absorption heat pump, when using it for heating, it is preferable to have the condenser directly exchange heat with the air in the space to be heated, and only the heat from the absorber is transferred as hot water.

又これを給湯に用いる時には第3図に示すごと
く、凝縮熱と吸収熱を別々の水回路で貯湯槽に貯
える方法が提案されている。すなわち、第3図に
おいて39は発生器であり、バーナ40によつて
加熱された溶液54は冷媒蒸気を発生する。
When using this for hot water supply, a method has been proposed in which condensation heat and absorption heat are stored in a hot water tank using separate water circuits, as shown in FIG. That is, in FIG. 3, 39 is a generator, and the solution 54 heated by the burner 40 generates refrigerant vapor.

今弁55を閉じ、弁56を開けば、冷媒蒸気は
給湯用貯湯槽57内に設けた凝縮器58で凝縮
し、槽内の水を暖める。この槽には配管59を経
て、市水が供給されている。なお、52も室内凝
縮器である。
If the valve 55 is now closed and the valve 56 is opened, the refrigerant vapor is condensed in the condenser 58 provided in the hot water storage tank 57 and warms the water in the tank. City water is supplied to this tank via piping 59. Note that 52 is also an indoor condenser.

凝縮した冷媒は膨張弁60を経て蒸発器61で
蒸発し、吸収器41に流入する。
The condensed refrigerant passes through the expansion valve 60, evaporates in the evaporator 61, and flows into the absorber 41.

一方、発生器39で冷媒を放出しうすくなつた
溶液が、弁42を経て吸収器41に流入し、蒸発
器61で蒸発した冷媒蒸気を吸収し濃溶液とな
り、溶液ポンプ43によつて発生器39に送り帰
される。
On the other hand, the dilute solution that has released the refrigerant in the generator 39 flows into the absorber 41 through the valve 42, absorbs the evaporated refrigerant vapor in the evaporator 61, becomes a concentrated solution, and is pumped into the generator by the solution pump 43. Sent back to 39th.

吸収器41ではこのように冷媒蒸気が溶剤に吸
収されるので、多量の熱が発生する。この熱は冷
却管44を還流する液体によつて選び出される。
すなわち液ポンプ45によつて送りこまれた冷却
液は加熱され、60℃近い温度になつて吸収器を出
る。この液体は配管46を介して第2の貯湯槽4
7の上部に流入し、底部の低温の液体が吸収器4
1に帰される。
In the absorber 41, since the refrigerant vapor is absorbed by the solvent in this way, a large amount of heat is generated. This heat is picked out by the liquid flowing back through cooling tube 44.
That is, the coolant pumped by the liquid pump 45 is heated and leaves the absorber at a temperature close to 60°C. This liquid is transferred to the second hot water storage tank 4 via piping 46.
7, and the low temperature liquid at the bottom flows into the absorber 4.
It is attributed to 1.

一方第1の貯湯槽57には40℃近く加熱された
清浄な水が貯えられているから、第2の貯湯槽4
7に設けた熱交換器51を経て貯湯槽57の水を
取り出すことにより、40℃の水は加らに加熱さ
れ、ほぼ給湯に適する温水として、給湯取出口5
3から供給することができる。このように吸収式
ヒートポンプの熱出力は凝縮器と吸収器の2ケ所
あり、凝縮器は低い温度で冷却されることは問題
はないが、えられる温度はたかだか40℃程度であ
り、一方吸収熱は60℃程度であるが、吸収器に帰
す水温があまり低いことは蒸発温度を下げすぎて
よくない点に鑑み、凝縮器と熱交換する第1の貯
液槽と、吸収器の冷却液を蓄え前記第1の貯湯槽
からの湯と熱交換する熱交換器を有する第2の貯
湯槽を設けることにより、吸収式ヒートポンプの
特性を生かしてその熱出力をもつとも有効に利用
しうる。
On the other hand, since the first hot water storage tank 57 stores clean water heated to nearly 40°C, the second hot water storage tank 4
By taking out the water from the hot water storage tank 57 through the heat exchanger 51 provided at the hot water supply outlet 5, the 40°C water is further heated, and is turned into hot water almost suitable for hot water supply at the hot water supply outlet 5.
It can be supplied from 3. In this way, the heat output of an absorption heat pump comes from two places: the condenser and the absorber, and while there is no problem with the condenser being cooled at a low temperature, the temperature that can be obtained is at most about 40℃; The temperature is about 60℃, but considering that it is not good if the water temperature returned to the absorber is too low because it lowers the evaporation temperature too much, the first liquid storage tank that exchanges heat with the condenser and the coolant of the absorber are By providing a second hot water storage tank having a heat exchanger that exchanges heat with hot water from the first hot water storage tank, the characteristics of an absorption heat pump can be utilized to effectively utilize its heat output.

