JPS6312135A - Lighting optical system - Google Patents

Lighting optical system

Info

Publication number
JPS6312135A
JPS6312135A JP61155826A JP15582686A JPS6312135A JP S6312135 A JPS6312135 A JP S6312135A JP 61155826 A JP61155826 A JP 61155826A JP 15582686 A JP15582686 A JP 15582686A JP S6312135 A JPS6312135 A JP S6312135A
Authority
JP
Japan
Prior art keywords
optical system
illumination
integrator
reticle
luminous flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61155826A
Other languages
Japanese (ja)
Other versions
JPH0650718B2 (en
Inventor
Kazuhiro Takahashi
和弘 高橋
Akiyoshi Suzuki
章義 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61155826A priority Critical patent/JPH0650718B2/en
Publication of JPS6312135A publication Critical patent/JPS6312135A/en
Priority to US07/267,718 priority patent/US4851882A/en
Publication of JPH0650718B2 publication Critical patent/JPH0650718B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Light Sources And Details Of Projection-Printing Devices (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To light the surfaces to be lighted of a mask, a reticle and the like efficiently, in a lighting optical system utilizing luminous flux from an optical integrator, by making the refractive index of said integrator variable. CONSTITUTION:Luminous flux from a light source 1 is converged with an elliptical mirror 2 and reaches an optical integrator 3. The optical integrator 3 comprises a plurality of minute lenses and forms a secondary light source having uniform light projecting characteristics. The integrator 3 is constituted with a variable power system. The emitting angle of the emitted luminous flux can be changed. In this constitution, the printing range of a reticle 5 can be internally contacted all the time within the circle of the effective range provided by the lighting optical system. Therefore, the luminous flux, which is not used, is decreased, and the lighting efficiency can be improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は照明光学系に関し、特に半導体製造装置におい
て電子回路等の微細パターンが形成されているマスクや
レチクル等の被照射面を効率的に照明する為の照明光学
系に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to an illumination optical system, and in particular to an illumination optical system that efficiently illuminates the irradiated surface of a mask or reticle on which a fine pattern such as an electronic circuit is formed in semiconductor manufacturing equipment. This invention relates to an illumination optical system for illumination.

(従来の技術) 最近の半導体製造技術には電子回路の高集積化に伴い、
高密度の電子回路パターンが形成可能なりソグラフィ技
術が要求されている。
(Conventional technology) Recent semiconductor manufacturing technology includes high integration of electronic circuits.
There is a need for lithography technology that can form high-density electronic circuit patterns.

このうち電子回路パターンを必要とする寸法に比べm倍
に拡大して形成したレチクルを被写体として投影光学系
によりウェハ面上に1/m倍に縮少投影する所謂縮少投
影露光装置か比較的高い解像力が得られる為、現在数も
注目されている。
Among these, a so-called reduction projection exposure apparatus, which uses a reticle formed with an electronic circuit pattern enlarged m times larger than the required size and projects it onto the wafer surface using a projection optical system at a reduced size of 1/m, is relatively effective. They are currently attracting attention because of their high resolution.

この縮少投影露光装置ではウェハ面上に一度に露光でき
る領域は投影光学系の有効面がウニ八寸法に比べて小さ
いので、1回の投影露光が終了するとウェハステージを
一定量移動させて次の領域の露光を繰り返して行うステ
ップ・アンド・すビート方式を採っている。
With this reduced projection exposure system, the effective area of the projection optical system that can be exposed at once on the wafer surface is smaller than the size of a sea urchin, so when one projection exposure is completed, the wafer stage is moved a certain amount and the next A step-and-beat method is used to repeatedly expose the area.

電子回路パターンか形成されているレチクルは一般に四
角形をしており、又ウェハ面上の投影露光範囲は数ミリ
から十数ミリ程度の四角形であり、この範囲中に1〜数
チツプの素子が配置されている。
The reticle on which the electronic circuit pattern is formed is generally rectangular, and the projection exposure range on the wafer surface is a rectangle ranging from several millimeters to more than ten millimeters, and one to several chips of elements are arranged within this range. has been done.

