JPH0340307B2 - - Google Patents
Info
- Publication number
- JPH0340307B2 JPH0340307B2 JP57060004A JP6000482A JPH0340307B2 JP H0340307 B2 JPH0340307 B2 JP H0340307B2 JP 57060004 A JP57060004 A JP 57060004A JP 6000482 A JP6000482 A JP 6000482A JP H0340307 B2 JPH0340307 B2 JP H0340307B2
- Authority
- JP
- Japan
- Prior art keywords
- heat
- liquid
- temperature
- absorber
- storage tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 61
- 239000006096 absorbing agent Substances 0.000 claims description 35
- 239000007788 liquid Substances 0.000 claims description 34
- 238000010521 absorption reaction Methods 0.000 claims description 21
- 238000001816 cooling Methods 0.000 claims description 6
- 239000000110 cooling liquid Substances 0.000 claims description 2
- 238000005338 heat storage Methods 0.000 claims 1
- 239000003507 refrigerant Substances 0.000 description 17
- 238000010438 heat treatment Methods 0.000 description 14
- 238000009833 condensation Methods 0.000 description 9
- 230000005494 condensation Effects 0.000 description 9
- 239000002826 coolant Substances 0.000 description 3
- 239000000498 cooling water Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000007710 freezing Methods 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Description
【発明の詳細な説明】
本発明は吸収式ヒートポンプ装置の熱出力を有
効に利用する方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of effectively utilizing the thermal output of an absorption heat pump device.
まず第1図により吸収式ヒートポンプの原理を
説明する。1は発生器でバーナ2でガスなどを燃
焼せしめて加熱を行うと、冷媒を吸収液に吸収さ
せた溶液3から冷媒蒸気が発生し、配管4を経て
被暖房空間5に設けられた凝縮器6において凝縮
し、凝縮熱はフアン7によつて作られた風によつ
て室内空気を暖めるのに供せられる。ここで凝縮
した液化冷媒は、配管8を経て、被暖房空間5の
外に出、減圧弁9を経て戸外に設けられた蒸発器
10に送られる。蒸発温度をTeとし、外気温度
をTamとすれば、Te<Tamならば外気から熱を
うばつて蒸発器10内で冷媒は蒸発する。 First, the principle of an absorption heat pump will be explained with reference to FIG. 1 is a generator, and when heating is performed by burning gas etc. with a burner 2, refrigerant vapor is generated from a solution 3 in which the refrigerant is absorbed into an absorption liquid, and the refrigerant vapor is passed through a pipe 4 to a condenser provided in a heated space 5. 6, and the heat of condensation is used by the wind generated by the fan 7 to warm the indoor air. The liquefied refrigerant condensed here goes out of the space to be heated 5 through a pipe 8, and is sent through a pressure reducing valve 9 to an evaporator 10 provided outdoors. If the evaporation temperature is Te and the outside air temperature is Tam, then if Te<Tam, the refrigerant evaporates in the evaporator 10 by extracting heat from the outside air.
蒸発器10は外気との熱交換をよくするよう
に、フアン11により強制的に蒸発器10に空気
が送られる。 Air is forcibly sent to the evaporator 10 by a fan 11 so as to improve heat exchange with the outside air.
蒸発した冷媒蒸気は配管12を経て吸収器13
に流入する。一方吸収器13には発生器1におい
て冷媒蒸気を放出し、冷媒含有量の減少した高温
の希溶液が、配管14を経て熱交換器15を通
り、後述の濃溶液と熱交換することにより、温度
を下げて流量調整弁16を通り、吸収器13内に
注がれる。 The evaporated refrigerant vapor passes through the pipe 12 to the absorber 13
flows into. On the other hand, refrigerant vapor is released in the generator 1 to the absorber 13, and the high-temperature dilute solution with reduced refrigerant content passes through the pipe 14 and the heat exchanger 15, and exchanges heat with the concentrated solution described below. The temperature is lowered and the water passes through the flow rate regulating valve 16 and is poured into the absorber 13.