この方法で問題になることは、給湯用の供給水
の温度は季節によつて大幅に変ることである。
A problem with this method is that the temperature of the water supplied for hot water supply varies significantly depending on the season.

すなわち、夏季には水道水の温度は30℃近くな
るが冬季では0℃近くまで下ることもある。
In other words, the temperature of tap water can reach nearly 30°C in the summer, but it can drop to nearly 0°C in the winter.

従つて凝縮熱を蓄熱する第1の貯湯槽が40℃に
達するまでに投入されるべき熱量は、供給水温が
0℃の時と30℃の時では4倍も違つてくる。その
ため、もし上記第一の貯湯槽が40℃に達するまで
運転を常に行うものとすると、供給水温の高い時
は第2の貯湯槽は上層部が暖まるだけで下層部ま
で昇温しないで停止する。逆に供給水温の低い時
は運転時間が長くなり、第2の貯湯槽の水温は全
体に吸収器出口水温となり、吸収器が冷却されな
くなり、サイクルの運転上支障を来すことにな
る。
Therefore, the amount of heat that must be input until the first hot water storage tank, which stores the heat of condensation, reaches 40°C is four times different when the supplied water temperature is 0°C than when it is 30°C. Therefore, if the above-mentioned first hot water storage tank is always operated until it reaches 40℃, when the supply water temperature is high, the second hot water storage tank will only warm up the upper layer and will stop without raising the temperature to the lower layer. . On the other hand, when the supply water temperature is low, the operation time becomes longer, and the water temperature in the second hot water storage tank becomes the absorber outlet water temperature as a whole, which prevents the absorber from being cooled and causes problems in the operation of the cycle.

発明の目的 本発明の目的は2槽式の貯湯槽を設けた吸収式
ヒートポンプ給湯暖房機の沸上り状態を判断し、
運転を自動的に停止せしめる合理的装置を与える
ものである。
Purpose of the invention The purpose of the present invention is to determine the boiling state of an absorption heat pump hot water heater equipped with a two-tank hot water storage tank,
This provides a rational device for automatically stopping operation.

発明の構成 本発明は凝縮熱によつて暖められる第1の貯液
槽および吸収熱によつて暖められる第2の貯液槽
とのそれぞれから、凝縮器および吸収器へ還流す
る液の温度を貯液槽底部もしくは貯液槽とそれぞ
れの冷却水入口間の管路において検知し、それぞ
れに対してあらかじめ定められた温度に、いづれ
か一方が到達した時点でヒートポンプ装置の運転
を停止するものである。
Structure of the Invention The present invention provides for adjusting the temperature of the liquid flowing back to the condenser and absorber from a first liquid storage tank heated by condensation heat and a second liquid storage tank heated by absorption heat, respectively. It is detected at the bottom of the liquid storage tank or in the pipes between the liquid storage tank and each cooling water inlet, and the operation of the heat pump device is stopped when one of them reaches a predetermined temperature for each. .

この場合、吸収熱により得られる水温は凝縮熱
により得られる水温より高くすることが可能であ
り、そのような使い方が吸収式の特長を生かした
ものであるから、上記それぞれの設定温度のうち
凝縮熱に対する設定温度を吸収熱のそれより低く
するのがよい。
In this case, the water temperature obtained by absorption heat can be made higher than the water temperature obtained by condensation heat, and since such usage takes advantage of the features of the absorption type, it is possible to make the water temperature obtained by condensation heat higher than the water temperature obtained by condensation heat. It is better to set the temperature for heat lower than that for absorbed heat.