一方縮少投影露光装置におけるレチクル面を照明する照
明光学系の有効照明範囲は円形をしている。そしてウニ
へ面に投影露光する際には有効照明範囲の一部をマスキ
ング機構等で遮光し、レチクル形状と同様の四角形内の
光束のみを使用するようにしている。
On the other hand, the effective illumination range of the illumination optical system that illuminates the reticle surface in a reduction projection exposure apparatus is circular. When performing projection exposure on a surface of a sea urchin, a part of the effective illumination range is blocked by a masking mechanism or the like, so that only the light beam within a rectangular shape similar to the reticle shape is used.

この為レチクル面の大きさが照明光学系の有効照明範囲
の円形内に常に内接する四角形状で照明されれば光源か
らの光束を最も有効に使用することができる。
For this reason, the luminous flux from the light source can be used most effectively if the reticle surface is illuminated in a rectangular shape that is always inscribed within the circle of the effective illumination range of the illumination optical system.

しかしながら現在使用する露光範囲はユーザーでまちま
ちであり、照明光学系の有効照明範囲よりも小さな露光
範囲で使用する場合には、不使用の光束が多くなり照明
効率を低下させる原因となフてくる。
However, the exposure range currently used varies depending on the user, and if the exposure range is smaller than the effective illumination range of the illumination optical system, there will be a large amount of unused luminous flux, which may cause a reduction in illumination efficiency. .

この他室子回路パターンが形成されているマスクを直接
ウェハに重ね合わせて焼付けるコンタクト方式やマスク
とウェハを所定量離して焼付けるプロキシミティ方式を
用いる半導体製造装置においてもマスク面上への照明に
ついても使用するウェハのインチサイズにより前述と同
様の問題がある。
In addition, in semiconductor manufacturing equipment that uses the contact method, in which a mask with a circuit pattern formed thereon is directly placed on the wafer and baked, and the proximity method, in which the mask and wafer are printed a predetermined distance apart, illumination on the mask surface is also used. There are also problems similar to those described above depending on the inch size of the wafer used.

(発明が解決しようとする問題点) 本発明は照明光学系の一部に使用されているオプティカ
ルインテグレータを変倍系より構成することにより、露
光範囲の大きさが有効照明範囲よりも小さい場合でも均
一照明が可能で、しかも光源からの光束を常に効率的に
使用することのできる特に半導体製造装置に好適な照明
光学系の提供を目的とする。
(Problems to be Solved by the Invention) By configuring the optical integrator used in a part of the illumination optical system as a variable magnification system, the present invention can be used even when the size of the exposure range is smaller than the effective illumination range. An object of the present invention is to provide an illumination optical system that is particularly suitable for semiconductor manufacturing equipment and is capable of uniform illumination and can always efficiently use the luminous flux from a light source.

(問題点を解決する為の手段) 光源からの光束を複数の微少レンズより成るオプティカ
ルインテグレータに入射させ、該オプティカルインテグ
レータから射出する光束を利用して所定面上を照明する
照明光学系において、前記オプティカルインテグレータ
の屈折力を可変としたことである。
(Means for Solving the Problems) In an illumination optical system that makes a light beam from a light source enter an optical integrator consisting of a plurality of minute lenses, and illuminates a predetermined surface using the light beam emitted from the optical integrator, This is because the refractive power of the optical integrator is made variable.

この他本発明の特徴は実施例において記載されている。Other features of the invention are described in the Examples.