又吸収器13内には冷却水管17があり、溶液
を冷却することができる。吸収器13に注がれた
希溶液は冷媒蒸気を吸収し、溶液は濃溶液となる
が、この際多量の吸収熱を発生する。この吸収熱
は冷却水管17中を流れる水に奪れる。すなわち
水は加熱されて吸収器13を出る。この温水は配
管18を通つて被暖房空間5内に設けた放熱器1
9に送られ、フアン20によつて作られた風によ
つて熱を室内空気に与え、水は冷却された配管2
1、水ポンプ22を経て吸収器13にどつてく
る。 A cooling water pipe 17 is also provided in the absorber 13 to cool the solution. The dilute solution poured into the absorber 13 absorbs the refrigerant vapor and becomes a concentrated solution, but at this time a large amount of absorbed heat is generated. This absorbed heat is taken away by the water flowing through the cooling water pipe 17. That is, the water leaves the absorber 13 heated. This hot water passes through a pipe 18 to a radiator 1 installed in the heated space 5.
9, the air generated by the fan 20 gives heat to the indoor air, and the water is sent to the cooled pipe 2.
1. The water reaches the absorber 13 via the water pump 22.
一方、吸収器の中で冷媒蒸気を吸収し、冷却水
で冷却された濃溶液は配管23を通り、溶液ポン
プ24で加圧され、熱交換器15で高温の希溶液
と熱交換することにより温められ発生器1内に送
りこまれサイクルが完結する。 On the other hand, the concentrated solution that absorbs refrigerant vapor in the absorber and is cooled with cooling water passes through the pipe 23, is pressurized by the solution pump 24, and is heat exchanged with the high-temperature dilute solution in the heat exchanger 15. It is heated and fed into the generator 1 to complete the cycle.
以上の説明から明らかなごとく、吸収式ヒート
ポンプにおいては発生器1においてバーナ2によ
り与えられた熱以外に蒸発器10において外気か
ら与えられた熱が、凝縮器6および熱交換器19
において被暖房空間5内の空気に移し与えられる
ことになるから、暖房出力はこの両者の和であ
り、有償の熱入力はバーナ2の熱入力のみである
から、成績係数すなわち暖房出力を加熱入力で割
つた値は1より大となり、省エネルギー機器とし
て今日非常に注目されている。 As is clear from the above explanation, in the absorption heat pump, in addition to the heat given by the burner 2 in the generator 1, the heat given from the outside air in the evaporator 10 is transferred to the condenser 6 and the heat exchanger 19.
Since the heating output is the sum of these two, and the only paid heat input is the heat input of the burner 2, the coefficient of performance, that is, the heating output, is the heating input. The value divided by is greater than 1, and it is attracting a lot of attention today as an energy-saving device.
この吸収式ヒートポンプ装置の熱出力は凝縮器
における凝縮熱と、吸収器における吸収熱の二種
類が存在し、それらは熱エネルギーにかわりはな
いが、えられる温度が異るばかりでなく、凝縮熱
の発生はある温度の幅にわたつて発生するという
ことが本質的に異つており、その違いをよく考え
て発生する熱を利用しなければ、全体の性能を低
下させ有効な熱利用がはかれない。 There are two types of heat output of this absorption heat pump device: heat of condensation in the condenser and heat of absorption in the absorber. Although they are the same thermal energy, not only the temperature obtained is different, but also the heat of condensation There is an essential difference in that the generation of heat occurs over a certain temperature range, and unless this difference is carefully considered and the generated heat is not utilized, the overall performance will deteriorate and effective heat utilization will not be achieved. do not have.