実施例の説明 本発明の一実施例である吸収式ヒートポンプ給
湯暖房機の構成を示す第4図に従つて説明する。
第4図はその基本的な構成において第3図とほと
んど変らないので同一構成要素には同一番号を付
す。第3図の場合、第1の貯湯槽57の下部に凝
縮器58が設けてあつたが、本実施例では、2重
管凝縮器38を別に設け、水ポンプ33によつて
第1の貯湯槽57下部の水を上記2重管凝縮器に
送り、凝縮熱によりあたゝめて同槽の上部に帰す
ようにした。温度検出器36,37を第2の貯湯
槽47および第1の貯湯槽57の底部から、それ
ぞれ吸収器および凝縮器へ達する配管の途中に設
け、それぞれの供給水温を測定している。これを
温度測定器および基準温度との比較器35におい
て比較し、そのいづれかがそれぞれの基準温度を
越えた時には電源回路に入れた、電磁開閉器34
を断にし、溶液ポンプ43などの運転やバーナー
40の燃焼を停止し、全系を停止状態とするよう
になつている。
DESCRIPTION OF EMBODIMENTS The structure of an absorption heat pump hot water heater which is an embodiment of the present invention will be described with reference to FIG. 4.
Since the basic configuration of FIG. 4 is almost the same as that of FIG. 3, the same components are given the same numbers. In the case of FIG. 3, a condenser 58 is provided at the bottom of the first hot water storage tank 57, but in this embodiment, a double pipe condenser 38 is provided separately, and the water pump 33 is used to control the first hot water storage tank 57. The water in the lower part of the tank 57 was sent to the double pipe condenser, warmed by the heat of condensation, and returned to the upper part of the tank. Temperature detectors 36 and 37 are provided in the middle of piping from the bottoms of the second hot water storage tank 47 and the first hot water storage tank 57 to the absorber and the condenser, respectively, to measure the respective supplied water temperatures. This is compared with a temperature measuring device and a reference temperature in a comparator 35, and when either of them exceeds the respective reference temperature, an electromagnetic switch 34 is connected to the power supply circuit.
The operation of the solution pump 43 and the like and the combustion of the burner 40 are stopped to bring the entire system into a stopped state.

なお、本実施例では温度検出器を、貯湯タンク
から水を取出す配管中に設けてあるが、貯湯タン
ク下部に設けてもよい。実際の設定温度としては
例えば、凝縮器入口水温35℃、吸収器入口水温50
℃位にとるのがよい。又第1の貯湯槽と第2の貯
湯槽の容積としてはほゞ同じにするか、第2の貯
湯槽を少し大容量に、例えば4:6位にするのが
よい。
In this embodiment, the temperature detector is provided in the pipe that takes out water from the hot water storage tank, but it may also be provided at the bottom of the hot water storage tank. The actual set temperatures are, for example, condenser inlet water temperature 35℃, absorber inlet water temperature 50℃.
It is best to keep it at around ℃. Also, it is preferable that the volumes of the first hot water storage tank and the second hot water storage tank be approximately the same, or that the second hot water storage tank should have a slightly larger capacity, for example, at a ratio of 4:6.

凝縮熱と吸収熱の発生の比率は、ほぼ4:6程
度であるが、外気条件などによつて変化する。又
たとえ一定であつても、第1の貯湯槽57に供給
される水温は季節によつて大きく異なる。
The ratio of generation of condensation heat to absorption heat is approximately 4:6, but varies depending on outside air conditions. Furthermore, even if the temperature is constant, the temperature of the water supplied to the first hot water tank 57 varies greatly depending on the season.

一方装置を停止する必要があるのは、凝縮器の
冷却水温が上りすぎて、発生冷媒蒸気圧が上りす
ぎた場合と、吸収器の冷却水温が上りすぎて、蒸
発器における冷媒蒸発圧が上りすぎた場合であ
る。
On the other hand, it is necessary to stop the equipment when the cooling water temperature in the condenser rises too much and the generated refrigerant vapor pressure rises too much, or when the cooling water temperature in the absorber rises too much and the refrigerant evaporation pressure in the evaporator rises. This is a case of too much.

