JPS63122123A - Microwave plasma processor - Google Patents

Microwave plasma processor

Info

Publication number
JPS63122123A
JPS63122123A JP26760186A JP26760186A JPS63122123A JP S63122123 A JPS63122123 A JP S63122123A JP 26760186 A JP26760186 A JP 26760186A JP 26760186 A JP26760186 A JP 26760186A JP S63122123 A JPS63122123 A JP S63122123A
Authority
JP
Japan
Prior art keywords
discharge tube
microwave
wafer
plasma generation
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26760186A
Other languages
Japanese (ja)
Other versions
JPH0551173B2 (en
Inventor
Hironori Kawahara
川原 博宣
Yoshinao Kawasaki
義直 川崎
Makoto Nawata
誠 縄田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP26760186A priority Critical patent/JPS63122123A/en
Publication of JPS63122123A publication Critical patent/JPS63122123A/en
Publication of JPH0551173B2 publication Critical patent/JPH0551173B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To accelerate uniformly the processing of a material to be processed by forming an interval between a discharge tube and a reflecting end at 1/8 or more of the wavelength of a microwave in a tube and providing uniformizing means for uniformizing the discharge amount of active particles to a processing chamber. CONSTITUTION:A reflecting end 10 having a plurality of holes of small diameter is attached to the lower hole of a circular waveguide 7, and a discharge tube 6 having a recess parallel to a sample base plate 13 is attached to the upper hole of the tube 7. Further, a rectangular waveguide 2 is provided through a step converter 5 to efficiently convert the rectangular microwave to a circular microwave transmission mode. An interval between the tube 6 and the end 10 is set to lambdag/8 or more to generate an efficient plasma. Since the whole surface of a wafer 13 can be uniformly ashed by providing the end 10 and the wafer 12 in parallel, the wafer 12 can be rapidly and uniformly processed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はマイクロ波プラズマ処理装置に係り、特に半導
体基板等のエツチングならびにデポジシランに好適なマ
イクロ波プラズマ処N装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a microwave plasma processing apparatus, and particularly to a microwave plasma processing N apparatus suitable for etching semiconductor substrates and depositing silane.

〔従来の技術〕[Conventional technology]

従来の装置は、特開昭59−103340号に記載のよ
うに、放電管の周囲を囲んで取り付けた導波管の他端に
マグネトロンを設け、放電管の開口部に反射円板あるい
は反射円筒を設けて、マグネトロンからのマイクロ波を
反射円板あるいは反射円筒で反射させ′て放電管内で効
率良くプラズマを発生させるようになっていた。
As described in Japanese Patent Application Laid-Open No. 59-103340, the conventional device is equipped with a magnetron at the other end of a waveguide attached around the circumference of the discharge tube, and a reflective disk or reflective cylinder at the opening of the discharge tube. The microwaves from the magnetron were reflected by a reflecting disk or cylinder to efficiently generate plasma within the discharge tube.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、反射端と放電管との位置関係および放
電管または反射端の形状について配慮されておらず、プ
ラズマの発生効率および被処理物の処理速度の均一性の
点で問題があった。
The above conventional technology does not take into consideration the positional relationship between the reflective end and the discharge tube and the shape of the discharge tube or the reflective end, and has problems in terms of plasma generation efficiency and uniformity of processing speed of the processed material. .

プラズマの発生効率の点については、放電管に注入され
る入射波のプラズマ発生効率は低く、入射波に対し50
%以上の反射波が存在することが分かった。このため、
前記特開昭59−103340号に記載のように、放電
管内に注入されたマイクロ波電力を反射円板あるいは反
射円筒で反射させて、往復するマイクロ波電力を有効に
使用してプラズマ発生効率を向上させることができるが
、放電管から反射端までの距離、すなわち放電管内に注
入されたマイクロ波電力の通過距離によって、プラズマ
の発生効率が大きく変わることが判明した。
In terms of plasma generation efficiency, the plasma generation efficiency of the incident wave injected into the discharge tube is low, with a
It was found that there were more than % reflected waves. For this reason,
As described in JP-A-59-103340, the microwave power injected into the discharge tube is reflected by a reflecting disk or cylinder, and the reciprocating microwave power is used effectively to increase plasma generation efficiency. However, it has been found that the plasma generation efficiency varies greatly depending on the distance from the discharge tube to the reflective end, that is, the distance through which the microwave power injected into the discharge tube passes.

