JPS63121000A - Method for supplying pressure to container - Google Patents

Method for supplying pressure to container

Info

Publication number
JPS63121000A
JPS63121000A JP26367186A JP26367186A JPS63121000A JP S63121000 A JPS63121000 A JP S63121000A JP 26367186 A JP26367186 A JP 26367186A JP 26367186 A JP26367186 A JP 26367186A JP S63121000 A JPS63121000 A JP S63121000A
Authority
JP
Japan
Prior art keywords
pressure
container
time
temperature
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26367186A
Other languages
Japanese (ja)
Other versions
JPH0419431B2 (en
Inventor
Ryo Fukuda
僚 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Co Ltd
Original Assignee
Fukuda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Co Ltd filed Critical Fukuda Co Ltd
Priority to JP26367186A priority Critical patent/JPS63121000A/en
Publication of JPS63121000A publication Critical patent/JPS63121000A/en
Publication of JPH0419431B2 publication Critical patent/JPH0419431B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/06Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with compressed gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0109Shape cylindrical with exteriorly curved end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0119Shape cylindrical with flat end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/04Methods for emptying or filling

Abstract

PURPOSE:To aim at improvement in operating efficiency by making fluid pressure in a container be under the balanced condition at the speed more then natural transition speed. CONSTITUTION:First, a fluid pressure source 1 and a container 2 are connected to each other, and an initial pressure, whose absolute value is greater then that of a set pressure, is applied into the container 2. Next, the container 2 is disconnected from the fluid pressure source 1, the pressure in the container 2 is released outward from the container 2 so that the absolute value is reduced, thereby resulting in the set pressure in the container 2. With this constitution, fluid temperature in the container 2 becomes a balanced condition with outer temperature at the speed more than natural transition speed, so that the stable set pressure can be obtained in a short time, thereby improving operating efficiency.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、容器内に安定した設定圧力を供給する方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) This invention relates to a method for supplying a stable set pressure within a container.

(従来の技術) 一般に、容器に亀裂等が生じているか否かを検査するた
めに、リークテストが行なわれる。
(Prior Art) Generally, a leak test is performed to check whether a container has cracks or the like.

このリークテストのでは、容器の内部を加圧(以下、加
圧法と称する)あるいは減圧(以下、減圧法と称する)
して容器内をテスト圧力(設定圧力)にした後、容器を
流体圧力源から閉鎖し、その後の容器内の圧力変動を圧
力計等で検出する。加圧法においては圧力が下がってい
く場合には容器から気体が漏洩しているものと判断し、
減圧法においては圧力が上がっていく場合には漏洩して
いるものと判断する。
In this leak test, the inside of the container is pressurized (hereinafter referred to as the pressurization method) or depressurized (hereinafter referred to as the depressurization method).
After setting the test pressure (set pressure) inside the container, the container is closed from the fluid pressure source, and subsequent pressure fluctuations inside the container are detected with a pressure gauge or the like. In the pressurization method, if the pressure decreases, it is assumed that gas is leaking from the container.
In the depressurization method, if the pressure increases, it is determined that there is a leak.

第6図17図は、それぞれ上記従来の加圧法によるリー
クテストと減圧法によるリークテストの場合の時間経過
に伴う容器内の圧力変動を表したグラフであり、以下こ
れらのグラフについて説明する。
FIG. 6 and FIG. 17 are graphs showing the pressure fluctuations in the container over time in the case of the leak test using the conventional pressurization method and the leak test using the depressurization method, respectively, and these graphs will be explained below.

加圧法の場合、加圧開始からし1時間経過後にテスト圧
力ptに達する。この時、容器内の気体の温度は加圧さ
れたことにより外気温度よりも上昇する。したがって、
上記t1時間経過直後すなわちテスト圧力Ptに達した
直後に容器を流体圧力源から閉鎖すると、容器から外気
へ放熱されて容器内の気体の温度が下がり、その結果、
容器内の圧力は、容器からの気体の漏れがなくても第6
図中実線Aで示すように低下し、t1時間経過したとこ
ろで安定する。又、容器内の圧力がテスト圧力Ptに達
した後、t2時間又はt1時間まで容器を圧力源に接続
したまま容器内を上記テスト圧力ptに維持してから容
器を閉鎖すると、圧力低下量は減るものの容器内の圧力
はそれぞれ実aB又は実線Cのように低下し、t1時間
で安定する。そして、容器内の圧力をt4時間までテス
ト圧力ptに維持した後に容器を閉鎖した場合には、容
器内の気体温度は既に外気温と平衡状態に達しているた
め、圧力変動はなくなる。
In the case of the pressurization method, the test pressure pt is reached one hour after the start of pressurization. At this time, the temperature of the gas inside the container rises above the outside air temperature due to the pressurization. therefore,
When the container is closed from the fluid pressure source immediately after the above-mentioned time t1 has elapsed, that is, immediately after the test pressure Pt is reached, heat is radiated from the container to the outside air and the temperature of the gas inside the container decreases.
The pressure inside the container is approximately 60% even if there is no leakage of gas from the container.
It decreases as shown by solid line A in the figure, and stabilizes after time t1 has elapsed. Furthermore, after the pressure inside the container reaches the test pressure Pt, if the container is kept connected to the pressure source until time t2 or time t1 and the inside of the container is maintained at the test pressure pt, and then the container is closed, the amount of pressure drop will be Although it decreases, the pressure inside the container decreases as shown by solid line aB and solid line C, respectively, and stabilizes at time t1. When the container is closed after the pressure inside the container is maintained at the test pressure pt until time t4, the pressure fluctuation disappears because the gas temperature inside the container has already reached an equilibrium state with the outside temperature.