今例えば凝縮器冷却水温度が35℃に達するまで
運転するとすると、第4図の構成の場合、第2の
貯湯槽から熱をうばうのは第1の貯湯槽の35℃の
水であるから、使い切つた状態で、第2の貯湯槽
の水温は40℃位であろう。吸収器冷却水の出口温
度を55℃とすればその温度差は15℃である。
For example, if the condenser is operated until the cooling water temperature reaches 35°C, in the configuration shown in Figure 4, it is the 35°C water in the first hot water storage tank that takes heat from the second hot water storage tank. When the water is completely used up, the water temperature in the second hot water tank will be around 40℃. If the outlet temperature of the absorber cooling water is 55°C, the temperature difference is 15°C.

一方第1の槽に供給される水の温度が20℃であ
れば、35℃まで加熱するとして温度差は15℃であ
り、両槽に貯えられる熱量はほゞバランスしてい
ると考えられる。しかし、水温がこれより低い
と、第1の貯湯槽の蓄熱容量が増大する。第2の
貯湯槽内で水はほゞ成層しているとすると55℃の
水温の部分が槽内を次第に下降し、遂に全体が55
℃になると、吸収器はやがて55℃で冷却されるこ
とになり、蒸発圧が急速に上昇するが、第一の貯
湯槽はまだ設定温度に達せず、なおも運転は継続
することになる。
On the other hand, if the temperature of the water supplied to the first tank is 20°C, and the water is heated to 35°C, the temperature difference is 15°C, and the amount of heat stored in both tanks is considered to be approximately balanced. However, when the water temperature is lower than this, the heat storage capacity of the first hot water storage tank increases. Assuming that the water in the second hot water storage tank is almost stratified, the part of the water with a temperature of 55°C gradually descends in the tank until the entire water reaches 55°C.
℃, the absorber will eventually be cooled to 55℃ and the evaporation pressure will rise rapidly, but the first hot water storage tank will not reach the set temperature yet and will continue to operate.

これでは吸収器の方は冷却水温が上りすぎて不
都合である。従つて運転を継続させるためには、
吸収器で発生した熱の一部を捨て吸収器冷却水温
がもとの温度になるようにしなければならない。
This is inconvenient because the temperature of the cooling water in the absorber rises too much. Therefore, in order to continue operation,
A portion of the heat generated in the absorber must be discarded so that the absorber cooling water temperature returns to its original temperature.

逆に吸収器の冷却水温度が、例えば50℃になれ
ば装置を停止するようにした場合、供給水温が25
℃と高いと、停止の信号が出る前に、第一の貯湯
槽の温度は35℃を越え、発生器冷媒蒸気圧は異常
に高くなる危険がある。
Conversely, if the equipment is set to stop when the absorber cooling water temperature reaches, say, 50°C, then the supply water temperature is 25°C.
If the temperature is as high as 35°C, the temperature of the first hot water tank will exceed 35°C before the stop signal is issued, and there is a danger that the vapor pressure of the generator refrigerant will become abnormally high.

本発明の方法によれば、いづれかの貯湯槽が温
度的に一杯になると、自動的に運転が停止するの
で、無駄や危険が全くなくなる。
According to the method of the present invention, when any of the hot water storage tanks becomes thermally full, the operation is automatically stopped, thereby eliminating any waste or danger.