また、被処理物の処理速度の均一性の点については、従
来の半球状の放電管でプラズマを発生させて、被処理物
を例えばエツチングすると、エツチング速度に不均一が
生じる。これは、放電管の球面に沿って強いプラズマが
発生し、プラズマ発生部にて造られた活性粒子が被処理
物に到達するまでに、主に中性粒子との衝突によってエ
ネルギを失い不活性粒子となってしまい、被処理物とプ
ラズマ発生部との距離が球面に沿って離れるに従い急速
に活性粒子の数が減少して生じるものと考えられる。
Regarding the uniformity of the processing speed of the object to be processed, if the object to be processed is etched by generating plasma in a conventional hemispherical discharge tube, the etching rate will be non-uniform. This is because strong plasma is generated along the spherical surface of the discharge tube, and by the time the active particles created in the plasma generation section reach the object to be processed, they mainly lose energy due to collisions with neutral particles and become inactive. It is thought that the number of active particles decreases rapidly as the distance between the object to be processed and the plasma generating section increases along the spherical surface.

本発明は、被処理物を速(しかも均一に処理することの
できるマイクロ波プラズマ処理装置を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a microwave plasma processing apparatus that can process an object quickly and uniformly.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、処理ガスが供給され所定の圧力に減圧排気
されるプラズマ発生室と、該プラズマ発生室をはさんで
一方に連通した処理室と、前記プラズマ発生室の反処理
室側に接続され他端にマイクロ波発生源を有する導波管
とから成り、前記プラズマ発生室と前記導波管との間に
設けられ大気としゃ断して前記プラズマ発生室を構成し
前記マ(クロ波発生源からのマイクロ波を透過する放電
−と、前記プラズマ発生室の反放電管側に設けられ前記
マイクロ波を反射する反射端との間隔を前記マイクロ波
の管内波長のh以上とし、前記プラズマ発生室で生じた
活性粒子を前記処理室内に均一に放出させる均一化手段
を設けることにより、達成される。
The above purpose is to provide a plasma generation chamber to which a processing gas is supplied and which is evacuated to a predetermined pressure, a processing chamber that communicates with one side across the plasma generation chamber, and a plasma generation chamber that is connected to the opposite side of the processing chamber. a waveguide having a microwave generation source at the other end, the plasma generation chamber is configured by being provided between the plasma generation chamber and the waveguide and cut off from the atmosphere; The distance between the discharge that transmits the microwaves from the plasma generation chamber and the reflection end that is provided on the side opposite to the discharge tube of the plasma generation chamber and that reflects the microwaves is set to be at least h of the tube wavelength of the microwaves, and the plasma generation chamber This is achieved by providing a homogenizing means for uniformly discharging the active particles generated in the processing chamber.

〔作  用〕[For production]

大気としゃ断して形成されたプラズマ発生室に処理ガス
を供給しながら所定の圧力に減圧保持して、マイクロ波
発生源からマイクロ波を発生させ導波管にてマイクロ波
をプラズマ発生室に導き、放電管を介してプラズマ発生
室に入射させる。入射したマイクロ波の定在波は放電管
の内壁から1/8波長以上離して設けられた反射端で反
射され、放電管の内面で大きな電界となって放電管内表
面近傍にプラズマを発生させる。プラズマ中で発生した
活性粒子は均一化手段により反射端を抜けて処理室に入
るまでの間できるだけ中性粒子との衝突が少なくなり、
処理室全面に均一に入るように調整される。これにより
、被処理物が速くしかも均一に処理される。
While supplying processing gas to a plasma generation chamber formed by cutting off the atmosphere, the pressure is reduced and maintained at a predetermined level, microwaves are generated from a microwave generation source, and the microwaves are guided to the plasma generation chamber through a waveguide. , and enter the plasma generation chamber via a discharge tube. The standing wave of the incident microwave is reflected at a reflection end provided at a distance of ⅛ wavelength or more from the inner wall of the discharge tube, creating a large electric field on the inner surface of the discharge tube and generating plasma near the inner surface of the discharge tube. The active particles generated in the plasma have as few collisions as possible with neutral particles until they pass through the reflection end and enter the processing chamber by the homogenizing means.
It is adjusted so that it enters the entire surface of the processing chamber uniformly. As a result, the object to be processed can be processed quickly and uniformly.

〔実 施 例〕〔Example〕

以下1本発明の一実施例を第1図〜第6図により説明す
る。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 6.