減圧法の場合には上記加圧法の場合と逆の現象を生ずる
。即ち、減圧開始からt+’時間経過後にテスト圧力P
t’ に達する。この時、容器内の気体の温度は減圧さ
れたことにより外気温度よりも下がる。したがって、上
記t 、 1時間経過直後すなわちテスト圧力Pt′に
達した直後に容器を流体圧力源から閉鎖すると、容器は
外気から熱を奪い容器内の気体の温度が上がり、その結
果、容器内の圧力は第7図中実線A′で示すように上昇
し、t 41時間経過したところで安定する。又、容器
内の圧力がテスト圧力Pt’に達した後、t 21時間
又はE、′時間主で容器を圧力源にしたまま容器内を上
記テスト圧力Pt’に維持してから容器を閉鎖すると、
容器内の圧力はそれぞれ実線B′又は実線C′のように
上昇し、t 、 7時間で安定する。
In the case of the reduced pressure method, a phenomenon opposite to that in the above-mentioned pressurized method occurs. That is, after t+' time elapses from the start of depressurization, the test pressure P
t' is reached. At this time, the temperature of the gas inside the container is lower than the outside temperature due to the reduced pressure. Therefore, if the container is closed from the fluid pressure source immediately after one hour has elapsed, i.e., immediately after the test pressure Pt' has been reached, the container will absorb heat from the outside air and the temperature of the gas inside the container will increase, resulting in an increase in the temperature of the gas inside the container. The pressure increases as shown by the solid line A' in FIG. 7, and stabilizes after t41 hours have elapsed. In addition, after the pressure inside the container reaches the test pressure Pt', the container is maintained at the above test pressure Pt' with the container as the pressure source for t21 hours or E', and then the container is closed. ,
The pressure inside the container rises as shown by solid line B' or solid line C', respectively, and stabilizes at t and 7 hours.

そして、t 41時間主で容器内の圧力をテスト圧力P
t’に維持した後に容器を閉鎖した場合には、容器内の
気体温度は既に外気温と平衡状態に達しているため、圧
力変動はなく圧カ一定になる。
Then, test the pressure inside the container at t 41 hours at a pressure P
When the container is closed after being maintained at t', the gas temperature within the container has already reached an equilibrium state with the outside temperature, so there is no pressure fluctuation and the pressure remains constant.

上記説明から明らかなように、t4時間又はt<’時間
前に容器を閉じてリークテストを行なった場合、容器内
の気体の温度変化による自然な圧力変動と、容器からの
リークによる圧力変動とが一緒に検出されるため、リー
クの有無を的確に判断するのが難しかった。
As is clear from the above explanation, if a leak test is performed with the container closed before t4 hours or t<' hours, there will be natural pressure fluctuations due to temperature changes of the gas inside the container, and pressure fluctuations due to leakage from the container. are detected at the same time, making it difficult to accurately determine the presence or absence of a leak.

したがって、実際にはt1時間又はt41時間まで、す
なわち容器内の温度が外気温と平衡状態になる主で、容
器と圧力源とを連通させてテスト圧力PLを維持し続け
た後に、容器を閉鎖して圧力変動を検出し、リークテス
トに正確を期している。
Therefore, in reality, the container is closed until time t1 or time t41, that is, when the temperature inside the container is in equilibrium with the outside temperature and after the container and pressure source are communicated and the test pressure PL is maintained. to detect pressure fluctuations and ensure accuracy in leak tests.

(発明が解決しようとする問題点) 上記のように、容器内の温度が自然に外気温と平衡にな
るまで待ってリークテストを行なうため、リークテスト
に長時間を要するようになり、能率が悪かった。
(Problems to be solved by the invention) As mentioned above, since the leak test is performed after waiting until the temperature inside the container naturally equilibrates with the outside temperature, the leak test takes a long time and efficiency is reduced. It was bad.

(問題点を解決するための手段) この発明は上記問題点を解決するためになされたもので
、その要旨は、初めに流体圧力源と容器とを接続して、
設定圧力より絶対値の大きい初期圧力を容器内に付与し
、次に、容器を流体圧力源から遮断し、容器内の圧力を
容器外へ逃がしてその絶対値を低下させることにより、
容器内を設定圧力にすることを特徴とする容器への圧力
供給方法にある。
(Means for Solving the Problems) This invention has been made to solve the above problems, and its gist is that first, a fluid pressure source and a container are connected,
By applying an initial pressure in the container that is greater in absolute value than the set pressure, then isolating the container from the fluid pressure source and releasing the pressure in the container to the outside of the container to reduce its absolute value,
A method of supplying pressure to a container, characterized by bringing the inside of the container to a set pressure.

(作用) 初めに設定圧力より絶対値の大きい初期圧力を容器内に
付与し、この後、容器内の圧力を容器外へ逃がしてその
絶対値を低下させることにより、設定圧力にするため、
容器内の流体の温度が自然的推移以上の速さで外気温と
平衡状態に達するようになり、短時間で容器内の温度が
安定になるので、短時間で安定した設定圧力を得ること
ができる。
(Function) First, an initial pressure that is greater in absolute value than the set pressure is applied inside the container, and then the pressure inside the container is released to the outside of the container to reduce the absolute value to reach the set pressure.
The temperature of the fluid inside the container reaches an equilibrium state with the outside temperature faster than its natural course, and the temperature inside the container becomes stable in a short period of time, making it possible to obtain a stable set pressure in a short period of time. can.