(実施例) 第1図は本発明を縮少投影露光装置に適用したときの一
実施例の光学系の概略図である。同図において1は光源
で、例えば水銀ランプやハロゲンランプ等から成ってい
る。2は楕円ミラーで光源1からの光束を効率良く集光
する為にその第1焦点に光[1の発光面を配置し、光源
1からの光束を第2焦点近傍に集光している。3はオプ
ティカルインテグレータで配光特性の均一な2次光源を
形成する為に複数の微少レンズより成り楕円ミラー2の
第2焦点近傍に配置されている。4はコンデンサーレン
ズであり、その前側焦点近傍に配置されている2次光源
であるオプティカルインテグレータ3からの光束を集光
し、被照射面であるレチクル5を均一照明している。6
は投影光学系でありレチクル5をウェハ7面上に縮少投
影している。
(Embodiment) FIG. 1 is a schematic diagram of an optical system of an embodiment when the present invention is applied to a reduction projection exposure apparatus. In the figure, reference numeral 1 denotes a light source, for example, a mercury lamp or a halogen lamp. Reference numeral 2 denotes an elliptical mirror, and in order to efficiently condense the luminous flux from the light source 1, the light emitting surface of the light [1 is arranged at its first focal point, and the luminous flux from the light source 1 is condensed near the second focal point. Reference numeral 3 denotes an optical integrator, which is made up of a plurality of minute lenses and is arranged near the second focal point of the elliptical mirror 2 in order to form a secondary light source with uniform light distribution characteristics. A condenser lens 4 condenses a light beam from an optical integrator 3, which is a secondary light source, arranged near its front focal point, and uniformly illuminates a reticle 5, which is a surface to be illuminated. 6
is a projection optical system that projects the reticle 5 onto the wafer 7 in a reduced size.

尚本実施例においてコンタクト方式やプロキシミティ方
式の場合は投影光学系6は不要で被照射面であるマスク
5とウェハ7は直接密着若しくは所定量の間隔を隔てて
配置される。
In this embodiment, in the case of the contact method or the proximity method, the projection optical system 6 is not necessary, and the mask 5 and the wafer 7, which are the surfaces to be irradiated, are placed in close contact with each other or are spaced apart by a predetermined distance.

本実施例におけるレチクル5の焼付範囲は四角形であり
、一方照明光学系のコンデンサーレンズからの光束によ
る有効照明範囲は円形である。この為第2図(A)に示
すようにレチクル5の焼付範囲20が照明光学系の有効
照明範囲21の円形内に内接する四角形となるように構
成しておけば光源からの光束を最も効率的に用いること
ができる。しかしながら実際には各種の仕様条件により
同図(B)のように焼付範囲20が有効照明範囲21に
比べて小さい場合がある。この為仕様条件によっては不
使用の照明光束が多くなり照明効率を低下させる原因と
なっている。
In this embodiment, the printing range of the reticle 5 is square, while the effective illumination range by the light beam from the condenser lens of the illumination optical system is circular. For this reason, as shown in FIG. 2(A), if the printing range 20 of the reticle 5 is configured to be a square inscribed within the circle of the effective illumination range 21 of the illumination optical system, the luminous flux from the light source can be used most efficiently. It can be used in many ways. However, in reality, depending on various specification conditions, the burning range 20 may be smaller than the effective illumination range 21, as shown in FIG. 2B. For this reason, depending on the specification conditions, there may be a large amount of unused illumination luminous flux, causing a reduction in illumination efficiency.

そこで本実施例ではオプティカルインテグレータ3を変
倍系より構成し、才プティカルインテグレータ3より射
出する光束の射出角を変化させることにより、照明光学
系による有効照明範囲の円形内にレチクル5の焼付範囲
が常に内接するようにして不使用の照明光束を減らし、
照明効率の向上を図っている。
Therefore, in this embodiment, the optical integrator 3 is configured with a variable magnification system, and by changing the exit angle of the light beam emitted from the optical integrator 3, the printing range of the reticle 5 is set within the circular effective illumination range by the illumination optical system. is always inscribed to reduce unused illumination flux,
Efforts are being made to improve lighting efficiency.

第3図(A)は第1図に示すオプティカルインテグレー
タ3の拡大図であり、30は照明光学系の光軸、31,
32.33は各々複数の微少レンズより成る微少レンズ
群である。
FIG. 3(A) is an enlarged view of the optical integrator 3 shown in FIG. 1, where 30 is the optical axis of the illumination optical system, 31,
32 and 33 are microlens groups each consisting of a plurality of microlenses.