さらに詳しく説明すると、吸収式ヒートポンプ
の成績係数は凝縮温度が低い程改善されるが、発
生する熱を利用する立場から言えばあまり低い温
度の熱は役に立たない。具体的な数字をあげれば
凝縮温度は45℃位がよい値で、50℃は最高限界と
考えてよいであろう。したがつてこれを用いて水
などを加熱すれば、たかだかえられる水温は45℃
位と考えられる。この熱を直接部屋の暖房などに
使う場合は、必要な室温が20〜25℃とこの熱源温
度よりかなり低いから、凝縮温度45〜50℃は十分
利用しうる熱源であるが、これを給湯に用いると
すれば、えられる水温が40〜45℃では低すぎる温
度である。また、この温水を用いて暖房を行うと
暖房かえり温水温度は室温から考えて30〜35℃が
限度であり、温度差が小であるが、発生する熱量
は全熱量の40%程度を占めている。 To explain in more detail, the coefficient of performance of an absorption heat pump improves as the condensation temperature decreases, but from the perspective of utilizing the generated heat, heat at a very low temperature is not useful. To give specific numbers, a good condensing temperature is around 45℃, and 50℃ can be considered the highest limit. Therefore, if you use this to heat water, etc., the temperature of the water you can raise is at most 45℃.
It is considered to be a rank. If this heat is used directly to heat a room, the required room temperature is 20-25℃, which is considerably lower than this heat source temperature, so the condensation temperature of 45-50℃ is a heat source that can be fully used. If it were to be used, the resulting water temperature would be 40-45°C, which is too low. In addition, when this hot water is used for heating, the temperature of the hot water is limited to 30 to 35 degrees Celsius considering the room temperature, and although the temperature difference is small, the amount of heat generated accounts for about 40% of the total amount of heat. There is.
一方、吸収器における吸収熱の発生は、サイク
ルの設定条件によるが、45〜90℃程度の範囲で連
続的に発生するものであり、最低温度が低い方が
吸収式ヒートポンプサイクルの成績係数は向上す
る。従つて吸収器を冷却する液体の入口温度は40
℃以下が必要である。 On the other hand, the generation of absorbed heat in the absorber depends on the cycle setting conditions, but it occurs continuously in the range of about 45 to 90 degrees Celsius, and the lower the minimum temperature, the better the coefficient of performance of the absorption heat pump cycle. do. Therefore, the inlet temperature of the liquid cooling the absorber is 40
℃ or less is required.
出口温度は冷却液の流量によるが、60℃以上が
可能である。又発生する熱量は全発熱量の60%程
度を占める。 The outlet temperature depends on the flow rate of the coolant, but it can be 60℃ or higher. Also, the amount of heat generated accounts for about 60% of the total calorific value.
この暖められた液をそのまま暖房に使う場合は
かえり温度が40℃以下になるごとく室内放熱器を
選べばよい。 If you want to use this warmed liquid for heating as is, you should choose an indoor radiator that will keep the return temperature below 40℃.
このように吸収器で発生する熱は比較的高温で
あり、そのまま暖房に利用するのに都合がよい。 The heat generated by the absorber has a relatively high temperature, so it is convenient to use it as is for heating.
従来吸収式ヒートポンプにおいては、第2図に
示すごとく、凝縮器も吸収器も液冷却とし、凝縮
器25の冷却管26と吸収器27の冷却管28を
直列に接続し、まず始めに凝縮器で、次に吸収器
で加熱する。このような構成で暖房を行う場合、
各熱での温度上昇の比率はそれぞれの出力熱量の
比になるから、凝縮器に入る暖房かえり温度が35
℃であれば、凝縮器で5℃昇温するとすれば、吸
収器で7.5℃上昇することになり吸収器出口液温
は47.5℃ということになる。 In the conventional absorption heat pump, as shown in Fig. 2, both the condenser and the absorber are liquid cooled, and the cooling pipe 26 of the condenser 25 and the cooling pipe 28 of the absorber 27 are connected in series. Then, it is heated in an absorber. When heating with this configuration,
Since the ratio of temperature rise for each heat is the ratio of each output heat amount, the heating return temperature entering the condenser is 35
℃, if the temperature is raised by 5℃ in the condenser, the temperature will rise by 7.5℃ in the absorber, and the liquid temperature at the absorber outlet will be 47.5℃.
このように吸収器出口液温が低いのは吸収器に
とつて最適な液量はもつと少いのにもかかわらず
低い凝縮温度からの熱をすべて取出すために液循
環量を多くしすぎていることに由来する。なお第
2図において29は発生器である。 The reason why the absorber outlet liquid temperature is so low is because the amount of liquid circulated is too high to extract all the heat from the low condensing temperature, even though the optimum amount of liquid for the absorber is small. It comes from being there. Note that in FIG. 2, 29 is a generator.