(実施例) 以下、この発明の一実施例を第1図から第3図までの図
面に従って説明する。
(Embodiment) An embodiment of the present invention will be described below with reference to the drawings from FIG. 1 to FIG. 3.

第1図は、この発明の加圧法によるリークテストを実施
する場合の概略70−グイアグラムを示している。両端
に加圧空気源1(流体圧力源)と容器2を接続する配管
ライン11の途中には、レギエレータ3、圧力計4、電
磁弁S■1、圧力スイッチ5、電磁弁S V sが配置
されている。これら電磁弁sv、、sv、は加圧空気源
1と容器2との間を遮断したり開通させるためのもので
ある。上記配管ライン11は、電磁弁S■1と圧力スイ
ッチ5の間において、分岐配管ライン12.13を有し
、分岐配管ライン12には排気用の電磁弁S■4が配置
され、分岐配管ライン13には圧力逃がし用の電磁弁S
 V 2と絞り弁6が配置されている。
FIG. 1 shows a schematic 70-G diagram when performing a leak test using the pressurization method of the present invention. A regierator 3, a pressure gauge 4, a solenoid valve S1, a pressure switch 5, and a solenoid valve S V s are arranged in the middle of a piping line 11 that connects a pressurized air source 1 (fluid pressure source) and a container 2 at both ends. has been done. These solenoid valves sv, , sv are for shutting off or opening communication between the pressurized air source 1 and the container 2. The piping line 11 has a branch piping line 12.13 between the solenoid valve S1 and the pressure switch 5, and the branch piping line 12 is provided with an exhaust solenoid valve S4, and the branch piping line 13 is a solenoid valve S for pressure relief.
V 2 and a throttle valve 6 are arranged.

又、電磁弁SV、と容器2の間の配管ライン11には分
岐配管ライン14を介して圧力センサ7が接続されてい
る。この圧力センサ7は、ダイヤフラム(図示しない)
を内蔵し、このダイヤフラムの変形を電磁的に検出する
ものであり、ダイヤフラムの一側のポートが上記分岐配
管ライン14に接続され、他側のポートが大気に開放さ
れている。
Further, a pressure sensor 7 is connected to the piping line 11 between the solenoid valve SV and the container 2 via a branch piping line 14. This pressure sensor 7 is a diaphragm (not shown)
The deformation of this diaphragm is electromagnetically detected, and a port on one side of the diaphragm is connected to the branch piping line 14, and a port on the other side is open to the atmosphere.

上記各電磁弁sv、、sv、、sv、、svl、及び圧
力スイッチ5はシーケンス制御されている。尚、加圧前
においては、容器2内の圧力は外気圧に等しい。
The electromagnetic valves sv, sv, sv, svl and the pressure switch 5 are sequentially controlled. Note that before pressurization, the pressure inside the container 2 is equal to the outside air pressure.

次に、vJ2図に示すタイムチャートと第3図に示す圧
力推移グラフにしたがって、時間を追ってリークテスト
手順を説明する。
Next, the leak test procedure will be explained in chronological order according to the time chart shown in Fig. vJ2 and the pressure transition graph shown in Fig. 3.

リークテストの1サイクルは、加圧工程、減圧工程、第
一平衡工程、第二平衡工程、検出工程、排気工程からな
っており、加圧工程時間T1、減圧工程と第一平衡工程
を合わせた所要時間T2、第二平衡工程時間T1、検出
工程時間T4、排気工程時間T、はタイマーにより設定
されている。
One cycle of the leak test consists of a pressurization process, a depressurization process, a first equilibrium process, a second equilibrium process, a detection process, and an exhaust process. The required time T2, the second equilibrium process time T1, the detection process time T4, and the exhaust process time T are set by a timer.

加圧工程においては、電磁弁SV、、SV3は開状態に
なり、電磁弁sv2.sv、は閉状態になる。
In the pressurizing process, the solenoid valves SV, SV3 are in the open state, and the solenoid valves sv2. sv is in a closed state.

その結果、加圧空気源1から加圧空気が、配管ライン1
1の途中でレギュレータ3によって初期圧力Poに減圧
され、容器2に供給される。容器2内の圧力は徐々に上
昇してテスト圧力ptを越え、加圧開始よQTa時間経
過後に初期圧力POに達する。そして加圧工程の残りの
時間Tbにおいて、容器2内の圧力は初期圧力PoI:
m持される。
As a result, pressurized air from the pressurized air source 1 is transferred to the piping line 1.
1, the pressure is reduced to the initial pressure Po by the regulator 3, and the pressure is supplied to the container 2. The pressure inside the container 2 gradually increases and exceeds the test pressure pt, and reaches the initial pressure PO after a time QTa has elapsed since the start of pressurization. During the remaining time Tb of the pressurization process, the pressure inside the container 2 is the initial pressure PoI:
It will be held for m.

尚、圧力スイッチ5のH接点(High接点)はテスト
圧力Ptよりも大きく、且つ初期圧力POよりも僅かに
小さくセットされていて、このH接点がONになると容
器2内の圧力がテスト圧力pt以上になったことが確認
され、万−H接点がONにならなかった場合には、リー
クテストは次工程へ進まないようになっている。
The H contact (High contact) of the pressure switch 5 is set to be larger than the test pressure Pt and slightly smaller than the initial pressure PO, and when this H contact is turned ON, the pressure inside the container 2 reaches the test pressure pt. If the above conditions are confirmed and the 1000-H contact is not turned on, the leak test will not proceed to the next step.