第3図(B)は同図(A)の1つの微少レンズ群の横断
面図であり、個々の微少レンズを6角柱のガラスの片面
又は両面を凸面加工して構成している。
FIG. 3(B) is a cross-sectional view of one microlens group shown in FIG. 3(A), and each microlens is constructed by processing one or both surfaces of hexagonal prism glass into a convex surface.

尚微少レンズ群を1枚の大きなガラスの片面又は両面に
複数の凸面を加工したガラスモールドより構成しても良
い。又同図(C)に示す如く微少レンズを1つ1つ鏡筒
に設けて構成しても良い。
Note that the microlens group may be constructed from a glass mold in which a plurality of convex surfaces are formed on one or both sides of a large piece of glass. Further, as shown in FIG. 2C, the lens barrel may be provided with microlenses one by one.

第4図(A) 、 (B)は各々オプティカルインテグ
レータ3を構成する3つの微少レンズ群の例えば第3図
(A)の光軸30上の3つの微少レンズの説明図である
。図中41.42.43は各々微少レンズ群31,32
.33に対応する微少レンズ、Lは照明光束である。
FIGS. 4(A) and 4(B) are explanatory diagrams of three microlens groups constituting the optical integrator 3, for example, three microlenses on the optical axis 30 in FIG. 3(A). In the figure, 41, 42, and 43 are micro lens groups 31 and 32, respectively.
.. 33 is a microlens, and L is an illumination light flux.

今微少レンズ41の屈折力をΦ1、微少レンズ42と微
少レンズ43の合成レンズ44の屈折力をΦ23とする
と微少レンズ43からの光束の最大射出角αは屈折力Φ
23に比例してくる。
Now, if the refractive power of the microlens 41 is Φ1, and the refractive power of the composite lens 44 of the microlens 42 and 43 is Φ23, the maximum exit angle α of the light beam from the microlens 43 is the refractive power Φ
It is proportional to 23.

この為2つの微少レンズ42.43との間隔を変えて屈
折力Φ23を変化させれば最大射出角αを同図(B)に
示す如く射出角α゛の如く任意に変えることができる。
Therefore, by changing the distance between the two microlenses 42 and 43 and changing the refractive power Φ23, the maximum exit angle α can be arbitrarily changed to the exit angle α′ as shown in FIG.

第4図(C)はこのときの屈折力配置の説明図である。FIG. 4(C) is an explanatory diagram of the refractive power arrangement at this time.

2次光源の位置45からオプティカルインテグレータの
合成レンズ群44の後側主点位置までの距離dは、d=
1/Φ2(1−Φ1/Φ23)である。
The distance d from the position 45 of the secondary light source to the rear principal point position of the composite lens group 44 of the optical integrator is d=
1/Φ2 (1-Φ1/Φ23).

又微少レンズ41の主点から2次光源45までの長さl
は、l= 1/Φ23(2−Φ1/Φ23)である。
Also, the length l from the principal point of the microlens 41 to the secondary light source 45
is l=1/Φ23 (2-Φ1/Φ23).

本実施例では変倍系に伴う2次光源位置を不変とし、例
えば2次光源の結像位置が投影レンズの瞳位置からズレ
ないようにオプティカルインテグレータ全体を光軸方向
に移動させる。
In this embodiment, the position of the secondary light source associated with the variable magnification system remains unchanged, and the entire optical integrator is moved in the optical axis direction so that, for example, the imaging position of the secondary light source does not deviate from the pupil position of the projection lens.

本実施例ではオプティカルインテグレータの屈折力を変
化させる際、各状態にあけるオプティカルインテグレー
タからの射出光束の主光線が常に照明光学系の光軸と略
平行に射出するようにしてレチクル中心に入射させるこ
とにより、オプティカルインテグレータの射出面の各点
からの光束によるレチクル上の照明範囲が一致し効率の
良い照明を可能にし、レチクル面上の照明の均一化を図
っている。即ち微少レンズ31と合成レンズ群44との
主点間隔を各状態で1/Φ23となるように、つまり合
成レンズ群44の焦点距離と一致するようにしてレチク
ル面上を均一に照明している。
In this embodiment, when changing the refractive power of the optical integrator, the principal ray of the emitted light beam from the optical integrator in each state is always emitted approximately parallel to the optical axis of the illumination optical system, so that it enters the center of the reticle. As a result, the range of illumination on the reticle by the light beams from each point on the exit surface of the optical integrator matches, making efficient illumination possible and uniform illumination on the reticle surface. That is, the distance between the principal points of the microlens 31 and the composite lens group 44 is set to 1/Φ23 in each state, that is, to match the focal length of the composite lens group 44, so that the reticle surface is uniformly illuminated. .