又他の方法として第3図に示すごとく、一つの
貯湯槽31中に凝縮器32および吸収器冷却液と
貯湯槽内液との熱交換器33を設ける方法も使わ
れているが、この貯湯槽から暖房出力を取出そう
とするとこの中にもう一つの熱交換器34を設け
ねばならず、高価になるばかりでなく温度で下つ
てしまう。第3図において35は発生器、36は
吸収器、37は蒸発器、38は貯湯槽31から湯
を取り出す為の蛇口である。 Another method, as shown in FIG. 3, is to provide a condenser 32 and a heat exchanger 33 between the absorber cooling liquid and the liquid in the tank in one hot water tank 31. In order to extract heating output from the tank, another heat exchanger 34 must be installed inside the tank, which not only increases the cost but also lowers the temperature. In FIG. 3, 35 is a generator, 36 is an absorber, 37 is an evaporator, and 38 is a faucet for taking out hot water from the hot water storage tank 31.
このように吸収式ヒートポンプ装置の熱出力を
一つの熱媒体に移して利用する従来の方法は、そ
れぞれの熱出力の特徴を生かして使えない欠点が
あつた。 In this way, the conventional method of transferring the heat output of an absorption heat pump device to a single heat medium and utilizing it has the disadvantage that it cannot be used to take advantage of the characteristics of each heat output.
本発明はこのような吸収式ヒートポンプ装置の
熱出力をその特徴を生かして利用しうるよう改良
したものである。 The present invention is an improvement in which the heat output of such an absorption heat pump device can be utilized by taking advantage of its characteristics.
以下本発明の一実施例について第4図とともに
説明する。第4図において39は発生器であり、
バーナ40によつて加熱された溶液54は冷媒蒸
気を発生する。 An embodiment of the present invention will be described below with reference to FIG. In FIG. 4, 39 is a generator;
Solution 54 heated by burner 40 generates refrigerant vapor.
今弁55を閉じ、弁56を開けば、冷媒蒸気は
給湯用貯湯槽57内に設けた凝縮器58で凝縮
し、槽内の水を暖める。この槽には配管59を経
て、市水が供給されている。なお、52も室内凝
縮器である。 If the valve 55 is now closed and the valve 56 is opened, the refrigerant vapor is condensed in the condenser 58 provided in the hot water storage tank 57 and warms the water in the tank. City water is supplied to this tank via piping 59. Note that 52 is also an indoor condenser.
凝縮した冷媒は膨張弁60を経て蒸発器40で
蒸発し、吸収器41に流入する。 The condensed refrigerant passes through the expansion valve 60, evaporates in the evaporator 40, and flows into the absorber 41.
一方、発生器39で冷媒を放出しうすくなつた
溶液が、弁42を経て吸収器41に流入し、蒸発
器40で蒸発した冷媒蒸気を吸収し濃溶液とな
り、溶液ポンプ43によつて発生器39に送り帰
される。 On the other hand, the diluted solution that has released the refrigerant in the generator 39 flows into the absorber 41 through the valve 42, absorbs the evaporated refrigerant vapor in the evaporator 40, becomes a concentrated solution, and is pumped into the generator by the solution pump 43. Sent back to 39th.
吸収器41ではこのように冷媒蒸気が溶剤に吸
収されるので、多量の熱が発生する。この熱は冷
却管44を還流する液体によつて運び出される。
すなわち液ポンプ45によつて送りこまれた冷却
液は加熱され、60℃近い温度になつて吸収器を出
る。この液体は配管46を介して第2の貯湯槽4
7の上部に流入し、底部の低温の液体が吸収器4
1に帰される。 In the absorber 41, since the refrigerant vapor is absorbed by the solvent in this way, a large amount of heat is generated. This heat is carried away by the liquid flowing back through the cooling tubes 44.
That is, the coolant pumped by the liquid pump 45 is heated and leaves the absorber at a temperature close to 60°C. This liquid is transferred to the second hot water storage tank 4 via piping 46.
7, and the low temperature liquid at the bottom flows into the absorber 4.