上記加圧工程の終了と同時に、電磁弁S■、が開状態の
まま、電磁弁S■、が閉ヒ、これと同時に電磁弁S■2
が開いて、減圧工程に移行する。
At the same time as the above pressurization process ends, solenoid valve S■ remains open, solenoid valve S■ closes, and at the same time solenoid valve S■2
opens and moves on to the depressurization process.

容器2は電磁弁SV1により加圧空気源1から閉鎖され
、容器2への加圧空気の供給が停止されるとともに、電
磁弁S■、よりも下流に収容されていた空気が分岐配管
ライン13を通り、電磁弁SV2および絞り弁6から外
気へ放出され、容器2内の圧力は徐々に下がっていく。
The container 2 is closed off from the pressurized air source 1 by the solenoid valve SV1, the supply of pressurized air to the container 2 is stopped, and the air stored downstream of the solenoid valve S is transferred to the branch piping line 13. , and is discharged to the outside air from the solenoid valve SV2 and the throttle valve 6, and the pressure inside the container 2 gradually decreases.

圧力がテスト圧力Pt*で下がると、圧力スイッチ5の
L接点(Low接点)がONになって、電磁弁S■2が
閉状態となり、第一平衡工程へ移行する。
When the pressure drops to the test pressure Pt*, the L contact (Low contact) of the pressure switch 5 is turned on, the solenoid valve S2 is closed, and the process shifts to the first equilibrium step.

第一平衡工程においては、電磁弁S■3だけが開状態に
なっている。そして第一平衡工程の終了とともに電磁弁
S V 3も閉状態となり、第二平衡工程に移行する。
In the first equilibrium step, only the solenoid valve S3 is open. At the end of the first equilibrium process, the solenoid valve S V 3 is also closed, and the process moves to the second equilibrium process.

上記第−平衡工程及び第二平衡工程において容器2内の
圧力は安定しており、テスト圧力Ptが維持される。
In the above-mentioned first equilibrium step and second equilibrium step, the pressure inside the container 2 is stable and the test pressure Pt is maintained.

上記安定したテスト圧力Ptを得るまでの時間、すなわ
ち上記加圧工程時間と減圧工程時間の合計時間は、従来
方法における安定したテスト圧力Ptを得るまでの時間
t4に比べて非常に短くて済む。
The time required to obtain the stable test pressure Pt, that is, the total time of the pressurization process time and the depressurization process time, is much shorter than the time t4 required to obtain the stable test pressure Pt in the conventional method.

その理由は次のように推定される。The reason is presumed to be as follows.

容器2内の空気温度は、加圧開始直後から初期圧力Po
になるまで上昇し、初期圧力P。を維持している時間T
bでは下がる。しかし、この時間Tbは短いので外気温
と平衡になるまでは下がらない。
The air temperature inside the container 2 reaches the initial pressure Po immediately after the start of pressurization.
and the initial pressure P. The time T
It goes down in b. However, since this time Tb is short, the temperature does not drop until it reaches equilibrium with the outside temperature.

次の減圧工程では、加圧空気の放出がなされ、容器2内
の空気温度がこの放出により低下させられて外気温度と
平衡になる。このように、自然放熱を待たずに強制的に
容器2内の温度を外気温と平衡にするから、短時間で安
定したテスト圧力Ptとなる。
In the next depressurization step, pressurized air is released, and the air temperature inside the container 2 is lowered by this release and brought into equilibrium with the outside air temperature. In this way, the temperature inside the container 2 is forcibly brought into equilibrium with the outside air temperature without waiting for natural heat dissipation, so that a stable test pressure Pt can be achieved in a short time.

上記第二平衡工程の後に、検出工程に移行する。即ち、
容器2内の圧力は分岐配管ライン14により圧力センサ
7に導かれており、外気圧に対するデージ圧として検出
される。なお、圧力センサ7からの検出圧力の電気信号
は増幅されて圧力計に送られ、この圧力計で上記ゲージ
圧が表示される。そしてこのゲージ圧に変動がなければ
容器2の密封性が確認され、デージ圧が減少していくの
であれば容器2がら空気が漏れているのであり、密封性
不良が確認される。 上記検出工程終了後、排気工程に
移行する。排気工程では、電磁弁S■、、SV、が開状
態となり、容器2内の空気は分岐配管ライン12を通っ
て放出される。
After the second equilibration step, a detection step is performed. That is,
The pressure inside the container 2 is led to the pressure sensor 7 by a branch piping line 14, and is detected as a dage pressure relative to the outside air pressure. Note that the electrical signal of the detected pressure from the pressure sensor 7 is amplified and sent to the pressure gauge, and the gauge pressure is displayed on this pressure gauge. If there is no change in this gauge pressure, the sealing performance of the container 2 is confirmed, and if the gauge pressure is decreasing, air is leaking from the container 2, and poor sealing performance is confirmed. After the above detection process is completed, the process moves to the exhaust process. In the exhaust process, the solenoid valves S2, SV are opened, and the air inside the container 2 is discharged through the branch piping line 12.