第1図はマイクロ波プラズマ処理装置を示す。FIG. 1 shows a microwave plasma processing apparatus.

円形導波管7の下側開口部には、小径の孔を複数個有す
る反射端10が取り付けられ、さらに、被処理物、この
場合はウェハνを載置し反射端10と平行な試料台13
を内設した処理室11が設けである。
A reflecting end 10 having a plurality of small-diameter holes is attached to the lower opening of the circular waveguide 7, and a sample stage parallel to the reflecting end 10 is mounted on which the object to be processed, in this case a wafer ν, is placed. 13
A processing chamber 11 is provided.

14は試料台13の下部に設けられ、ウェハ校を間接的
に加熱するヒータである。
A heater 14 is provided at the bottom of the sample stage 13 and indirectly heats the wafer.

円形導波管7の上側開口部には、試料台13と平行な凹
面を有する放電管6が取り付けられ、さらに、矩形から
円形へのマイクロ波の伝送モードの変換を効率良く行な
うためのステップ変換器5を介して矩形導波管2が設け
である。導波管2の上端部にはマイクロ波発生源である
マグネトロン1が取り付けである。3は矩形導波管2内
を戻る反射波を吸収するためのアイソレータであり、4
は矩形導波管2を伝送されるマイクロ波の反射をな! 呪すための負荷のインピーダンス整合を行なうスタブ式
整合器である。
A discharge tube 6 having a concave surface parallel to the sample stage 13 is attached to the upper opening of the circular waveguide 7, and a step conversion mechanism is installed to efficiently convert the microwave transmission mode from rectangular to circular. A rectangular waveguide 2 is provided through a vessel 5. A magnetron 1, which is a microwave generation source, is attached to the upper end of the waveguide 2. 3 is an isolator for absorbing reflected waves returning within the rectangular waveguide 2;
is the reflection of the microwave transmitted through the rectangular waveguide 2! This is a stub type matching device that performs impedance matching of a load for cursing.

プラズマ発生室は、この場合、円形導波管7゜反射端1
0および放電管6で囲まれて形成される。
In this case, the plasma generation chamber is a circular waveguide 7° reflection end 1
0 and the discharge tube 6.

9は円形導波管7を冷却するための冷却水路でろり、8
はプラズマ発生室内へ処理ガスを供給するための処理ガ
ス導入口である。処理室11の下部には図示しない排気
装置がつなげられており、処理室11およびプラズマ発
生室を所定の圧力に減圧排気している。15は放電管6
を冷却するための冷却ガスを導入する冷却ガス導入口で
ある。
9 is a cooling water channel for cooling the circular waveguide 7;
is a processing gas inlet for supplying processing gas into the plasma generation chamber. An exhaust device (not shown) is connected to the lower part of the processing chamber 11, and the processing chamber 11 and the plasma generation chamber are evacuated to a predetermined pressure. 15 is discharge tube 6
This is a cooling gas inlet that introduces cooling gas for cooling.

この場合、マグネトロンlは周波数2.45GHzのも
のであり、矩形導波管2はTEloモードが伝送できる
標準寸法とし、円形導波管7はマイクロ波をカットオフ
しない寸法113111+1(例えば、TB1□モード
の場合は72111111以上であれば良い。)とし、
マイクロ波が透過可能でプラズマ発生室を形成する放電
管6としては石英製(この他に、アルミナ等も使用でき
る。)の材料を使用している。また、プラズマ発生室を
形成する放電管6と反射端10との間隔はマイクロ波の
管内波長λF(156,7mm)(7) 1/、以上の
約λF/ 4 (40Mm)にし、放電管60円筒部の
長さも約λy / 4 (40tl# )としている。
In this case, the magnetron 1 has a frequency of 2.45 GHz, the rectangular waveguide 2 has a standard size that can transmit TElo mode, and the circular waveguide 7 has a size of 113111+1 (for example, TB1□ mode) that does not cut off microwaves. In this case, it should be 72111111 or more.)
A material made of quartz (alternatively, alumina or the like can also be used) is used for the discharge tube 6 which is permeable to microwaves and forms a plasma generation chamber. Further, the distance between the discharge tube 6 forming the plasma generation chamber and the reflection end 10 is set to approximately λF/4 (40 Mm), which is equal to or more than the tube wavelength λF (156,7 mm) (7) 1/ of the microwave. The length of the cylindrical portion is also approximately λy/4 (40tl#).

