JPS63120404A - Manufacture of magnetic iron powder - Google Patents

Manufacture of magnetic iron powder

Info

Publication number
JPS63120404A
JPS63120404A JP61265572A JP26557286A JPS63120404A JP S63120404 A JPS63120404 A JP S63120404A JP 61265572 A JP61265572 A JP 61265572A JP 26557286 A JP26557286 A JP 26557286A JP S63120404 A JPS63120404 A JP S63120404A
Authority
JP
Japan
Prior art keywords
suspension
magnetic
powder
iron powder
magnetic iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61265572A
Other languages
Japanese (ja)
Inventor
Toshinori Ishibashi
石橋 俊則
Hiroshi Kato
寛 加藤
Joji Morizaki
森崎 譲治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP61265572A priority Critical patent/JPS63120404A/en
Publication of JPS63120404A publication Critical patent/JPS63120404A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain magnetic iron powder having improved and stable resistance to oxidation, by suspending magnetic metal powder in an organic solvent in hich a modifying metal salt has been dissolved, and stirring the suspension while heating it in contact with gas containing oxygen so that a dense oxide coat film is formed on the surface of the magnetic metal powder. CONSTITUTION:Magnetic metal powder is suspended in an organic solvent in which a modifying metal salt has been dissolved. This suspension is stirred while it is heated with the top face of the suspension contacted with gas containing oxygen. Said modifying metal may be aluminium salt and/or chromium salt. Said organic solvent may be alcohol or the like. For example, 100g of magnetic metal powder obtained by heating and reducing alpha-Fe2O3 containing SiO2, Ni and Ca within flowing hydrogen gas is suspended in 2l of ethylene glycol solution in which 12g of AlCl3 has been dissolved. This suspension is heated to 180 deg.C within air while it is stirred by means of a propeller stirrer, so that the suspension is subjected to oxidation for five hours. Then the suspension is cooled to room temperature to obtain magnetic iron powder.

Description

【発明の詳細な説明】 皮果上■肌尻公国 本発明は、優れた耐酸化安定性を有する磁気記録用磁性
鉄粉の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing magnetic iron powder for magnetic recording having excellent oxidation resistance stability.

皿米茨歪 磁気記録用磁性素材については、広い記録波長域での高
出力、低ノイズを計るために、均一性の高い微細形状粒
子で、高い保持力(Hc )を有し、飽和磁化(σ1)
、残留磁化(σ、、)共に大きく、且つ角形比(Rs=
σr/σ1)も可及的に大きい磁気特性が基本的に要求
される。このうち、磁性素材としての磁性粉については
、強磁性金属粉からなる磁性鉄粉(以下、金属磁性粉末
もしくは磁性鉄粉と云う)が、その優れた磁気特性から
、先ずオーディオ用磁気テープの素材として実用化され
、又、8+amビデオ用素材として実用化されている。
In order to measure high output and low noise in a wide recording wavelength range, the magnetic material for plate rice thorn strain magnetic recording has highly uniform fine-shaped particles, high coercive force (Hc), and saturation magnetization ( σ1)
, residual magnetization (σ, ,) are both large, and the squareness ratio (Rs=
σr/σ1) is basically required to have as large a magnetic property as possible. Among these magnetic materials, magnetic iron powder (hereinafter referred to as metal magnetic powder or magnetic iron powder) made of ferromagnetic metal powder is first used as a material for audio magnetic tapes due to its excellent magnetic properties. It has also been put into practical use as a material for 8+am video.

磁性鉄粉は、一般に針状のオキシ水酸化鉄を加熱還元す
る方法によって製造される。針状のオキシ水酸化鉄とし
ては、α、β、γの変態が知られており製造方法も各々
の変態種に対応して異なるが、磁気記録用磁性鉄粉の出
発原料としては、α−FeOOHが双晶や樹脂状晶が少
なく、針状比が10前後と大きいために優れている。更
に詳しくは、第一鉄塩水溶液とアルカリ水溶液とを反応
させて得られたFe(OH)zを含むpH11以上の懸
濁液に酸素含有ガスを通気することからなる、アルカリ
側でのα−FeOOH□合成法が特に優れており、専ら
アルカリ側で合成したα−FeOOHが磁性鉄粉の出発
原料として使用されている。
Magnetic iron powder is generally produced by a method of heating and reducing acicular iron oxyhydroxide. Acicular iron oxyhydroxide is known to have α-, β-, and γ-transformations, and the manufacturing method differs depending on each transformation type. However, as a starting material for magnetic iron powder for magnetic recording, α- FeOOH is excellent because it has fewer twins and resinous crystals and has a large needle ratio of around 10. More specifically, the α- The FeOOH□ synthesis method is particularly excellent, and α-FeOOH synthesized exclusively on the alkali side is used as the starting material for magnetic iron powder.