以上でリークテストの1サイクルが終了するが、1サイ
クルの所要時間を前述した従来方法に比べて約1/3に
することができる。
This completes one cycle of the leak test, and the time required for one cycle can be reduced to about 1/3 compared to the conventional method described above.

尚、上記実施例における減圧工程直後に、容器2内の空
気圧力を安定させるためには、初期圧力Poとテスト圧
力ptとの差圧ΔP1及び初期圧力Poの維持時間Tb
を、所定範囲内で設定しなげれぼならない。
In addition, in order to stabilize the air pressure in the container 2 immediately after the pressure reduction step in the above embodiment, the pressure difference ΔP1 between the initial pressure Po and the test pressure pt and the maintenance time Tb of the initial pressure Po are required.
must be set within a specified range.

上記差圧ΔPが所定範囲の上限値より大きいと、減圧に
よる容器2内の温度低下が大きくなり過ぎて一時的に外
気温以下になるため、減圧終了後すなわち容器2を閉じ
た後に容器2内の空気温度が外気温と平衡になるまで圧
力が上昇してしまい、圧力が安定するまで検出工程を実
行できない。また、差圧ΔPが所定範囲の下限値より小
さいと、減圧による容器2内の温度低下が不充分で外気
温まで下がりきらないため、減圧終了後すなわち容器2
を閉じた後に容器2内の空気温度が外気温と平衡になる
まで圧力が下降してしまい、圧力が安定するまで検出工
程を実行できない。
If the differential pressure ΔP is larger than the upper limit of the predetermined range, the temperature inside the container 2 due to depressurization will decrease too much and temporarily drop below the outside temperature. The pressure will rise until the air temperature reaches equilibrium with the outside air temperature, and the detection process cannot be performed until the pressure stabilizes. Furthermore, if the differential pressure ΔP is smaller than the lower limit of the predetermined range, the temperature inside the container 2 due to depressurization will not be reduced enough to reach the outside temperature.
After the container 2 is closed, the pressure decreases until the air temperature within the container 2 reaches equilibrium with the outside temperature, and the detection step cannot be performed until the pressure stabilizes.

同様に、上記維持時間Tbが所定範囲の上限値より長い
と、この維持時間Tbにおける容器2内の空気温度の低
下が大きくて外気温に近付くため、次の減圧工程で容器
2内の温度が外気温以下主で低下してしまう。このため
減圧終了後すなわち容器2を閉じた後に容器2内の空気
温度が外気温と平衡になるまで圧力が上昇してしまい、
圧力が安定するまで検出工程を実行できない。また、維
持時間Tbが所定範囲の下限値より短いと、この維持時
間Tbでの容器2内の温度低下が微少であり、次の減圧
による容器2内の温度低下では外気温まで下がりきらな
いため、減圧終了後すなわち容器2を閉じた後に容器2
内の空気温度が外気温と平衡になるまで圧力が下降して
しまい、圧力が安定するまで検出工程を実行できない。
Similarly, if the above-mentioned maintenance time Tb is longer than the upper limit of the predetermined range, the temperature of the air inside the container 2 decreases so much during this maintenance time Tb that it approaches the outside temperature, so that the temperature inside the container 2 decreases in the next pressure reduction step. The temperature drops below the outside temperature. For this reason, after the end of depressurization, that is, after the container 2 is closed, the pressure increases until the air temperature inside the container 2 reaches equilibrium with the outside temperature.
The detection process cannot be performed until the pressure stabilizes. In addition, if the maintenance time Tb is shorter than the lower limit of the predetermined range, the temperature drop inside the container 2 during this maintenance time Tb is very small, and the temperature inside the container 2 due to the next pressure reduction will not drop to the outside temperature. , after the completion of decompression, that is, after closing the container 2.
The pressure will drop until the internal air temperature reaches equilibrium with the outside temperature, and the detection process cannot be performed until the pressure stabilizes.

差圧ΔPと維持時間Tbとは、相聞関係を有している。The differential pressure ΔP and the maintenance time Tb have a mutual relationship.

すなわち、差圧ΔPを大きくすれば維持時開Tbを短く
することかで外、差圧ΔPが小さければ維持時間Tbを
長くする必要がある。初期圧力Poを大きくし差圧ΔP
を大きくして、テスト時間を短縮することが好ましいが
、これらPo。
That is, if the differential pressure ΔP is increased, the opening time Tb during maintenance is shortened, and if the differential pressure ΔP is small, the maintenance time Tb must be lengthened. Increase the initial pressure Po and increase the differential pressure ΔP
It is preferable to shorten the test time by increasing Po.

ΔPは、容器2の強度等に応じて決定される。ΔP is determined depending on the strength of the container 2, etc.

なお、上記へP9m持時間Tbは多少上記範囲から外れ
ていてもよ(、この場合でも、テスト時間は理想的な場
合より長(なるが、従来方法よりも短縮できる。
Note that the P9m duration time Tb described above may deviate from the above range to some extent (although in this case, the test time will still be longer than the ideal case (although it can be shorter than the conventional method).

又、@4図は他の実施例の70−グイアグラムを示すも
のであり、第一実施例と同一態様部分については同一符
号を付して説明を省略し、第一実施例と相違する点を以
下に説明する。
In addition, Figure @4 shows a 70-Giagram of another example, and parts that are the same as those of the first example are given the same reference numerals and explanations are omitted, and points that are different from the first example are noted. This will be explained below.