反射端10の孔はマイクロ波をカットして反射可能な寸
法101111(例えば、Tgoモードの場合は72−
以下であれば良い。)としている。
The hole in the reflective end 10 has a size of 101111 (for example, 72-111 in the case of Tgo mode) that can cut and reflect microwaves.
The following is fine. ).

上記構成において、ホトレジストの1ツシングを行なう
ウェハ認を試料台B上に載置し、処理ガスとして02ガ
ス2005ccyを円形導波管7内に導入し、圧力をI
Torrに保った状態で、700Wのマイクロ波を印加
しスタブ式整合器4で負荷のインピーダンス整合を行な
って、プラズマ発生室に02ガスのプラズマを発生させ
ると、図示したように、放電管6の内表面近傍にプラズ
マが発生し、第2図に示すように、クエへ社の全面にわ
たってほぼ均一で高いエツチングレートのアッシング処
理が行なわれた。
In the above configuration, the wafer on which one photoresist is to be processed is placed on the sample stage B, 2005 ccy of 02 gas is introduced into the circular waveguide 7 as a processing gas, and the pressure is applied to the I
When 02 gas plasma is generated in the plasma generation chamber by applying a 700W microwave and impedance matching the load using the stub type matching device 4 while maintaining the Torr, as shown in the figure, the discharge tube 6 Plasma was generated in the vicinity of the inner surface, and as shown in FIG. 2, ashing processing was performed almost uniformly and at a high etching rate over the entire surface of the Kuehesha.

これは、放電管6の面を試料台13とほぼ同面積で平行
、すなわちウェハ認の全面に対応して平行に設けている
ので、放電管6の内表面で発生したプラズマ中の活性粒
子が反射端の孔を通って処理室11内へ出ていq際に、
活性粒子がプラズマ発生室内で同時に発生したプラズマ
中の中性粒子と主に衝突してエネルギを失い不活性粒子
となってしまうが、活性粒子がウェハ毘に到達するまで
の距離がウェハnの全面にわたって等しいので、ウェハ
認に到達する活性粒子の数がほぼ一様になりエツチング
レートが均一になるものと考えられる。
This is because the surface of the discharge tube 6 is parallel to and has approximately the same area as the sample stage 13, that is, parallel to the entire surface of the wafer, so that the active particles in the plasma generated on the inner surface of the discharge tube 6 are When exiting into the processing chamber 11 through the hole at the reflective end,
The active particles mainly collide with the neutral particles in the plasma generated at the same time in the plasma generation chamber, losing energy and becoming inactive particles, but the distance the active particles take to reach the wafer surface is It is thought that since the number of active particles reaching the wafer is approximately the same, the etching rate becomes uniform.

これを確かめるために、第3図に示す装置によりホトレ
ジストのアッシングを行なってみた。本図において、前
記第1図と同符号は同一部材を示し、本図が第1図と異
なる点は放電管6とウェハ認との距離lが変えられるよ
うに、放電管6をウェハnに平行な板状の放電管6aと
し、円形導波管7の高さを変えた円形導波管7aとした
点である。
In order to confirm this, ashing of photoresist was performed using the apparatus shown in FIG. In this figure, the same reference numerals as in FIG. 1 indicate the same members, and the difference between this figure and FIG. The point is that the parallel plate-shaped discharge tube 6a is used, and the height of the circular waveguide 7 is changed to form a circular waveguide 7a.

上記構成の装置により、02ガス20011ccMを円
形導波管7a内に導入し、圧力をITorrに保った状
態で、500Wのマイクロ波を印加して、放電管6aと
ウェハ認との距#lを変えてウニノル丘のアッシングを
行なった結果、第4図に示すように、エツチング速度は
距11111!が大きくなるに従い急激に低下すること
が分かりた。また、本実験から近似式を求めると下式 y=y0・e−(102〜o、os)(x−!o)  
・−・・−・−・litで表わされることが分かった。
Using the apparatus configured as described above, 20,011 ccM of 02 gas is introduced into the circular waveguide 7a, and while the pressure is maintained at ITorr, 500 W of microwave is applied to measure the distance #l between the discharge tube 6a and the wafer. As a result of changing the ashing of Uninor Hill, as shown in Figure 4, the etching speed was 11111! It was found that as the value increases, it decreases rapidly. Also, from this experiment, an approximate formula can be found as follows: y=y0・e−(102~o, os)(x−!o)
It turns out that it can be expressed as .--.--.lit.