又例えば水温の低い時に、第2の貯湯槽が温度
的に一杯になつて運転が停止すると、第1の貯湯
槽は設定温度より低い状態で止つているので、次
に湯を取出して使つた時、第2の貯湯槽内の水温
は、前回より低くなる。従つて再度運転した場
合、第2の貯湯槽の温度が設定温度に達するまで
に投入される熱量は前回より増大しているため、
再び第2の貯湯槽が温度的に一杯になつて停止し
た時の第1の貯湯槽の状態は前回停止時より、よ
り温度的に一杯に近い状態になつている。このよ
うに本発明の制御方法をとることにより、2つの
貯湯槽間のバランスが何度か繰返している内にと
れて来て、供給水温の低い時、すなわち気温も低
い時は、吸収器冷却水入口温度は適当に低い所で
バランスするが、これは蒸発圧力を適当に低くす
る効果があり、低い外気温での冷媒の蒸発を容易
ならしめるという効果がある。
For example, when the water temperature is low, if the second hot water storage tank becomes full and the operation stops, the first hot water storage tank remains at a temperature lower than the set temperature, so the next hot water is taken out and used. At this time, the water temperature in the second hot water storage tank becomes lower than the previous time. Therefore, when the operation is restarted, the amount of heat input until the temperature of the second hot water storage tank reaches the set temperature will have increased compared to the previous time.
When the second hot water storage tank becomes full again in terms of temperature and is stopped, the state of the first hot water storage tank is closer to being full in terms of temperature than when it was stopped last time. By using the control method of the present invention as described above, the balance between the two hot water tanks can be achieved after several repetitions, and when the supply water temperature is low, that is, when the air temperature is also low, the absorber cooling The water inlet temperature is balanced at an appropriately low point, which has the effect of appropriately lowering the evaporation pressure and facilitating the evaporation of the refrigerant at low outside temperatures.

発明の効果 以上詳述したごとく、凝縮熱と吸収熱をそれぞ
れ独立したループで貯湯槽に蓄え、熱の取出しは
2つの槽を熱的に直列に結んで取り出す場合、そ
れぞれの槽から、凝縮器又は吸収器へ結ぶ冷却水
の流れの温度のいづれか一方がそれぞれに対し、
あらかじめ与えられた温度を越える時、装置全体
の運転を停止するという制御方式をとることによ
り、折角の熱の一部を捨てたりする必要もなく、
数回の繰り返しで、次第に2つの槽に蓄えられる
熱エネルギーのバランスがとれ、水温の低い時に
は蒸発圧力すなわち蒸発温度も低下して、より低
温までヒートポンプ機能を損わないというすぐれ
た効果がある。
Effects of the Invention As detailed above, when condensation heat and absorption heat are stored in a hot water tank in separate loops, and heat is taken out by connecting two tanks thermally in series, the heat is extracted from each tank by a condenser. or the temperature of the cooling water flow connected to the absorber.
By using a control method that stops the operation of the entire device when the temperature exceeds a predetermined temperature, there is no need to waste part of the heat.
By repeating this process several times, the thermal energy stored in the two tanks gradually becomes balanced, and when the water temperature is low, the evaporation pressure, or evaporation temperature, also decreases, which has the excellent effect of not impairing the heat pump function even at lower temperatures.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は吸収式ヒートポンプ装置の原理説明
図、第2図は凝縮器と吸収器の冷却水管を直列と
した従来の一実施例の吸収式暖房給湯器、第3図
は本発明の前提となる2つの貯湯槽をもつ吸収式
ヒートポンプ給湯暖房機の構成図、第4図は本発
明の一実施例の吸収式ヒートポンプ暖房給湯機の
構成図である。 33……水ポンプ、34……電磁開閉器、35
……温度測定器、36,37……温度検出器、3
8……水冷凝縮器、39……発生器、52……空
冷凝縮器、41……吸収器、58……水冷凝縮
器、57……凝縮熱用貯湯槽、47……吸収熱用
貯湯槽、51……熱交換器、59……給水管、5
3……給湯水栓。
Fig. 1 is an explanatory diagram of the principle of an absorption heat pump device, Fig. 2 is an example of a conventional absorption heating water heater in which the condenser and absorber cooling water pipes are connected in series, and Fig. 3 is the premise of the present invention. Fig. 4 is a block diagram of an absorption heat pump water heater according to an embodiment of the present invention. 33... Water pump, 34... Electromagnetic switch, 35
... Temperature measuring device, 36, 37 ... Temperature detector, 3
8...Water-cooled condenser, 39...Generator, 52...Air-cooled condenser, 41...Absorber, 58...Water-cooled condenser, 57...Hot water storage tank for condensed heat, 47...Hot water storage tank for absorbed heat , 51... Heat exchanger, 59... Water supply pipe, 5
3...Hot water faucet.