圧力スイッチ5より下流において、配管ライン11は二
つの配管ラインllaと配管ライン11bに分かれ、各
配管ラインlla、llbにはそれぞれ電磁弁S■3が
配置されている。この二つの電磁弁SV、は共に第一実
施例の電磁弁S■、と同様に開閉される。そして、一方
の配管ラインllaには容器として容器2が接続されて
おり、能力の配管ラインflbには、上記容器と同寸法
、同材質の容器であって、予め漏れのないことが確認さ
れた基準容器2′が接続されている。又、各配管ライン
lla、llbの電磁弁S■、の下流側は分岐配管ライ
ン14a、14bを介して圧力センサ7の両人カボート
にそれぞれ接続されており、この圧力センサ7は差動増
幅器8を介して差圧計9に接続されている。
Downstream from the pressure switch 5, the piping line 11 is divided into two piping lines lla and 11b, and each piping line lla and llb is provided with a solenoid valve S3. These two solenoid valves SV are both opened and closed in the same manner as the solenoid valve S■ of the first embodiment. Container 2 is connected to one piping line lla as a container, and the capacity piping line flb is connected to a container of the same size and material as the above-mentioned container, which has been confirmed in advance to be leak-free. A reference container 2' is connected. Further, the downstream side of the solenoid valve S■ of each piping line lla, llb is connected to both the cover of the pressure sensor 7 via the branch piping lines 14a, 14b, and this pressure sensor 7 is connected to the differential amplifier 8. It is connected to the differential pressure gauge 9 via.

上記第二実施例の場合のタイムチャート及び圧力推移グ
ラフは、第一実施例と同様である。ただし、検出工程に
おいて容器2および配管ライン11a、14a内の圧力
は、基準容器2′および配管ラインllb、14bの圧
力との差圧として圧力センサ7で検出され、差圧計9で
表示される。上記のように差圧検出であるので、高感度
で検出できる。なお、上記基準容器2′は容器2と同一
寸法であり、外部要因による圧力変動を相殺することが
できるが、この外部要因が小さい時には上記基準容器2
′は省くことができる。
The time chart and pressure transition graph in the second embodiment are the same as those in the first embodiment. However, in the detection process, the pressure in the container 2 and the piping lines 11a, 14a is detected by the pressure sensor 7 as a differential pressure with the pressure in the reference container 2' and the piping lines llb, 14b, and is displayed by the differential pressure gauge 9. Since differential pressure detection is used as described above, detection can be performed with high sensitivity. Note that the reference container 2' has the same dimensions as the container 2, and can offset pressure fluctuations caused by external factors; however, when this external factor is small, the reference container 2' has the same dimensions as the container 2.
' can be omitted.

第5図は本発明の第三実施例を示す。この実施例では、
圧力スイッチ5の下流側の配管ライン11に、排気用の
2方向電磁弁S■5が設けられている。この電磁弁S 
V 5と圧力スイッチ5との間の配管ライン11には、
オリフィス16が設けられており、このオリフィス16
の両側の圧力差は、分岐配管ライン17a、17bを介
してセンサ7により検出され、センサ7の出力は差動増
幅器8で増幅され、差圧計9で表示されるようになって
いる。
FIG. 5 shows a third embodiment of the invention. In this example,
A two-way solenoid valve S<b>5 for exhaust is provided in the piping line 11 on the downstream side of the pressure switch 5 . This solenoid valve S
The piping line 11 between V 5 and the pressure switch 5 includes:
An orifice 16 is provided, and this orifice 16
The pressure difference on both sides is detected by a sensor 7 via branch piping lines 17a and 17b, and the output of the sensor 7 is amplified by a differential amplifier 8 and displayed by a differential pressure gauge 9.

また、配管ライン11にはオリフィス16と並列にバイ
パスライン18が接続されており、このバイパスライン
18には電磁弁S■6が設けられている。
Further, a bypass line 18 is connected to the piping line 11 in parallel with the orifice 16, and this bypass line 18 is provided with a solenoid valve S6.

上記第三実施例では、配管ライン11の一端の接続口に
容器2を接続した状態で、排気用の電磁弁S V sを
、容器2と加圧空気源1とを連通させる状態にする。こ
の状態で、前記実施例と同様に加圧、減圧工程を行ない
、容器2内を短時間で安定したテスト圧力Ptとする。
In the third embodiment, with the container 2 connected to the connection port at one end of the piping line 11, the exhaust electromagnetic valve S V s is brought into communication between the container 2 and the pressurized air source 1. In this state, pressurization and depressurization steps are performed in the same manner as in the previous embodiment, and the inside of the container 2 is brought to a stable test pressure Pt in a short time.

この後、電磁弁S■5を開から閉に切り換えてバイパス
ライン18を閉じ、検出工程を開始する。容器2にひび
割れ等がなく加圧空気の漏れがない場合には、オリフィ
ス16には空気が流れず、その両端間に圧力差が生じな
いから、差圧計9はゼロを表示する。容器2からの漏れ
がある場合には、オリフィス16に空気が流れ、オリフ
ィス16での圧力損失分だけ両端間に圧力差が生じる。
Thereafter, the solenoid valve S5 is switched from open to closed to close the bypass line 18 and start the detection process. If there are no cracks or the like in the container 2 and there is no leakage of pressurized air, no air will flow through the orifice 16 and no pressure difference will occur between its ends, so the differential pressure gauge 9 will display zero. If there is a leak from the container 2, air will flow through the orifice 16, creating a pressure difference between both ends equal to the pressure loss at the orifice 16.