なお、ここでyは距Plxでのエツチング量、3’Oは
距111xOでのエツチング量である。
Note that here, y is the etching amount at the distance Plx, and 3'O is the etching amount at the distance 111xO.

また、高いエツチングレートが得られたのは、第5図に
示すように、放電管6と反射端10との間隔をマイクロ
波の管内波長λ2の14程度にすることにより、定在波
が生じたときに入射したマイクロ波と反射端10で反射
したマイクロ波とによって、放電管6の内表面近傍の電
界強度Exが最大となり、プラズマの発生効率が向上す
るからであると考えられる。
In addition, the high etching rate was achieved by setting the distance between the discharge tube 6 and the reflecting end 10 to about 14, which is the tube wavelength λ2 of the microwave, as shown in FIG. This is considered to be because the electric field intensity Ex near the inner surface of the discharge tube 6 becomes maximum due to the microwaves incident on the discharge tube 6 and the microwaves reflected at the reflection end 10, thereby improving plasma generation efficiency.

これを確かめるため、第5図に示す放電管6と反射端1
0との間隔Ldを種々変えて、反射電力Prを幀定して
みたところ、′@6図に示すように、間隔Ldがマイク
ロ波の管内波長λ2の−1すなわち40m111のとこ
ろで反射電力Prが最小に達し、Ld40■以下では反
射電力Prが大きくなっていることが分かる。すなわち
、間隔Laがマイクロ波の管゛内波長λグのし、以下で
は、反射電力が多くプラズマ発生に有効に寄与していな
いことが分かる。また、この傾向は、投入電力Pfが大
きい程顧蓄に表われ、投入電力Pfが小さくなる程緩和
される傾向にある。
In order to confirm this, the discharge tube 6 and the reflective end 1 shown in FIG.
When the reflected power Pr was determined by variously changing the distance Ld from 0 to 0, as shown in Fig. It can be seen that the reflected power Pr becomes large when it reaches the minimum and is less than Ld40■. In other words, the interval La corresponds to the in-tube wavelength λ of the microwave, and it can be seen below that the reflected power is large and does not contribute effectively to plasma generation. Furthermore, this tendency becomes more apparent as the input power Pf increases, and tends to be alleviated as the input power Pf decreases.

また、この場合は、間隔Ldが49mmでプラズマ発生
の効率が最大に達し、Ldが10mmではプラズマを発
生させることはできなかった。
Further, in this case, the efficiency of plasma generation reached the maximum when the distance Ld was 49 mm, and it was not possible to generate plasma when Ld was 10 mm.

なお、プラズマの発生効率はλy / 1/8以上が最
大となるが、間隔Ldが短畷なれば、ウェハとの距離も
それだけ短くなるので活性粒子の残る数が増える確率が
高くなるので、実用上は間隔LdがλP/8以上、しい
て言えば、λP/8〜λp / 4 が最適である。し
かし、ウェハな放電管に近づけられれば、λy / 1
/8以上でもエツチングレートは高いものが得られる。
Note that the plasma generation efficiency is maximum at λy / 1/8 or more, but the shorter the interval Ld, the shorter the distance to the wafer, which increases the probability that the number of remaining active particles will increase, so it is not practical. In the upper case, the optimum distance Ld is λP/8 or more, more specifically, λP/8 to λp/4. However, if it is brought closer to a wafer discharge tube, λy / 1
A high etching rate can be obtained even when the etching rate is /8 or more.

以上、本−実施例によれば、放電管6と反射端10との
間隔な2978以上に設定することによって、て、ウェ
ハ臆の全面にわたって均一なアッシング処理を行なうこ
とができるので、ウェハ臆を速くしかも均一に処理する
二とができるという効果がある。
As described above, according to this embodiment, by setting the distance between the discharge tube 6 and the reflective end 10 to be 2978 or more, uniform ashing can be performed over the entire surface of the wafer. This has the advantage of being able to process quickly and uniformly.

次に、本発明の他の実施例を第7図〜第9図により説明
する。
Next, another embodiment of the present invention will be described with reference to FIGS. 7 to 9.