α−FeOOHの合成において、上記第一鉄塩水溶液や
アルカリ水溶液にNi、 Mn、 Go 、Cr 、A
I、 Si 。
In the synthesis of α-FeOOH, Ni, Mn, Go, Cr, A are added to the ferrous salt aqueous solution or alkaline aqueous solution.
I, Si.

Zn 、Mg 、Ca 、Cu 、Zr  等の塩を加
えておくことにより、これらの塩が共沈したα−FeO
OHを得ることが出来、これらの共沈α−FeOOl+
が磁性鉄粉の出発原料として使用されることも多い。
By adding salts such as Zn, Mg, Ca, Cu, Zr, etc., α-FeO is co-precipitated with these salts.
OH can be obtained, and these coprecipitated α-FeOOl+
is often used as a starting material for magnetic iron powder.

針状のオキシ水酸化鉄を加熱還元して金属鉄を主体とし
た磁性鉄粉を得る方法としては、まずオキシ水酸化鉄を
空気等の非還元性の雰囲気下で加熱脱水させて酸化鉄に
1また後、該酸化鉄を水素等の還元性雰囲気で加熱還元
する方法や、酸化鉄にする工程を省略してα−FeO0
1+を直接水素等の還元性雰囲気で加熱還元する方法が
知られている。
To obtain magnetic iron powder mainly composed of metallic iron by thermally reducing acicular iron oxyhydroxide, first, iron oxyhydroxide is heated and dehydrated in a non-reducing atmosphere such as air to form iron oxide. 1. Afterwards, α-FeO
A method is known in which 1+ is directly reduced by heating in a reducing atmosphere such as hydrogen.

しかして、出発物質のオキシ水酸化鉄のサイズや組成に
よっては、」二記の加熱脱水もしくは加熱還元の際に、
針状粒子どうしが焼結もしくは針状粒子が崩壊して、最
終的に得られる金属鉄を主体とした磁性鉄粉はその磁気
特性が著しく低下することがある。このためオキシ水酸
化鉄を還元する前にオキシ水酸化鉄、又は、該オキシ水
酸化鉄を加熱脱水したα−Feze3を一13体とする
粒子の表面にSi 、P 、 B 、 AI 、Cr 
、 Ni 、Mn 、 Co 、 Zn 、 Mg、C
a 、Cu 、Ti  等の化合物を、単独もしくは組
み合わせて被着させることにより、後段の還元もしくは
加熱還元における針状粒子の崩壊や針状粒子どうしの焼
結を防止して、優れた磁気特性を有する磁性鉄粉を得る
方法も公知である。
However, depending on the size and composition of the starting material iron oxyhydroxide, during the thermal dehydration or thermal reduction described in Section 2,
The magnetic properties of the finally obtained magnetic iron powder, which is mainly composed of metallic iron, may be significantly deteriorated due to sintering of the acicular particles or collapse of the acicular particles. For this reason, before reducing the iron oxyhydroxide, Si, P, B, AI, Cr are added to the surface of the iron oxyhydroxide or the particles containing 113 α-Feze3 particles obtained by heating and dehydrating the iron oxyhydroxide.
, Ni, Mn, Co, Zn, Mg, C
By depositing compounds such as a, Cu, Ti, etc. singly or in combination, it is possible to prevent the collapse of the acicular particles and the sintering of the acicular particles during the subsequent reduction or thermal reduction, resulting in excellent magnetic properties. Methods for obtaining magnetic iron powder having the following properties are also known.

磁性鉄粉は、通常、卦軸方向が通常11III+以下で
短軸方向が長軸方向の約10分の1程度の微粒子である
ことから、空気に対する酸化活性が極めて強く還元した
ままでは磁気記録媒体として使えない。
Magnetic iron powder is usually a fine particle with a trigonometric axis of 11III+ or less and a short axis of about one-tenth of the long axis, so its oxidation activity against air is extremely strong and it cannot be used as a magnetic recording medium if it remains reduced. It cannot be used as

従って、還元に引き続き還元された金属鉄を主体とする
磁性粉末の表面を酸化して磁性粉末の表面に酸化被膜を
形成し、空気に対する酸化活性を抑えたものが、実用的
な磁性鉄粉として使用される。
Therefore, after reduction, the surface of magnetic powder mainly composed of reduced metallic iron is oxidized to form an oxide film on the surface of the magnetic powder, and the oxidation activity against air is suppressed. used.