これを差圧計9で表示し、漏れを知らせる。なお、漏れ
が大きい場合には配管ライン11に接続したタンク19
から加圧空気を補う。
This is displayed on the differential pressure gauge 9 to notify the user of a leak. In addition, if the leakage is large, the tank 19 connected to the piping line 11
Supplement with pressurized air.

上記検出後、電磁弁Svsを切り換えて、容器内の加圧
空気を外部へ排出する。
After the above detection, the solenoid valve Svs is switched to discharge the pressurized air inside the container to the outside.

尚、上述第一、第二、第三実施例ともに加圧法によるリ
ークテストで説明したが、減圧法によるリークテストに
おいても同様な思想の基に行うことができる。減圧法の
場合には、第1図、第4図、第5図において加圧空気源
1の代わりに負圧空気源を用いるが、他の構成および作
動は加圧方法と同様である。詳述すると、容器と負圧空
気源を接続して容器内を一旦テスト圧力以下にセットし
、この状態を一定時間維持した後、容器な負圧空気源か
ら遮断して外気を容器内に導入しテスト圧力まで昇圧せ
しめ、一定時間経過後に、負圧の容器内への流体の流入
の有無を検出すればよい。この方法では、上記昇圧時に
容器内の流体の温度が上昇して短時間で外気温と平衡に
なり安定したテスト圧力が得られる。この減圧法による
圧力の変化は、第3図において、縦紬を負圧とすること
により表わすことができる。
Although the first, second, and third embodiments described above are explained using a leak test using a pressurization method, a leak test using a depressurization method can also be performed based on the same idea. In the case of the reduced pressure method, a negative pressure air source is used in place of the pressurized air source 1 in FIGS. 1, 4, and 5, but other configurations and operations are the same as in the pressurized method. In detail, the container is connected to a negative pressure air source, the inside of the container is set to below the test pressure, and after this state is maintained for a certain period of time, the container is cut off from the negative pressure air source and outside air is introduced into the container. It is sufficient to increase the pressure to a test pressure, and after a certain period of time has elapsed, detect whether or not fluid has flowed into the negative pressure container. In this method, the temperature of the fluid in the container rises during the pressure increase and reaches equilibrium with the outside temperature in a short time, resulting in a stable test pressure. The change in pressure due to this pressure reduction method can be expressed by making the vertical pongee a negative pressure in FIG.

また、第1図、第4図、第5図中想像線で示すように、
電磁弁S■2の代わりに、ピストン20を内蔵したシリ
ンダ21を配管ライン11に接続してもよい。加圧法の
場合には、減圧工程においてピストン20に連結された
ロッド22を引(。減圧法の場合は、昇圧工程において
ロッl′20を押す。
Also, as shown by the imaginary lines in Figures 1, 4, and 5,
A cylinder 21 having a built-in piston 20 may be connected to the piping line 11 instead of the solenoid valve S2. In the case of the pressurization method, the rod 22 connected to the piston 20 is pulled in the pressure reduction step (in the case of the pressure reduction method, the rod 20 is pushed in the pressure increase step).

この発明は上記実施例に制約されず種々の態様が可能で
ある。例えば、流体は空気に限らず、チッソガスでもよ
いし、水や油等の液体であってもよい。
This invention is not limited to the above-mentioned embodiments, and various embodiments are possible. For example, the fluid is not limited to air, but may also be nitrogen gas or a liquid such as water or oil.

また、本発明は、リークテストの池に、容器内へ供給し
た圧力を短時間で安定させることが要求される場合に、
適用することができる。
In addition, the present invention can be used in leak test ponds when it is required to stabilize the pressure supplied into the container in a short time.
Can be applied.

(発明の効果) 以上説明したように、この発明によれば、容器内の流体
の圧力は自然的推移以上の速さで平衡状態に達するよう
になり、短時間で安定した設定圧力にすることができ、
作業能率が向上する。
(Effects of the Invention) As explained above, according to the present invention, the pressure of the fluid in the container reaches an equilibrium state faster than the natural transition, and it is possible to achieve a stable set pressure in a short time. is possible,
Work efficiency improves.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第3図までの図面はこの発明に上るリークテ
スト方法の一実施例を示すものであり、第1図は概略7
0−ダイアグラム、12図はタイムチャート、第3図は
圧力推移グラフである。又、第4図、第5図は互いに異
なる他の実施例の概略7r:1−グイ7グラムである。 更に、第6図、第7図は従来の加圧法及び減圧法による
リークテスト方法の際のそれぞれの圧力推移グラフであ
る。
The drawings from FIG. 1 to FIG. 3 show an embodiment of the leak test method according to the present invention, and FIG.
0-diagram, FIG. 12 is a time chart, and FIG. 3 is a pressure transition graph. Further, FIGS. 4 and 5 schematically show 7r:1-7g of other embodiments that are different from each other. Furthermore, FIGS. 6 and 7 are graphs of pressure changes in the conventional pressurization method and the conventional leak test method using the depressurization method.