第7図において第1図と同符号は同一部材を示し、本図
が第1図と異なる点は放電管6を半球状にしてウェハ鵞
との距離がウェハ丘の中心から外側に広がるに従い離れ
るようにした放電管6bを用いている点と、反射$10
を第8図に示すように中心から外側に向うに従い大きく
なる孔複数個を設けた反射jllOaとした点である。
In Fig. 7, the same reference numerals as in Fig. 1 indicate the same members, and the difference between this figure and Fig. 1 is that the discharge tube 6 is shaped like a hemisphere, and the distance from the wafer to the wafer expands outward from the center of the wafer. The use of the discharge tube 6b and the reflection of $10
As shown in FIG. 8, a reflection jllOa is provided with a plurality of holes that become larger from the center toward the outside.

反射端10 aの孔の開口率は、放電管6bの形状が半
球状であるため、放電管6bの中央最下端部と周辺部と
ではつ・エバnまでの距離が、この場合、501111
11違い、ウェハnへの活性粒子の到達量がウェハnの
全面にわたって均等にならないので、前記(1)式によ
り、ウェハnの各部におけるエツチング量を予測し、こ
れに従い、関口率を変えた。この場合は、反射端10J
1の周辺部の開口率を中央に対して約10倍にしている
Since the shape of the discharge tube 6b is hemispherical, the aperture ratio of the hole in the reflective end 10a is such that the distance from the central lowest end of the discharge tube 6b to the periphery is 501111 in this case.
11, the amount of active particles reaching wafer n is not uniform over the entire surface of wafer n, so the amount of etching in each part of wafer n was predicted using equation (1) above, and the Sekiguchi rate was changed accordingly. In this case, the reflective end 10J
The aperture ratio of the peripheral portion of No. 1 is approximately 10 times that of the center.

上記構成の装置により、前記@1図の装置の場合の条件
と同条件で、ウェハ鴛をアッシング処理したところ、第
9図の(ロ)に示すように、ウェハ鴛の全面にわたって
ほぼ均一なエツチングレートでアッシングすることがで
きる。
When a wafer was subjected to an ashing process using the apparatus with the above configuration under the same conditions as the apparatus shown in Figure 1 above, the etching process was almost uniform over the entire surface of the wafer, as shown in Figure 9 (b). Can be ashed at a rate.

第9図の(イ)は、第7図の装置で反射410 mを前
記第1図の装置の場合のように孔の大きさを均一にして
アッシングした場合のものを示す。この場合は、放電管
6bとウェハ鴛との間の距離が中央から外側に向うに従
い離れて、エツチングレートも下がっていることが良く
分かる。
FIG. 9(A) shows the case where the reflection 410 m is ashed using the apparatus shown in FIG. 7 with the hole size uniform as in the case of the apparatus shown in FIG. In this case, it is clearly seen that the distance between the discharge tube 6b and the wafer plate increases from the center toward the outside, and the etching rate also decreases.

以上、本、他の実施例によれば、ウェハ狡からの距離が
均等でない放電管6bであっても、反射端10 aの開
口率を放電管6bからウェハνまでの距離によって変え
ることにより、ウェハ鴛への活性粒子の到達量をウェハ
戎の全面においてほぼ均一にすることができるので、前
記一実施例同様にウェハの処理を均一にすることができ
る。また、放電管6bの半球状の下端と反射j!110
 aとの間隔をλF/8以上に設定することにより、前
記一実施例と同様に効率の良いプラズマ発生を行なわせ
る二とができるので、ウェハの処理速度を速畷すること
ができる。
As described above, according to this book and other embodiments, even if the distances from the wafer 6b are not equal, the aperture ratio of the reflective end 10a can be changed depending on the distance from the discharge tube 6b to the wafer ν. Since the amount of active particles reaching the wafer can be made almost uniform over the entire surface of the wafer, the wafer can be processed uniformly as in the previous embodiment. Also, the hemispherical lower end of the discharge tube 6b and the reflection j! 110
By setting the distance from a to λF/8 or more, efficient plasma generation can be achieved in the same way as in the first embodiment, and the wafer processing speed can be increased.

なお、本実施例では下向きに凸状の放電管を用いている
が、上向に凸状の放電管でもかまわない。
Note that although a downwardly convex discharge tube is used in this embodiment, an upwardly convex discharge tube may also be used.

但し、ウェハと放電管内面との距離が遠くなるので不利
となる。
However, this is disadvantageous because the distance between the wafer and the inner surface of the discharge tube becomes long.