第5図はオプティカルインテグレータ3から射出する光
束の2つの射出角α、α′に対するレチクル5面上の有
効照明範囲との関係を示す説明図である。
FIG. 5 is an explanatory diagram showing the relationship between the effective illumination range on the surface of the reticle 5 and the two exit angles α and α' of the light beam emitted from the optical integrator 3.

同図において射出角α、α゛のときレチクル5面上の照
明範囲の半径は各々R,R”となる。ここで図より明ら
かのようにα°/α=R’/Rの関係がある。
In the figure, when the exit angles are α and α゛, the radii of the illumination range on the 5th surface of the reticle are R and R'', respectively.As is clear from the figure, there is a relationship of α°/α=R'/R. .

本実施例ではこのときの関係を利用して2つ微少レンズ
群32.33との間隔を変えて、即ちオプティカルイン
テグレータの屈折力を変えて、光束の射出角α、α゛を
変化させることにより照明範囲を任意に制御している。
In this embodiment, by utilizing this relationship, the distance between the two microlens groups 32 and 33 is changed, that is, the refractive power of the optical integrator is changed, and the exit angles α and α゛ of the light beam are changed. The lighting range can be controlled arbitrarily.

尚この場合レチクル5面上への入射光束の入射角度βは
投影解像力に影響する量であるが、この角度βはオプテ
ィカルインテグレータの変倍に伴って変化しない不変量
である。これはコンタクト方式やプロキシミティ方式を
用いた場合でも同様である。
In this case, the angle of incidence β of the incident light beam onto the surface of the reticle 5 is an amount that affects the projection resolution, but this angle β is an invariant that does not change as the optical integrator changes magnification. This is the same even when the contact method or proximity method is used.

これにより本実施例では露光範囲が小さくなっても有効
照明範囲を第2図(A)に示す如くレチクルの焼付範囲
20を内接する円形とすることにより常に効率の良い照
明を行フている。
As a result, in this embodiment, even if the exposure range becomes small, efficient illumination is always achieved by making the effective illumination range into a circle that inscribes the printing range 20 of the reticle as shown in FIG. 2(A).

例えば焼付範囲20の1辺の長さを変倍により10%小
さくすると約23%の照度アップを図ることができる。
For example, if the length of one side of the burning area 20 is reduced by 10% by changing the magnification, the illuminance can be increased by about 23%.

又コンタクト方式やプロキシミティ方式の照明光学系で
は照明範囲を6”から5”に変えると約44%の照度ア
ップを図ることができる。
Furthermore, in a contact type or proximity type illumination optical system, by changing the illumination range from 6'' to 5'', the illuminance can be increased by approximately 44%.

本実施例ではオプティカルインテグレータ3を3つの微
少レンズ群より構成し、このうち2つの微少レンズ群を
光軸上移動させ、かつインテグレータ全体を光軸上移動
させることにより照明範囲を変化させたが、微少レンズ
群を4つ以上で構成し、このうち少なくとも2つのレン
ズ群間隔を変化させるようにしても良い。
In this example, the optical integrator 3 is composed of three microlens groups, and the illumination range is changed by moving two of these microlens groups along the optical axis and moving the entire integrator along the optical axis. The micro lens group may be composed of four or more, and the interval between at least two of these lens groups may be changed.

オプティカルインテグレータの変倍はショットレイアル
ドをコンソールから人力する際に自動的に行っても良い
。即ちショットレイアウトからレチクル面上の照明範囲
をコンピュータにより計算し、その値に基づいてオプテ
ィヵルインテグレータの所定の微少レンズ群を駆動機構
により自動的に駆動させても良い。
The magnification change of the optical integrator may be performed automatically when the Schottreiald is manually operated from the console. That is, the illumination range on the reticle surface may be calculated by a computer from the shot layout, and a predetermined microlens group of the optical integrator may be automatically driven by a drive mechanism based on the calculated value.