Claims (3)

【特許請求の範囲】[Claims] (1)初めに流体圧力源と容器とを接続して、設定圧力
より絶対値の大きい初期圧力を容器内に付与し、次に、
容器を流体圧力源から遮断し、容器内の圧力を容器外へ
逃がしてその絶対値を低下させることにより、容器内を
設定圧力にすることを特徴とする容器への圧力供給方法
(1) First, connect the fluid pressure source and the container to apply an initial pressure larger in absolute value than the set pressure in the container, and then,
A method for supplying pressure to a container, characterized in that the pressure inside the container is brought to a set pressure by isolating the container from a fluid pressure source and releasing the pressure inside the container to the outside of the container to reduce its absolute value.
(2)上記設定圧力が正圧であり、初めに容器内が設定
圧力以上の初期圧力に加圧され、加圧流体の一部を容器
から放出することにより、容器内を初期圧力から設定圧
力にする特許請求の範囲第1項に記載の容器への圧力供
給方法。
(2) The set pressure mentioned above is positive pressure, and the inside of the container is first pressurized to an initial pressure higher than the set pressure, and by releasing a part of the pressurized fluid from the container, the inside of the container is changed from the initial pressure to the set pressure. A method for supplying pressure to a container according to claim 1.
(3)上記設定圧力が負圧であり、初めに容器内が設定
圧力以下の初期圧力に減圧され、容器内に流体を導入す
ることにより、容器内を初期圧力から設定圧力にする特
許請求の範囲第1項に記載の容器への圧力供給方法。
(3) The set pressure is a negative pressure, and the pressure inside the container is first reduced to an initial pressure lower than the set pressure, and by introducing fluid into the container, the pressure inside the container is changed from the initial pressure to the set pressure. A method for supplying pressure to a container according to scope 1.
JP26367186A 1986-11-07 1986-11-07 Method for supplying pressure to container Granted JPS63121000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26367186A JPS63121000A (en) 1986-11-07 1986-11-07 Method for supplying pressure to container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26367186A JPS63121000A (en) 1986-11-07 1986-11-07 Method for supplying pressure to container

Publications (2)

Publication Number Publication Date
JPS63121000A true JPS63121000A (en) 1988-05-25
JPH0419431B2 JPH0419431B2 (en) 1992-03-30

Family

ID=17392725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26367186A Granted JPS63121000A (en) 1986-11-07 1986-11-07 Method for supplying pressure to container

Country Status (1)

Country Link
JP (1) JPS63121000A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0377042A (en) * 1989-08-19 1991-04-02 Toyoda Gosei Co Ltd Leakage inspection instrument for airtight product
WO2003078955A1 (en) * 2002-03-15 2003-09-25 Olympus Corporation Leak tester
JP2013083016A (en) * 2011-10-11 2013-05-09 Toyota Industries Corp Method for detecting air leakage in air jet weaving machine
JP2013088180A (en) * 2011-10-14 2013-05-13 Toyota Motor Corp Container evaluation apparatus, evaluation method and secondary battery manufacturing method
JP2015063781A (en) * 2013-09-26 2015-04-09 株式会社豊田自動織機 Method for detecting air leakage in air jet loom

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0377042A (en) * 1989-08-19 1991-04-02 Toyoda Gosei Co Ltd Leakage inspection instrument for airtight product
WO2003078955A1 (en) * 2002-03-15 2003-09-25 Olympus Corporation Leak tester
US7290440B2 (en) 2002-03-15 2007-11-06 Olympus Corporation Leak tester
JP2013083016A (en) * 2011-10-11 2013-05-09 Toyota Industries Corp Method for detecting air leakage in air jet weaving machine
JP2013088180A (en) * 2011-10-14 2013-05-13 Toyota Motor Corp Container evaluation apparatus, evaluation method and secondary battery manufacturing method
JP2015063781A (en) * 2013-09-26 2015-04-09 株式会社豊田自動織機 Method for detecting air leakage in air jet loom

Also Published As

Publication number Publication date
JPH0419431B2 (en) 1992-03-30

Similar Documents

Publication Publication Date Title
US4993256A (en) Leakage test method and apparatus
CN1908609B (en) Dry testing method for pressure limiting valve opening pressure
NL8620423A (en) SYSTEM FOR MEASURING THE PORE VOLUME AND PERMEABILITY OF VERY DENSITIVE CORE AND METHOD FOR ITS OPERATION.
CN103604571B (en) A kind of marking pen leak-testing apparatus
JPS63121000A (en) Method for supplying pressure to container
CN109916568A (en) Electric machine controller sealing propertytest system, device and method
CN201173845Y (en) Valve leakage test device
CN210626212U (en) Pressure testing device
CN209416624U (en) A kind of integrity detection system and freeze dryer of freeze dryer filter
JPS63125900A (en) Method for supplying pressure to container
CN101968430B (en) Device and method for measuring maximum aperture of filter element by dry method
CN106226045A (en) A kind of dry testing method for pressure limiting valve opening pressure and device
CN217561175U (en) Constant pressure difference test device of diaphragm type energy accumulator
JPH0523705B2 (en)
JP3454406B2 (en) Leakage and flow rate inspection device
JPS6441685A (en) Testing device for pump
CN112414700A (en) Electromagnetic valve performance testing device and testing method
CN204924808U (en) Intensity appearance is burst in electronics pneumatics
CN115324952B (en) Valve body detection hydraulic system and valve body detection test device
CN114526276B (en) Special hydraulic station for testing functions of hydraulic reversing valve and testing method thereof
CN209513252U (en) A kind of hydraulic valve automatic testing stand frame
CN109187200A (en) A kind of side crops industry manual loading experimental rig for test of static strength
CN213933017U (en) Digital intelligent valve detection system
CN215115059U (en) Breather valve test bed for improving test efficiency
CN108457934A (en) A kind of hydraulic slip ring integrated experimental device and its application method