Claims (1)

【特許請求の範囲】 1 少くとも発生器、液体冷却の凝縮器、蒸発器
および液体冷却の吸収器により吸収式ヒートポン
プサイクルを形成し、2種類の貯液槽を設け、第
1の貯液槽は前記凝縮器を冷却する液体を貯溜す
ることにより蓄熱を行い、第2貯液槽は前記吸収
器を冷却する液体を貯溜することにより、それぞ
れの熱出力を別々に蓄熱する構成とし、前記それ
ぞれの貯液槽から、凝縮器又は吸収器へ還流する
液温の少くとも一方が、それぞれに対しあらかじ
め定められた温度以上になつた時、装置の運転を
停止せしめる制御機能を有する吸収式ヒートポン
プ給湯暖房機。 2 運転停止を行わしめる吸収器液温の設定温度
を凝縮器液温の設定温度より高くすることを特徴
とする特許請求の範囲第1項記載の吸収式ヒート
ポンプ給湯暖房機。
[Claims] 1. An absorption heat pump cycle is formed by at least a generator, a liquid-cooled condenser, an evaporator, and a liquid-cooled absorber, and two types of liquid storage tanks are provided, and a first liquid storage tank is provided with two types of liquid storage tanks. is configured to store heat by storing a liquid that cools the condenser, and a second liquid storage tank stores a liquid that cools the absorber, thereby storing the heat output of each separately. Absorption heat pump hot water supply system that has a control function that stops the operation of the device when at least one of the liquid temperatures flowing back from the liquid storage tank to the condenser or absorber exceeds a predetermined temperature for each. heater. 2. The absorption heat pump hot water supply/heater according to claim 1, wherein the set temperature of the absorber liquid temperature at which the operation is stopped is set higher than the set temperature of the condenser liquid temperature.
JP6242283A 1983-04-08 1983-04-08 Absorption type heat pump hot-water supply heating machine Granted JPS59189261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6242283A JPS59189261A (en) 1983-04-08 1983-04-08 Absorption type heat pump hot-water supply heating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6242283A JPS59189261A (en) 1983-04-08 1983-04-08 Absorption type heat pump hot-water supply heating machine

Publications (2)

Publication Number Publication Date
JPS59189261A JPS59189261A (en) 1984-10-26
JPS6312231B2 true JPS6312231B2 (en) 1988-03-17

Family

ID=13199696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6242283A Granted JPS59189261A (en) 1983-04-08 1983-04-08 Absorption type heat pump hot-water supply heating machine

Country Status (1)

Country Link
JP (1) JPS59189261A (en)

Also Published As

Publication number Publication date
JPS59189261A (en) 1984-10-26

Similar Documents

Publication Publication Date Title
US4007776A (en) Heating and cooling system utilizing solar energy
US4238933A (en) Energy conserving vapor compression air conditioning system
EA011442B1 (en) Boiler condensation module
CN205037563U (en) Novel air source heat pump under low -temperature environment
JP2011237138A (en) Absorption air conditioning hot water supply system
JPS6312231B2 (en)
JPS6343662B2 (en)
KR100512827B1 (en) Absorption type refrigerator
JPS6217147B2 (en)
JPH0340307B2 (en)
CA1126115A (en) Phase-change heat transfer system
JP3207272B2 (en) Exhaust heat recovery system
JPS5828508B2 (en) Absorption cold/hot water supply device
JPH07139847A (en) High/low temperature heat pump system
CN206704505U (en) A kind of stable refrigerating plant of ship multifunctional energy-conservation
JP2779422B2 (en) Absorption chiller / heater
JPH11257778A (en) Absorption type cold heat generator
JPS6135900Y2 (en)
JPH0471142B2 (en)
JP3027650B2 (en) Absorption type cold / hot water unit
JP3488953B2 (en) Absorption type simultaneous cooling / heating water supply type heat pump
JPS6330946Y2 (en)
JPH07120015A (en) Heat storage cooling/heating apparatus utilizing nighttime power
JPS6115346B2 (en)
JPS6024894B2 (en) Absorption heat pump device