尚以上の実施例はそのままコンタクト方式やブロキシミ
ティ方式の照明光学系にも良好に適用することができる
The above-described embodiments can also be successfully applied to contact-type or broximity-type illumination optical systems.

(発明の効果) 本発明によれば被照射面の有効画面寸法に応じて照明光
学系中のオプティカルインテグレータを構成する少なく
とも2つの微少レンズ群を移動させて変倍を行い有効照
明範囲を変えることにより、光束の損失の少ない常に効
率的な照明が可能な照明光学系を達成することが出来る
。又変倍をコンソール人力により自動的に行うことによ
り高精度で、かつ迅速に行うことを可能としている。
(Effects of the Invention) According to the present invention, the effective illumination range can be changed by changing the magnification by moving at least two microlens groups that constitute the optical integrator in the illumination optical system according to the effective screen size of the illuminated surface. As a result, an illumination optical system capable of efficient illumination with little loss of luminous flux can be achieved. Furthermore, by automatically performing magnification changes manually using the console, it is possible to perform the changes with high precision and quickly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を微少投影露光装置に適用したときの一
実施例の光学系の概略図、第2図(A)。 (B) 、 (G)は各々被照射面と有効照明範囲との
関係を示す説明図、第3図(A) 、 (B) 、 (
C)は各々第1図の一部分の説明図、第4図(A) 、
 (B) 。 (C5)は各々本発明に係るオプティカルインテグレー
タの変倍の説明図、第5図はオプティカルインテグレー
タからの射出光束と有効照明範囲との関係を示す説明図
である。 図中1は光源、2は楕円ミラー、3はオプティカルイン
テグレータ、4はコンデンサーレンズ、5は被照射面、
6は投影光学系、7はウェハである。 特許出願人  キャノン株式会社 児  1  図 扼  り  ロ (△)      (B)(G) 兜  3  回 (A)       (B)       (C)夷 
 4  回 91       φ23
FIG. 1 is a schematic diagram of an optical system of an embodiment when the present invention is applied to a minute projection exposure apparatus, and FIG. 2 (A). (B) and (G) are explanatory diagrams showing the relationship between the irradiated surface and the effective illumination range, respectively, and Fig. 3 (A), (B), (
C) is an explanatory diagram of a part of FIG. 1, FIG. 4(A),
(B). (C5) is an explanatory diagram of magnification change of the optical integrator according to the present invention, and FIG. 5 is an explanatory diagram showing the relationship between the emitted light flux from the optical integrator and the effective illumination range. In the figure, 1 is a light source, 2 is an elliptical mirror, 3 is an optical integrator, 4 is a condenser lens, 5 is a surface to be illuminated,
6 is a projection optical system, and 7 is a wafer. Patent applicant: Canon Co., Ltd. 1 Zutsuri ro (△) (B) (G) Kabuto 3 times (A) (B) (C) 夷
4 times 91 φ23

Claims (3)

【特許請求の範囲】[Claims] (1)光源からの光束を複数の微少レンズより成るオプ
ティカルインテグレータに入射させ、該オプティカルイ
ンテグレータから射出する光束を利用して所定面上を照
明する照明光学系において、前記オプティカルインテグ
レータの屈折力を可変としたことを特徴とする照明光学
系。
(1) In an illumination optical system that makes a light beam from a light source enter an optical integrator consisting of a plurality of minute lenses and illuminates a predetermined surface using the light beam emitted from the optical integrator, the refractive power of the optical integrator is variable. An illumination optical system characterized by:
(2)前記オプティカルインテグレータを少なくとも3
つの屈折面を有するレンズ群より構成したことを特徴と
する特許請求の範囲第1項記載の照明光学系。
(2) At least three optical integrators
2. The illumination optical system according to claim 1, wherein the illumination optical system is comprised of a lens group having two refractive surfaces.
(3)前記オプティカルインテグレータの変倍をコンソ
ールからの入力信号により自動的に行ったことを特徴と
する特許請求の範囲第1項記載の照明光学系。
(3) The illumination optical system according to claim 1, wherein the magnification of the optical integrator is automatically changed by an input signal from a console.
JP61155826A 1985-12-06 1986-07-02 Illumination optical system and exposure apparatus using the same Expired - Fee Related JPH0650718B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61155826A JPH0650718B2 (en) 1986-07-02 1986-07-02 Illumination optical system and exposure apparatus using the same
US07/267,718 US4851882A (en) 1985-12-06 1988-11-04 Illumination optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61155826A JPH0650718B2 (en) 1986-07-02 1986-07-02 Illumination optical system and exposure apparatus using the same