このように、還元された金属鉄を主体とする磁性粉末の
表面を酸化して磁性粉末の表面に酸化被膜を形成する方
法としては、該酸化を気相接触反応で行う方法、及び液
相反応で行う方法等が知られており、例えば、特公昭5
6−28961、 特開昭55−164001 、特願
昭57−219305 、特願昭58−135102等
を挙げることができる。
As described above, methods for oxidizing the surface of magnetic powder mainly composed of reduced metallic iron to form an oxide film on the surface of the magnetic powder include a method in which the oxidation is carried out by a gas phase catalytic reaction, and a method in which the oxidation is carried out by a gas phase catalytic reaction, and a method in which the oxidation is carried out by a gas phase catalytic reaction, and a method in which the oxidation is carried out by a gas phase catalytic reaction, and a liquid phase reaction. There are known methods to do this, for example, the
6-28961, JP-A-55-164001, JP-A-57-219305, and JP-A-58-135102.

x里災Y扱に夫立点ぢ澗B嘉 この場合、磁性鉄粉の表面に形成する酸化被膜の厚さが
厚いほどその磁性鉄粉の耐蝕性(耐酸化安定性)が高く
なるが、酸化被膜の厚さを厚くするとともに、磁性鉄粉
の重要な特性の一つである飽和磁化量(σ、)が低下し
て行くという現象を伴うため、無闇に厚い酸化被膜を形
成させることは出来ない。
In this case, the thicker the oxide film formed on the surface of the magnetic iron powder, the higher the corrosion resistance (oxidation resistance stability) of the magnetic iron powder. As the thickness of the oxide film increases, the saturation magnetization (σ), which is one of the important characteristics of magnetic iron powder, decreases, so it is impossible to form a thick oxide film without thinking about it. Can not.

このことは、磁性鉄粉の特徴の一つが酸化物系の磁性酸
化鉄粉末に較べてσ、が高いことにあることからも理解
される。
This can be understood from the fact that one of the characteristics of magnetic iron powder is that σ is higher than that of oxide-based magnetic iron oxide powder.

磁性鉄粉のσ、値は、磁性鉄粉のサイズ、組成さらにそ
の使用目的によって変わりうるちのであり3概に言えな
いが、例えばオーディオ用途に用いる比表面積が3(l
nf/g程度の磁性鉄粉ではσ5は150emu/g程
度、又8ミリビデオ用に用いる比表面積が5Or+f/
g程度の磁性鉄粉ではσ、は120emu/g程度が必
要で、これ未満の値では最終製品の磁気テープの特性が
低下するため好ましくない。
The value of σ of magnetic iron powder varies depending on the size, composition, and purpose of use of the magnetic iron powder.3 Although it cannot be generalized, for example, if the specific surface area used for audio applications is 3(l
For magnetic iron powder of about nf/g, σ5 is about 150 emu/g, and the specific surface area used for 8 mm video is 5Or+f/
For magnetic iron powder of about 1.5 g, σ needs to be about 120 emu/g, and values less than this are not preferable because the properties of the final product magnetic tape deteriorate.

従って、限られた酸化被膜の厚さの範囲内で出来る丈高
い耐酸化安定性を有する磁性鉄粉を得るためには、該鉄
粉表面に設ける酸化被膜の膜質自体を可及的に緻密な被
膜にする必要がある。
Therefore, in order to obtain magnetic iron powder with high oxidation resistance stability that can be produced within a limited range of oxide film thickness, the film quality of the oxide film provided on the surface of the iron powder must be as dense as possible. It needs to be coated.

磁性鉄粉の耐蝕性は、磁性鉄粉を高温高湿度の酸化性雰
囲気下に一定時間曝しその前後のσ、変化から定量的に
評価することができる。
The corrosion resistance of magnetic iron powder can be quantitatively evaluated from the change in σ before and after exposing the magnetic iron powder to an oxidizing atmosphere at high temperature and high humidity for a certain period of time.