また、前記′@1図の放電管6の円筒部分の長さをλp
 / 4にしているのは、放電管6の内表面の面積を大
きくしてプラズマ発生に寄与するマイクロ波の吸収効率
を上げるためであるが、面積を増やすために円筒部分の
長さをむやみに長畷すること蝉、1に!の大型化、放電
管の内表面(プラズマ発生部)からウェハまでの距離の
増大となり、かえ9て効果が小さくなる。
In addition, the length of the cylindrical portion of the discharge tube 6 in the above figure '@1 is λp
/ 4 in order to increase the area of the inner surface of the discharge tube 6 and increase the absorption efficiency of microwaves that contribute to plasma generation. Nagawate cicada, 1! This results in an increase in the size of the wafer and an increase in the distance from the inner surface of the discharge tube (plasma generation part) to the wafer, which actually reduces the effect.

また、本実施例はウェハのエツチングの場合について述
べたが、プラズマを用いてウェハ上にデポジシロンを生
じさせる場合にも応用可能である。
Furthermore, although this embodiment has been described in the case of etching a wafer, it can also be applied to the case of generating deposits on a wafer using plasma.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、放電管と反射端との間隔をマイクロ波
の管内波長の1/8以上とし、処理室への活性粒子の放
出量を均一にする均一化手段を設けているので、被処理
物をRくしかも均一に処理することができるという効果
がある。
According to the present invention, the distance between the discharge tube and the reflection end is set to 1/8 or more of the tube wavelength of the microwave, and the equalizing means is provided to uniformize the amount of active particles released into the processing chamber. There is an effect that the processed material can be processed more thoroughly and uniformly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例であるマイクロ波プラズマ処
理装置を示す縦断面図、第2因は第1図の装置によるエ
ツチング状態を示す図、第3図は実験に用いた装置の縦
断面図、第4図は第3面の装置による実験結果を示す図
、第5図は放電管と反射端との間のマイクロ波の定在波
電界を示す図、第6図は放電管と反射端との距離とマイ
クロ波の反射電力の関係を示す図、第7図は本発明の他
の実施例であるマイクロ波プラズマ処理装置を示す縦断
面図、第8図は第7図をA−Aから見た反射端の平面図
、第9図は第7図の装置による反射端の開口率を同じに
した場合と変えた場合とのエツチング状態を示す図であ
る。 l・・・・・・マグネトロン、2・・・・・・矩形導波
管、6・・・放電管、7・・・・・・円形導波管、10
・・・・・・反射端、■・・・つIノ1啼−こ々q−リ
リシー陣L(り^、嘴−ンイ3同 乃ズマ#uIitLtうの壽暖駈!01す3;ir5図 46 囚
FIG. 1 is a longitudinal cross-sectional view showing a microwave plasma processing apparatus that is an embodiment of the present invention. The second cause is a diagram showing the etching state by the apparatus shown in FIG. 1. FIG. Fig. 4 is a diagram showing the experimental results using the device on the third side, Fig. 5 is a diagram showing the microwave standing wave electric field between the discharge tube and the reflecting end, and Fig. 6 is a diagram showing the electric field of the microwave standing between the discharge tube and the reflective end. A diagram showing the relationship between the distance to the reflection end and the reflected power of microwaves, FIG. 7 is a longitudinal cross-sectional view showing a microwave plasma processing apparatus according to another embodiment of the present invention, and FIG. FIG. 9 is a plan view of the reflective end viewed from the direction A, and is a diagram showing the etching state when the aperture ratio of the reflective end is made the same and when the aperture ratio is changed by the apparatus of FIG. 7. l... Magnetron, 2... Rectangular waveguide, 6... Discharge tube, 7... Circular waveguide, 10
・・・・・・Reflection end,■...tsu I no 1 啼-kokoq-Lilithy group L Figure 46 Prisoner

Claims (1)

【特許請求の範囲】[Claims] 1、処理ガスが供給され所定の圧力に減圧排気されるプ
ラズマ発生室と、該プラズマ発生室をはさんで一方に連
通した処理室と、前記プラズマ発生室の反処理室側に接
続され他端にマイクロ波発生源を有する導波管とから成
り、前記プラズマ発生室と前記導波管との間に設けられ
前記マイクロ波発生源からのマイクロ波を透過する放電
管と、前記プラズマ発生室の反放電管側に設けられ前記
マイクロ波を反射する反射端との間隔を前記マイクロ波
の管内波長の1/8以上とし、前記プラズマ発生室で生
じた活性粒子を前記処理室内に均一に放出させる均一化
手段を設けたことを特徴とするマイクロ波プラズマ処理
装置。
1. A plasma generation chamber to which a processing gas is supplied and is evacuated to a predetermined pressure, a processing chamber communicating with one side across the plasma generation chamber, and the other end connected to the side opposite to the processing chamber of the plasma generation chamber. a waveguide having a microwave generation source in the plasma generation chamber; a discharge tube provided between the plasma generation chamber and the waveguide and transmitting the microwave from the microwave generation source; A distance between a reflecting end provided on the opposite side of the discharge tube and reflecting the microwave is set to 1/8 or more of the tube wavelength of the microwave, and active particles generated in the plasma generation chamber are uniformly discharged into the processing chamber. A microwave plasma processing apparatus characterized by being provided with a homogenizing means.
JP26760186A 1986-11-12 1986-11-12 Microwave plasma processor Granted JPS63122123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26760186A JPS63122123A (en) 1986-11-12 1986-11-12 Microwave plasma processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26760186A JPS63122123A (en) 1986-11-12 1986-11-12 Microwave plasma processor

Publications (2)

Publication Number Publication Date
JPS63122123A true JPS63122123A (en) 1988-05-26
JPH0551173B2 JPH0551173B2 (en) 1993-07-30

Family

ID=17446996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26760186A Granted JPS63122123A (en) 1986-11-12 1986-11-12 Microwave plasma processor

Country Status (1)

Country Link
JP (1) JPS63122123A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6414921A (en) * 1987-07-08 1989-01-19 Anelva Corp Microwave plasma processor
JPH0567586A (en) * 1991-09-09 1993-03-19 Nec Corp Ecr plasma etching apparatus
JPH06267910A (en) * 1993-03-17 1994-09-22 Hitachi Ltd Microwave plasma treater
US5647944A (en) * 1993-03-17 1997-07-15 Hitachi, Ltd. Microwave plasma treatment apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59103340A (en) * 1983-09-21 1984-06-14 Hitachi Ltd Plasma processing apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59103340A (en) * 1983-09-21 1984-06-14 Hitachi Ltd Plasma processing apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6414921A (en) * 1987-07-08 1989-01-19 Anelva Corp Microwave plasma processor
JPH0567586A (en) * 1991-09-09 1993-03-19 Nec Corp Ecr plasma etching apparatus
JPH06267910A (en) * 1993-03-17 1994-09-22 Hitachi Ltd Microwave plasma treater
US5647944A (en) * 1993-03-17 1997-07-15 Hitachi, Ltd. Microwave plasma treatment apparatus

Also Published As

Publication number Publication date
JPH0551173B2 (en) 1993-07-30

Similar Documents

Publication Publication Date Title
US6818852B2 (en) Microwave plasma processing device, plasma processing method, and microwave radiating member
KR101157143B1 (en) Top board of microwave plasma processing device, plasma processing device and plasma processing method
JP3217274B2 (en) Surface wave plasma processing equipment
JP4974318B2 (en) Microwave plasma processing apparatus and processing method
WO2006009213A1 (en) Plasma processing apparatus
WO1999066769A1 (en) Plasma processor
JPH09232099A (en) Plasma treating device
JP2000260747A (en) Planar antenna, plasma treating apparatus and method using the same
US5647944A (en) Microwave plasma treatment apparatus
JPS63122123A (en) Microwave plasma processor
JP2000348898A (en) Method for generating surface wave excited plasma
JPH10158847A (en) Plasma treating system by microwave excitation
JP2644758B2 (en) Resist removal method and apparatus
JP2007258706A (en) Apparatus and method for generating excited and/or ionized particles in plasma
JP3224105B2 (en) Plasma process equipment
WO2020066843A1 (en) Plasma treatment device and plasma treatment method
JP2000331998A (en) Plasma processing device
JP2697464B2 (en) Microwave plasma processing equipment
JP2001167900A (en) Plasma treatment apparatus
JPS59103340A (en) Plasma processing apparatus
JP2857090B2 (en) Microwave-excited plasma processing equipment
JPH10255999A (en) Microwave excited plasma device
TWI707059B (en) Focalized microwave plasma reactor
JPH1145799A (en) Plasma processing device
WO1996019096A1 (en) Method and device for plasma processing

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term