It is attributed to 1.
この熱を暖房に利用する時は、第2の貯湯槽4
7の上部より、配管48、ポンプ49により室内
放熱器50に送られ、放熱して冷却した液は貯湯
槽47の下部に帰される。 When using this heat for heating, the second hot water storage tank 4
From the upper part of the hot water tank 7, the liquid is sent to the indoor radiator 50 by a pipe 48 and a pump 49, and the cooled liquid is returned to the lower part of the hot water storage tank 47.
この吸収熱を搬送する液体は通常水であるが、
凍結防止および腐蝕防止のための添加物が加えら
れており、給湯水としては直接使用できない。 The liquid that transports this absorbed heat is usually water, but
Additives are added to prevent freezing and corrosion, so it cannot be used directly as hot water.
吸収式ヒートポンプを暖房に使用する場合に、
室内放熱器50と、吸収器41内の熱交換部44
を結ぶ閉回路の間に、往復管路にまたがつて、本
実施例のごとく、貯湯槽47を設けることの利点
は、被暖房空間の負荷に応じて、吸収式ヒートポ
ンプを頻繁にオンオフすることなく、暖房出力を
制御することができる特徴を持つている。 When using an absorption heat pump for heating,
Indoor radiator 50 and heat exchange section 44 in absorber 41
The advantage of providing the hot water storage tank 47 as in this embodiment across the reciprocating pipeline between the closed circuits connecting the two is that the absorption heat pump can be turned on and off frequently depending on the load of the space to be heated. It has a feature that allows you to control the heating output.
一方第1の貯湯槽57には40℃近く加熱された
清浄な水が貯えられているから、第2の貯湯槽4
7に設けた熱交換器51を経て貯湯槽57の水を
取り出すことにより、40℃の水はさらに加熱さ
れ、ほぼ給湯に適する温水として、給湯取出口5
3から供給することができる。なお、第1の貯湯
槽57には水を供給しているが他の液体であつて
も原理上問題ない。この場合貯湯槽57は貯液槽
とする。そして水以外の液体を用いたときは、そ
の液体と熱交換させた水を第2の貯液槽47の熱
交換器51へ導くものとする。 On the other hand, since the first hot water storage tank 57 stores clean water heated to nearly 40°C, the second hot water storage tank 4
By taking out the water from the hot water storage tank 57 through the heat exchanger 51 provided at the hot water supply outlet 5, the 40°C water is further heated and is turned into hot water almost suitable for hot water supply.
It can be supplied from 3. Although water is supplied to the first hot water tank 57, there is no problem in principle if other liquids are supplied. In this case, the hot water storage tank 57 is a liquid storage tank. When a liquid other than water is used, the water heat exchanged with the liquid is led to the heat exchanger 51 of the second liquid storage tank 47.
ここで従来例と比較しながら本発明の効果をさ
らに述べる。前に述べた従来例のごとき構成では
十分な温度で給湯又は暖房ができない欠点があ
り、あるいは本実施例における凝縮器を、第2の
貯湯槽の中に設け、第1の貯湯槽を省略した場
合、貯湯槽の最低温度部位でもせいぜい室内放熱
器かえり水温度であるから、40℃程度であり、凝
縮温度が上り過ぎる危険があるため、凝縮熱を十
分に利用することができない。 Here, the effects of the present invention will be further described while comparing with the conventional example. The configuration of the conventional example described above has the disadvantage that hot water supply or heating cannot be performed at a sufficient temperature, or the condenser in this embodiment is provided in the second hot water storage tank and the first hot water storage tank is omitted. In this case, even the lowest temperature part of the hot water storage tank is at most the indoor radiator return water temperature, which is about 40°C, and there is a risk that the condensation temperature will rise too much, making it impossible to fully utilize the condensation heat.
この貯湯槽内の液を給湯のために直接使うこと
ができないから、この貯湯槽の中に熱交換器51
を入れねばならず、この方法では高い出湯温度は
期待できない。又一方この熱交換器に流入する市
水温度が十分低くても、貯湯槽最低温度部位の温
度はあまり下がらないか、或いは非常に大きな熱
交換器を設けることにより市水温度近くまで下げ
えたとすると、逆に吸収器に帰る水温が低くなり
すぎて、蒸発器における冷媒の蒸発温度が低くな
りすぎて結氷する危険が増大する。 Since the liquid in this hot water storage tank cannot be used directly for hot water supply, a heat exchanger 51 is installed in this hot water storage tank.
This method cannot be expected to produce high hot water temperature. On the other hand, even if the temperature of the city water flowing into this heat exchanger is sufficiently low, the temperature at the lowest temperature part of the hot water storage tank may not drop much, or it may be possible to lower it to near the city water temperature by installing a very large heat exchanger. In this case, the temperature of the water returning to the absorber becomes too low, and the evaporation temperature of the refrigerant in the evaporator becomes too low, increasing the risk of freezing.
又いずれにしても、貯湯槽低温度部位の温度が
下るのは、給湯を使用している時のみで、本実施
例のごとく凝縮器を低温の市水を充した第1の集
熱槽に設けた場合と比較すると、凝縮熱を十分に
利用することができない欠点を持つている。 In any case, the temperature of the low-temperature part of the hot water storage tank drops only when hot water is being used, and as in this example, the condenser is placed in the first heat collection tank filled with low-temperature city water. Compared to the case where the heat of condensation is provided, the disadvantage is that the heat of condensation cannot be fully utilized.
以上詳しく述べてきたごとく、本発明は、吸収
式ヒートポンプの熱出力は凝縮器と吸収器の2ケ
所あり、凝縮器は低い温度で冷却されることは問
題はないが、えられる温度はたかだか40℃程度で
あり、一方吸収熱は60℃程度であるが、吸収器に
帰す水温があまり低いことは蒸発温度を下げすぎ
てよくない点に鑑み、凝縮器と熱交換する第1の
貯液槽と、吸収器の冷却液を蓄え前記第1の貯湯
槽からの湯と熱交換する熱交換器を有する第2の
貯液槽を設けることにより、吸収式ヒートポンプ
の特性を生かしてその熱出力をもつとも有効に利
用しうるものである。 As described in detail above, in the present invention, the heat output of an absorption heat pump is in two places: the condenser and the absorber, and although there is no problem with the condenser being cooled at a low temperature, the temperature that can be obtained is at most 40°C. ℃, and the absorption heat is about 60℃, but considering that it is not good if the water temperature returned to the absorber is too low because it lowers the evaporation temperature too much, the first liquid storage tank is used to exchange heat with the condenser. By providing a second liquid storage tank having a heat exchanger that stores the coolant of the absorber and exchanges heat with the hot water from the first hot water storage tank, the heat output can be increased by taking advantage of the characteristics of the absorption heat pump. However, it can be used effectively.
第1図は吸収式ヒートポンプの原理説明図、第
2図および第3図は従来の吸収式ヒートポンプ装
置における熱出力取出の構成図、第4図は本発明
の一実施例のヒートポンプ装置の構成図である。
39……発生器、41……吸収器、47……貯
液槽、51……熱交換器、57……給湯用貯湯
槽、58……凝縮器。
Fig. 1 is a diagram explaining the principle of an absorption heat pump, Figs. 2 and 3 are block diagrams of heat output extraction in a conventional absorption heat pump device, and Fig. 4 is a block diagram of a heat pump device according to an embodiment of the present invention. It is. 39... generator, 41... absorber, 47... liquid storage tank, 51... heat exchanger, 57... hot water storage tank, 58... condenser.
Claims (1)
の凝縮器、および吸収器より成る吸収式ヒートポ
ンプサイクルを形成し、前記凝縮器を冷却する液
体を貯溜する第1の貯液槽と前記吸収器を冷却す
る液体を貯溜する第2の貯液槽を別々に設ける事
により、それぞれの熱出力を別々に蓄熱すると共
に、前記第2の蓄熱槽に熱交換器を設け、かつ第
1の貯液槽に冷却液の供給端を設け、第1の貯液
槽の液を、前記熱交換器を通して取り出すごとく
した吸収式ヒートポンプ装置。 2 前記凝縮器を冷却し、第1の貯液槽に蓄えら
れる液体は給湯用供給水である特許請求の範囲第
2項記載の吸収式ヒートポンプ装置。[Claims] 1. A first liquid storage tank forming an absorption heat pump cycle comprising at least a generator, an evaporator, a liquid-cooled condenser, and an absorber, and storing a liquid for cooling the condenser. By separately providing a second liquid storage tank for storing a liquid for cooling the absorber and the absorber, the heat output of each is stored separately, and a heat exchanger is provided in the second heat storage tank, An absorption heat pump device in which a first liquid storage tank is provided with a cooling liquid supply end, and the liquid in the first liquid storage tank is taken out through the heat exchanger. 2. The absorption heat pump device according to claim 2, wherein the liquid that cools the condenser and is stored in the first liquid storage tank is water supplied for hot water supply.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6000482A JPS58178162A (en) | 1982-04-09 | 1982-04-09 | Absorption type heat pump device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6000482A JPS58178162A (en) | 1982-04-09 | 1982-04-09 | Absorption type heat pump device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58178162A JPS58178162A (en) | 1983-10-19 |
JPH0340307B2 true JPH0340307B2 (en) | 1991-06-18 |
Family
ID=13129509
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6000482A Granted JPS58178162A (en) | 1982-04-09 | 1982-04-09 | Absorption type heat pump device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58178162A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007120846A (en) * | 2005-10-27 | 2007-05-17 | Tokyo Gas Co Ltd | Hot water supply system and its control method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52124253A (en) * | 1976-04-12 | 1977-10-19 | Mitsubishi Heavy Ind Ltd | Refrigerating cycle |
JPS5726367A (en) * | 1980-07-24 | 1982-02-12 | Matsushita Electric Ind Co Ltd | Absorption type heat pump device |
-
1982
- 1982-04-09 JP JP6000482A patent/JPS58178162A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52124253A (en) * | 1976-04-12 | 1977-10-19 | Mitsubishi Heavy Ind Ltd | Refrigerating cycle |
JPS5726367A (en) * | 1980-07-24 | 1982-02-12 | Matsushita Electric Ind Co Ltd | Absorption type heat pump device |
Also Published As
Publication number | Publication date |
---|---|
JPS58178162A (en) | 1983-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4007776A (en) | Heating and cooling system utilizing solar energy | |
US4143642A (en) | High temperature thermal storage system utilizing solar energy units | |
JPS62242774A (en) | Heat pump mechanism having three action and heat pump method | |
EA011442B1 (en) | Boiler condensation module | |
US20140338389A1 (en) | Vapor compression system with thermal energy storage | |
US4094147A (en) | Circuit for the supply of condensable fluid to a solar engine | |
EP0035873A2 (en) | Absorption type heat pump having radiators | |
CN106705203A (en) | Heat pump and electric heat combined user heat pipe cooling device | |
CN205037563U (en) | Novel air source heat pump under low -temperature environment | |
CN105509336A (en) | Vacuum tube type solar heat pump hot-water system | |
BRPI0915033B1 (en) | reversible system for recovering heat energy by removing and transferring calories from one or more media to another or several other media | |
JPH0340307B2 (en) | ||
CN210153912U (en) | Air source heat pump assisted all-weather solar heat storage and supply system | |
JPS6343662B2 (en) | ||
JPS581345B2 (en) | Air conditioning/heating/hot water equipment | |
JPS6024894B2 (en) | Absorption heat pump device | |
JPS6217147B2 (en) | ||
JPS6312231B2 (en) | ||
JPS5835936Y2 (en) | Main unit for multiple connection hot air heaters | |
CN2230424Y (en) | Solar water-heating air conditioner | |
JP2514452Y2 (en) | Absorption cycle regenerator equipment | |
JP2779422B2 (en) | Absorption chiller / heater | |
JPS6358062A (en) | Cooling device by circulation of refrigerant | |
CN117847652A (en) | Waste heat utilization system of cold and hot combined supply transformer substation and control method thereof | |
JPS5829424Y2 (en) | absorption cold water machine |