例えば、60’Cで相対湿度90%の高湿度の空気下で
連続−週間磁性鉄粉を曝しその間のσ5変化量△σ8と
初期のσ8の比であるΔσよ/σS値により、磁性鉄粉
の耐酸化安定性を定量的に評価できる。
For example, when magnetic iron powder is exposed continuously for weeks at 60'C in high humidity air with a relative humidity of 90%, the magnetic iron powder is It is possible to quantitatively evaluate the oxidation resistance stability of

オーディオ用の磁性鉄粉では、初期σ9が150emu
/g程度のものが上記条件下での耐酸化安定性はこの比
が0.10以下、又8ミリビデオ用の磁性鉄粉では初期
σ8が120emu/g程度のものが上記条件下での耐
酸化安定性はこの比が0.15以下が望まれるが、従来
の除酸化方法ではこのように高い耐酸化安定性を存する
緻密な酸化被膜を形成することができなかった。
The initial σ9 of magnetic iron powder for audio is 150 emu.
/g has an oxidation resistance stability under the above conditions when this ratio is 0.10 or less, and magnetic iron powder for 8mm video has an initial σ8 of about 120 emu/g. Regarding the oxidation stability, it is desired that this ratio is 0.15 or less, but conventional oxidation removal methods have not been able to form a dense oxide film with such high oxidation resistance stability.

p 占を7するための 本発明者等は、鉄を主体とする金属磁性粉末の表面に緻
密な酸化被膜を形成させることにより、優れた耐酸化安
定性を有する磁性鉄粉を得る方法につき鋭意検討した結
果、金属磁性粉末を、特定の変成用金属塩を溶解した有
機溶媒に懸濁し、懸濁液の上部表面が酸素を含有する気
体と接触した状態のもとて加熱下該懸濁液を撹拌するこ
とにより、金属磁性粉末の表面に極めて緻密な酸化被膜
を形成させることが出来ることを見出し本発明に到達し
た。
In order to achieve a p-value of 7, the present inventors have worked diligently on a method to obtain magnetic iron powder with excellent oxidation resistance stability by forming a dense oxide film on the surface of metal magnetic powder mainly composed of iron. As a result of our investigation, we found that metal magnetic powder was suspended in an organic solvent in which a specific metamorphic metal salt was dissolved, and the suspension was heated while the upper surface of the suspension was in contact with an oxygen-containing gas. The present invention was achieved by discovering that an extremely dense oxide film can be formed on the surface of metal magnetic powder by stirring the powder.

すなわち、本発明は、 金属磁性粉末を、変成用金属塩を溶解した有機溶媒に懸
濁して懸濁液とし、該懸濁液の上部表面が酸素を含有す
る気体と接触した状態のもとで、加熱下に該懸濁液を撹
拌するこを特徴とする金属磁性粉末の酸化安定方法、を
構成要件とするものである。
That is, in the present invention, metal magnetic powder is suspended in an organic solvent in which a metamorphic metal salt is dissolved to form a suspension, and the upper surface of the suspension is in contact with an oxygen-containing gas. , a method for oxidation stabilization of metal magnetic powder characterized by stirring the suspension under heating.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明においては、金属磁性粉末を、変成用金属塩を溶
解した有機溶媒に懸濁して懸濁液とするが、ここで用い
る変成用金属塩としては、アルミニウム塩及び/又はク
ロム塩を用いる。
In the present invention, a metal magnetic powder is suspended in an organic solvent in which a metal salt for modification is dissolved to form a suspension, and the metal salt for modification used herein is an aluminum salt and/or a chromium salt.

かかるアルミニウム塩としては、AlCl3等の塩化ア
ルミニウム塩ムI (NO3) 3等の硝酸アルミニウ
ム、Alz(SO2)s等の硫酸アルミニウム等が好ま
しいものとして挙げられ、また、クロム塩としては、C
rBr3等の臭化クロム、Cry、  等の酸化クロム
、CrCl2 、CrC15等の塩化クロム、(:r(
NO3)s H9H,O等の硝酸クロム、酢酸クロム等
の金属塩が好ましいものとして挙げられるが、本発明で
用いられるものとしては、要するに加熱下に、下記の如
き有機溶媒に溶解するものであれば、如何なるものも使
用可能である。
Preferred examples of such aluminum salts include aluminum nitrate such as aluminum chloride salts such as AlCl3, and aluminum sulfates such as Alz(SO2)s.
Chromium bromide such as rBr3, chromium oxide such as Cry, chromium chloride such as CrCl2, CrC15, (:r(
Preferred examples include metal salts such as chromium nitrate and chromium acetate, such as NO3)s H9H,O, but those used in the present invention include those that can be dissolved in the following organic solvents under heating. For example, any material can be used.

本発明で使用する有機溶媒としては、上記のごとき変成
用金属を加熱下において溶解し、それ自身は酸素を含有
する気体と高温下で接触することにより実質的に変質し
ないもので、且つ常圧下で高温加熱出来るものが好まし
く、例えばエチレングリコール、プロピレングリコール
、グリセリン等の多価アルコール;デシルアルコール、
1−ノナノール等の3価アルコールが特に好ましい。
The organic solvent used in the present invention is one that dissolves the metamorphic metals mentioned above under heating, does not itself undergo substantial deterioration when brought into contact with oxygen-containing gas at high temperatures, and is one that dissolves under normal pressure. Polyhydric alcohols such as ethylene glycol, propylene glycol, and glycerin; decyl alcohol,
Particularly preferred are trihydric alcohols such as 1-nonanol.

変成用金属を溶解した有機溶媒に懸濁した金属磁性粉末
は、その凝集や沈降を防ぐためにプロペラ撹拌機等で適
度に掻き混ぜる程度の撹拌を与える必要がある。しかし
て、この金属磁性粉末の有機溶媒懸濁液に対し、加熱下
に適度な撹拌を空気等の酸素を含有する気体の雰囲気下
で、すなわち該酸素含有気体と接触した状態で行うと、
該懸濁液の気相と接触している界面の近傍で該金属磁性
粉末が酸化を受ける。本発明においては、緻密な酸化被
膜を形成するためには、懸濁液の温度は、100°C以
上300°C以下が好ましい。100°Cに満たない場
合緻密な酸化被膜が形成出来ず、一方300℃を越える
と酸化被膜中に非磁性のα−FezOiが混在するよう
になり好ましくない。
Metal magnetic powder suspended in an organic solvent in which metamorphic metals are dissolved needs to be appropriately agitated using a propeller stirrer or the like to prevent agglomeration and sedimentation. However, if this suspension of metal magnetic powder in an organic solvent is heated and moderately stirred in an atmosphere of an oxygen-containing gas such as air, that is, in a state in which it is in contact with the oxygen-containing gas,
The metal magnetic powder undergoes oxidation near the interface where it is in contact with the gas phase of the suspension. In the present invention, in order to form a dense oxide film, the temperature of the suspension is preferably 100°C or more and 300°C or less. If the temperature is less than 100°C, a dense oxide film cannot be formed, while if it exceeds 300°C, non-magnetic α-FezOi will be mixed in the oxide film, which is not preferable.

本発明においては、酸素を含有する気体の酸素濃度は、
0.1 vo1%以上、25νo1%以下が好ましい。
In the present invention, the oxygen concentration of the oxygen-containing gas is
It is preferably 0.1vo1% or more and 25vo1% or less.

これ未満の酸素濃度では、酸化被膜を形成するのに必要
な時間が極めて長くなり経済的でなく、一方、酸素濃度
が25vo1%を越えると、形成される酸化被膜の緻密
さが損なわれる。酸素含有気体として空気をそのまま使
用することが出来るが、勿論、非酸化性の不活性ガス、
例えば、窒素、ヘリウム、ネオン、アルゴン等と酸素と
の混合気体を使用しても好い。
If the oxygen concentration is less than this, the time required to form the oxide film becomes extremely long, making it uneconomical. On the other hand, if the oxygen concentration exceeds 25 vol%, the density of the oxide film formed will be impaired. Air can be used as is as the oxygen-containing gas, but of course non-oxidizing inert gas,
For example, a gas mixture of nitrogen, helium, neon, argon, etc. and oxygen may be used.

酸素含有気体は、懸濁液中に強制的に吹き込むことも勿
論可能であるが、懸濁液中に吹き込まないで懸濁液の上
部に通気する方法、すなわち、懸濁液の自由表面を通じ
て懸濁液中に吸収せしめる方法を採用した方が、より緻
密な酸化被膜を形成することが出来るため、より好まし
い。かかる操作により、該酸化被膜に変成用金属の原子
が組み込まれた緻密な被膜が形成され、優れた耐酸化安
定性を有する磁性鉄粉を得ることが出来る。
Of course, the oxygen-containing gas can be forcibly blown into the suspension, but it is also possible to blow it into the suspension but into the upper part of the suspension, that is, through the free surface of the suspension. It is more preferable to adopt a method of absorption into a cloudy liquid because a denser oxide film can be formed. By this operation, a dense film in which metamorphic metal atoms are incorporated into the oxide film is formed, and magnetic iron powder having excellent oxidation resistance stability can be obtained.

又、必要に応じて気相を窒素等の非酸化性ガスに切り換
えて酸化被膜の熱処理を行い酸化被膜を更に緻密にする
ことも可能である。
Further, if necessary, it is also possible to heat-treat the oxide film by switching the gas phase to a non-oxidizing gas such as nitrogen to make the oxide film even more dense.

1凪 本発明者らの知見によると、緻密な酸化被膜を形成する
ためには、適度な酸化速度で酸化することと、酸化被膜
層の結晶がより緻密になるように再配列することを可能
にする適度な温度が必要である。
According to the findings of the present inventors, in order to form a dense oxide film, it is possible to oxidize at an appropriate oxidation rate and rearrange the crystals of the oxide film layer to become more dense. A moderate temperature is required.

しかして、本発明の方法では、懸濁液のうち、懸濁液の
上部で接する気液界面近傍のみが金属磁性粉末の酸化に
使われ、又金属磁性粉末自体が有機溶媒で覆われている
ために、100 ’C以上の高温においても、緻密な酸
化被膜が適度な速さで形成されるものと推察される。
Therefore, in the method of the present invention, only the part of the suspension near the gas-liquid interface in contact with the upper part of the suspension is used for oxidizing the metal magnetic powder, and the metal magnetic powder itself is covered with an organic solvent. Therefore, it is presumed that a dense oxide film is formed at an appropriate speed even at high temperatures of 100'C or higher.

又、本発明においては、懸濁液は、適度に撹拌されてい
るため、気液界面で酸化された金属磁性粉末は、引き続
いて表面更新を受け、懸濁液の本体中へ移動するが、こ
の本体中にある間は、実質的に酸化は無視出来る。即ち
、懸濁液本体中に移動し再び気液界面にでるまでは、液
表面で形成された酸化被膜の結晶の再配列のみが専ら起
こるため、緻密な酸化液を形成することが出来ると考え
られる。
Further, in the present invention, since the suspension is appropriately stirred, the metal magnetic powder oxidized at the gas-liquid interface continues to undergo surface renewal and move into the main body of the suspension. While in this body, oxidation is virtually negligible. In other words, it is thought that a dense oxidized liquid can be formed because only the crystal rearrangement of the oxide film formed on the liquid surface occurs until it moves into the suspension body and reaches the gas-liquid interface again. It will be done.

さらに、」二記のとおり、高温下においても比較的緩や
かな酸化が進行するため、懸濁液中に溶解していた変成
用金属塩の金属原子が酸化被膜の形成過程を通して、該
酸化被膜中にとりこまれる結果、緻密な耐酸化安定性の
優れた酸化被膜が形成されるのである。
Furthermore, as mentioned in Section 2, oxidation progresses relatively slowly even at high temperatures, so the metal atoms of the metamorphic metal salt dissolved in the suspension are absorbed into the oxide film through the process of forming the oxide film. As a result, a dense oxide film with excellent oxidation resistance and stability is formed.

以下実施例、比較例により更に詳細に本発明の方法及び
効果を説明する。
The method and effects of the present invention will be explained in more detail below using Examples and Comparative Examples.

実施性」− Fe 100重量部当たり、SiO2を5重量部、 N
iを3重量部、Caを0.05重量部含有する8ミリビ
デオ用磁性鉄粉の前駆体であるα−Fe203を水素気
流中で加熱還元して得た金属磁性粉末100gをAlC
l312gを溶解した2Nのエチレングリコール溶液に
懸濁し、プロペラ撹拌機を用いて撹拌しながら空気中で
懸濁液を180°Cに昇温し5時間酸化反応を行わせた
後室温まで冷却し、磁性鉄粉を回収した。
Practicability - 5 parts by weight of SiO2 per 100 parts by weight of Fe, N
100 g of metal magnetic powder obtained by thermally reducing α-Fe203, a precursor of magnetic iron powder for 8 mm video, containing 3 parts by weight of i and 0.05 parts by weight of Ca, in an AlC
The suspension was suspended in a 2N ethylene glycol solution in which 1312g of the suspension was dissolved, and the suspension was heated to 180°C in the air while stirring using a propeller stirrer, and the oxidation reaction was carried out for 5 hours, after which it was cooled to room temperature. Magnetic iron powder was collected.

得られた磁性鉄粉(磁性粉Aと略記)を蛍光X線分析装
置で組成分析したところ、FelOO重量部あたり、A
1が2.6重量部含有されていた。磁性粉への一部を6
0°Cで相対湿度90%の高湿度空気下に連続して一週
間放置した。得られた磁性鉄粉(磁性粉Bと略記)の粉
体特性を測定して下表の値を得た。尚、磁気特性は振動
試料型磁力計(VSM)を用いて、測定磁界10 KO
e  にて測定した。結果を表〜1に示す。
When the composition of the obtained magnetic iron powder (abbreviated as magnetic powder A) was analyzed using a fluorescent X-ray analyzer, it was found that A
1 was contained in an amount of 2.6 parts by weight. 6. Part into magnetic powder
It was left continuously for one week at 0°C under high humidity air with a relative humidity of 90%. The powder characteristics of the obtained magnetic iron powder (abbreviated as magnetic powder B) were measured and the values shown in the table below were obtained. The magnetic properties were measured using a vibrating sample magnetometer (VSM) with a magnetic field of 10 KO
Measured at e. The results are shown in Table 1.

表−1 表から8ミリビデオ用磁性粉Aの耐酸化安定性を表示す
る比ΔσS/σ5値(以下耐酸化安定性比と云う)の稙
は、0.081 と算出され、優れたものであることが
分かる。
Table 1 From the table, the ratio ΔσS/σ5 value (hereinafter referred to as oxidation stability ratio) indicating the oxidation resistance stability of 8mm video magnetic powder A was calculated to be 0.081, which is excellent. I understand that there is something.

実施例2 実施例1で還元して得た金属磁性粉末100gをCr(
NOs)s H9H20145gを溶解した2pのエチ
レングリコール溶液中に懸濁し、プロペラ撹拌機を用い
て撹拌しながら空気中で懸濁液を180 ’Cに昇温し
5時間反応を維持した後、室温まで冷却し、磁性鉄粉を
回収した。
Example 2 100g of the metal magnetic powder obtained by reduction in Example 1 was converted into Cr(
NOs)s Suspend 145 g of H9H20 in 2p ethylene glycol solution, heat the suspension to 180'C in air while stirring using a propeller stirrer, maintain the reaction for 5 hours, and then cool to room temperature. It was cooled and the magnetic iron powder was collected.

得られた磁性鉄粉(磁性粉Cと略記)を蛍光X線分析装
置で組成分析したところ、FelOO重量部あたり、C
rが2.0重量部含有されていた。磁性粉Cの一部を6
0℃で相対湿度90%の高湿度空気下に連続して一週間
放置し磁性鉄粉(磁性粉りと略記)を得た。磁性粉C,
Dの粉体特性を測定して表−2の値を得た。
When the composition of the obtained magnetic iron powder (abbreviated as magnetic powder C) was analyzed using a fluorescent X-ray analyzer, it was found that C
It contained 2.0 parts by weight of r. Part of magnetic powder C is 6
It was left to stand continuously for one week under high humidity air with a relative humidity of 90% at 0° C. to obtain magnetic iron powder (abbreviated as magnetic powder). magnetic powder C,
The powder characteristics of D were measured and the values shown in Table 2 were obtained.

表−2 表より磁性粉C,Dの粉体特性は耐酸化安定性比0、0
74と優れたものであることが認められた。
Table-2 From the table, the powder properties of magnetic powders C and D are oxidation resistance stability ratios of 0 and 0.
74, which was recognized as being excellent.

比較例1 実施例1で得られた金属磁性粉100gを12のトルエ
ン中に懸濁し、プロペラ撹拌機を用いて撹拌しながら空
気とN2の1:1の混合ガスを懸濁液に吹き込み40°
Cで4時間酸化反応を行った後、トルエンを除去して磁
性粉末(磁性粉Eと略記)を得た。磁性粉Eを60°C
1相対湿度90%の高湿度空気下に連続して一週間放置
し磁性粉末(磁性粉Fと略記)を得た、磁性粉E、 F
の粉体特性を測定して表−3を得た。
Comparative Example 1 100 g of the metal magnetic powder obtained in Example 1 was suspended in 12 parts of toluene, and while stirring using a propeller stirrer, a 1:1 mixed gas of air and N2 was blown into the suspension at 40°.
After performing an oxidation reaction with C for 4 hours, toluene was removed to obtain a magnetic powder (abbreviated as magnetic powder E). Magnetic powder E at 60°C
1. Magnetic powders E and F were obtained by leaving them continuously for one week under high humidity air with a relative humidity of 90% (abbreviated as magnetic powder F).
Table 3 was obtained by measuring the powder properties.

表−3 磁性粉Eの耐酸化安定性比は、0.161 と実施例1
及び実施例2に較べて遥かに劣っていることがわかる。
Table 3 The oxidation resistance stability ratio of magnetic powder E is 0.161 and Example 1
It can be seen that this is far inferior to Example 2.

Claims (3)

【特許請求の範囲】[Claims] (1)金属磁性粉末を、変成用金属塩を溶解した有機溶
媒に懸濁して懸濁液とし、該懸濁液の上部表面が酸素を
含有する気体と接触した状態のもとで、加熱下に該懸濁
液を撹拌するこを特徴とする金属磁性粉末の酸化安定方
法。
(1) Metal magnetic powder is suspended in an organic solvent in which a metal salt for metamorphism is dissolved to form a suspension, and the upper surface of the suspension is brought into contact with an oxygen-containing gas under heating. A method for stabilizing oxidation of metal magnetic powder, which method comprises stirring the suspension.
(2)変成用金属がアルミニウム塩及び/又はクロム塩
である特許請求の範囲第1項記載の方法。
(2) The method according to claim 1, wherein the metal for metamorphosis is an aluminum salt and/or a chromium salt.
(3)有機溶媒がアルコールである特許請求の範囲第1
項記載の方法。
(3) Claim 1 in which the organic solvent is alcohol
The method described in section.
JP61265572A 1986-11-10 1986-11-10 Manufacture of magnetic iron powder Pending JPS63120404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61265572A JPS63120404A (en) 1986-11-10 1986-11-10 Manufacture of magnetic iron powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61265572A JPS63120404A (en) 1986-11-10 1986-11-10 Manufacture of magnetic iron powder

Publications (1)

Publication Number Publication Date
JPS63120404A true JPS63120404A (en) 1988-05-24

Family

ID=17418977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61265572A Pending JPS63120404A (en) 1986-11-10 1986-11-10 Manufacture of magnetic iron powder

Country Status (1)

Country Link
JP (1) JPS63120404A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0429301A (en) * 1990-05-25 1992-01-31 Fuji Photo Film Co Ltd Ferromagnetic metallic powder and magnetic record medium using same
KR100408647B1 (en) * 2000-11-02 2003-12-06 학교법인 한양학원 Manufacturing Process of alloyed and composite nano-metal powder of a high degree of purity

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0429301A (en) * 1990-05-25 1992-01-31 Fuji Photo Film Co Ltd Ferromagnetic metallic powder and magnetic record medium using same
KR100408647B1 (en) * 2000-11-02 2003-12-06 학교법인 한양학원 Manufacturing Process of alloyed and composite nano-metal powder of a high degree of purity

Similar Documents

Publication Publication Date Title
JPS5975608A (en) Ferromagnetic powder and manufacture thereof
US4318735A (en) Process for preparing magnetic particles with metallic region therein, and magnetic particles prepared by the process
US3252758A (en) Gamma-ferric-oxide crystals and processes for their production
JPS63120404A (en) Manufacture of magnetic iron powder
JPS608605B2 (en) Oxidation treatment method for metal magnetic powder for magnetic recording media
JPS5980901A (en) Manufacture of ferromagnetic metal powder
JPH04168703A (en) Manufacture of needle-shaped magnetic iron oxide particle and powder for magnetic recording
JP4143714B2 (en) Method for producing ferromagnetic iron alloy powder
JPH0270003A (en) Method for treating ferromagnetic iron powder
JPS63239801A (en) Oxidation stabilizing method for metallic magnetic powder
KR19990077521A (en) Spindle-shaped goethite particles and process for producing the same
JPH08153613A (en) Stabilizing method for metal magnetic powder
JPS63143802A (en) Manufacture of magnetic iron powder
JPH01172501A (en) Manufacture of metal magnetic powder
JPS63143205A (en) Production of magnetic iron powder
JPH04230004A (en) Manufacture of magnetic recording needle ferroalloy magnetic particle powder
JP2001123207A (en) METHOD FOR PRODUCING SPINDLE-SHAPED ALLOY MAGNETIC PARTICLE POWDER FOR MAGNETIC RECORDING ESSENTIALLY CONSISTING OF Fe and Co
JPS63239802A (en) Manufacture of magnetic iron powder
JPS63142607A (en) Manufacture of magnetic iron powder
JP2711719B2 (en) Needle crystal iron alloy magnetic particles for magnetic recording
JP3092649B2 (en) Method for producing spindle-shaped metal magnetic particles containing iron as a main component
JP3242102B2 (en) Magnetic powder and method for producing the same
JPH0450724B2 (en)
JPH01222407A (en) Metal magnetic powder, and manufacture and usage thereof
JPS63142608A (en) Manufacture of magnetic iron powder