Publications (2)

Publication Number Publication Date
JPS6312135A true JPS6312135A (en) 1988-01-19
JPH0650718B2 JPH0650718B2 (en) 1994-06-29

Family

ID=15614336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61155826A Expired - Fee Related JPH0650718B2 (en) 1985-12-06 1986-07-02 Illumination optical system and exposure apparatus using the same

Country Status (1)

Country Link
JP (1) JPH0650718B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4988188A (en) * 1987-08-31 1991-01-29 Canon Kabushiki Kaisha Illumination device
KR20200057045A (en) * 2017-09-28 2020-05-25 프라운호퍼-게젤샤프트 추르 푀르데룽 데어 안제반텐 포르슝 에 파우 Optical beam former

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS639186A (en) * 1986-06-30 1988-01-14 Komatsu Ltd Illuminating optical device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS639186A (en) * 1986-06-30 1988-01-14 Komatsu Ltd Illuminating optical device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4988188A (en) * 1987-08-31 1991-01-29 Canon Kabushiki Kaisha Illumination device
KR20200057045A (en) * 2017-09-28 2020-05-25 프라운호퍼-게젤샤프트 추르 푀르데룽 데어 안제반텐 포르슝 에 파우 Optical beam former
JP2020535487A (en) * 2017-09-28 2020-12-03 フラウンホファー ゲセルシャフト ツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. Light beam former
JP2022051831A (en) * 2017-09-28 2022-04-01 フラウンホファー ゲセルシャフト ツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. Optical beam former
US11327325B2 (en) 2017-09-28 2022-05-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Optical beam former

Also Published As

Publication number Publication date
JPH0650718B2 (en) 1994-06-29

Similar Documents

Publication Publication Date Title
US4497015A (en) Light illumination device
CN101681123B (en) Illumination optical system, exposure apparatus, and device manufacturing method
US4851882A (en) Illumination optical system
US4497013A (en) Illuminating apparatus
JP3102076B2 (en) Illumination device and projection exposure apparatus using the same
US5659429A (en) Illuminating optical apparatus and method
KR101336404B1 (en) Optical integrator, illumination optical device, photolithograph, photolithography, and method for fabricating device
JPS60232552A (en) Lighting optical system
USRE34634E (en) Light illumination device
JPH0817223A (en) Illuminating optical device
JPH10199800A (en) Illumination optical device equipped with optical integrator
JP2997351B2 (en) Illumination optics
JP2004071776A (en) Illuminating optical system, exposure method, and aligner
TW201506548A (en) Light source device and exposure device
JP3208863B2 (en) Illumination method and apparatus, exposure method, and semiconductor element manufacturing method
JPH01114035A (en) Aligner
JPH08203803A (en) Exposure apparatus
JP3008744B2 (en) Projection exposure apparatus and semiconductor device manufacturing method using the same
JPS6312135A (en) Lighting optical system
JP2914035B2 (en) Ring light flux forming method and illumination optical device
JPH02285628A (en) Lighting optical system
JP2003015314A (en) Illumination optical device and exposure device provided with the same
CN105446085B (en) Illuminating and optical apparatus, exposure device and the method for manufacturing article
JP3376043B2 (en) Illumination device and projection exposure apparatus using the same
JPS6380243A (en) Illuminating optical device for exposing device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees