JPS63120030A - Wire-cut electric discharge machining - Google Patents
Wire-cut electric discharge machiningInfo
- Publication number
- JPS63120030A JPS63120030A JP26438786A JP26438786A JPS63120030A JP S63120030 A JPS63120030 A JP S63120030A JP 26438786 A JP26438786 A JP 26438786A JP 26438786 A JP26438786 A JP 26438786A JP S63120030 A JPS63120030 A JP S63120030A
- Authority
- JP
- Japan
- Prior art keywords
- machining
- wire electrode
- wire
- feed
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003754 machining Methods 0.000 title claims abstract description 53
- 238000005520 cutting process Methods 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 4
- 238000012545 processing Methods 0.000 description 14
- 238000003860 storage Methods 0.000 description 5
- 238000004804 winding Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 238000012937 correction Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000009763 wire-cut EDM Methods 0.000 description 1
Landscapes
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Abstract
Description
【発明の詳細な説明】 〔発明の利用分野〕 本発明はワイヤカット放電加工の改良に関する。[Detailed description of the invention] [Field of application of the invention] The present invention relates to improvements in wire cut electric discharge machining.
近時ワイヤカット放電加工の加工性能は大きく進歩し、
線径0.3II1mφ前後のワイヤ電極を使用して20
0〜300 m1/win程度の高速加工性能が得られ
るようになった。この加工速度の増加に伴い、所定消耗
比にしたがうワイヤ電極の消耗が増加し加工溝幅の入口
と出口の寸法が変化しテーバを生じる問題が発生してい
る。これは被加工体の板厚が厚くなればテーバも大きく
なる欠点がある。このワイヤ電極の消耗による加工溝幅
のテーバの発生を少なくするためには、ワイヤ電極の走
行移動速”度を10〜15 m/ll1nと従来の2倍
以上に高速にし急速移動させることが考えられるが、こ
れではワイヤ電極の消費量が増加し実用経済的に有効で
はない。又ワイヤ電極の高速移動によって張力変動、振
動等が発生し安定加工ができず、加工面に筋を発生した
り断線も多くなる欠点がある。In recent years, the machining performance of wire cut electrical discharge machining has greatly improved.
20 using a wire electrode with a wire diameter of around 0.3II 1mφ
High-speed machining performance of about 0 to 300 m1/win can now be obtained. As the machining speed increases, the wear of the wire electrode increases according to a predetermined wear ratio, and the dimensions of the entrance and exit of the machining groove change, causing a problem of taber formation. This has the disadvantage that as the thickness of the workpiece increases, the taper also increases. In order to reduce the occurrence of taper in the machined groove width due to wear of the wire electrode, it is considered to move the wire electrode rapidly by increasing the traveling speed of 10 to 15 m/ll1n, which is more than double the conventional speed. However, this increases the consumption of the wire electrode and is not practical and economical.Also, the high-speed movement of the wire electrode causes tension fluctuations, vibrations, etc., making stable machining impossible and causing streaks on the machined surface. The disadvantage is that there are many disconnections.
〔問題点の解決手4段〕
本発明は以上の点に鑑みてワイヤ電極の走行速度を充分
に低下して加工面に発生するテーバを少なくする加工方
法を提案するもので、ワイヤ電極と被加工体との相対間
にワイヤ電極の貫通する加工溝の入口と出口間の電極消
耗による線径寸法差に対応した角度の傾斜制御を加工送
りに直角方向に与えながら加工することを特徴とする。[Four steps to solve the problem] In view of the above points, the present invention proposes a processing method that sufficiently reduces the running speed of the wire electrode to reduce the taper generated on the machined surface. The method is characterized in that machining is performed while applying angle inclination control in a direction perpendicular to the machining feed, corresponding to the wire diameter size difference due to electrode wear between the entrance and exit of the machining groove through which the wire electrode penetrates relative to the workpiece. .
以下図面の一実施例によって本発明を説明する。 The present invention will be explained below with reference to an embodiment of the drawings.
第1図に於て、1はワイヤ電極、2はワイヤ供給リール
、3,4は加工部の上下ガイドで、このガイド間を走行
するワイヤ電極1に被加工体5を対向して加工する。6
は上ガイド3の支持アームに設けたUV軸クロステーブ
ルで、ガイド3を支持し、モータ61,62によりUV
軸移動の制御を行なう。In FIG. 1, 1 is a wire electrode, 2 is a wire supply reel, 3 and 4 are upper and lower guides of the processing section, and a workpiece 5 is processed while facing the wire electrode 1 running between these guides. 6
is a UV axis cross table installed on the support arm of the upper guide 3, which supports the guide 3 and uses motors 61 and 62 to
Controls axis movement.
7は下ガイド4を支持するアーム、8は被加工体5を支
持し加工送りを与えるXY軸ツクロステーブル、モータ
81,82によりXYY移動制御を行なう。尚、XY軸
とUV軸は平行に設けられる。9はワイヤ電極1の供給
側に設けられたブレーキローラ、10がブレーキ装置、
11はピンチローラで、バネ12によりワイヤ電橋ロー
ラ9に圧着する。13はワイヤ電極の巻取側に設けた巻
取ローラ、14が駆動モータ、15はピンチローラで、
バネ16によってワイヤ電極1を巻取ローラ14に圧着
する。この巻取ローラ13と前記ブレーキローラ9によ
って走行するワイヤ電極1に所定の張力を作用し所定速
度で移動させる。17は巻取リール、18は各部制御装
置に信号を出力するCNC装置、19が情報の記憶装置
、20が表示装置、21は加工条件等の手動入力装置、
22がテープ入力装置、23はXY軸モータ81.82
17)制御装置、24がUV軸−E−161,6217
)制御装置、25が巻取駆動モータ14の制御装置、2
6がブレーキ装置10の制御装置であり、各制御装置に
CNC装置18から信号を供給する。An arm 7 supports the lower guide 4, an XY-axis cross table 8 supports the workpiece 5 and provides machining feed, and XYY movement control is performed by motors 81 and 82. Note that the XY axes and the UV axis are provided in parallel. 9 is a brake roller provided on the supply side of the wire electrode 1; 10 is a brake device;
A pinch roller 11 is pressed against the wire electric bridge roller 9 by a spring 12. 13 is a winding roller provided on the winding side of the wire electrode, 14 is a drive motor, 15 is a pinch roller,
The wire electrode 1 is pressed against the take-up roller 14 by the spring 16. The winding roller 13 and the brake roller 9 apply a predetermined tension to the running wire electrode 1 to move it at a predetermined speed. 17 is a take-up reel, 18 is a CNC device that outputs signals to each part control device, 19 is an information storage device, 20 is a display device, 21 is a manual input device for processing conditions, etc.
22 is a tape input device, 23 is an XY axis motor 81.82
17) Control device, 24 is UV axis-E-161, 6217
) A control device, 25 is a control device for the winding drive motor 14, 2
6 is a control device for the brake device 10, and signals are supplied from the CNC device 18 to each control device.
以上に於て、情報記憶装置19には、各種制御信号が記
憶され、その中には使用するワイヤ線径、材質、被加工
体の板厚、材質、ワイヤ電極の張力、走行移動速度、加
工パルス条件等によってCNC装置18によって計算し
たワイヤ電極1の消耗補正値、或いは予備実験により求
めた消耗補正値を手動入力袋@21により入力した値が
記憶されている。In the above, the information storage device 19 stores various control signals, including the wire diameter and material used, the thickness and material of the workpiece, the tension of the wire electrode, the traveling speed, and the processing. A wear correction value of the wire electrode 1 calculated by the CNC device 18 according to pulse conditions or the like, or a wear correction value determined by a preliminary experiment and inputted through the manual input bag @21 is stored.
CNC装置18は制御装置25及び26に信号を送って
巻取モータ14を制御し且つブレーキ装置10を制御し
て走行するワイヤ電極1の張力と速度を加工条件に応じ
て所定の最適値に制御し、これによりワイヤ電極1は上
下ガイド3.4間を所定の張力と速度をもって直線に走
行移動する。このガイド間のワイヤ電極1に被加工体5
を対向した間隙には加工液を通常上下ガイド3,4を包
むように設けたノズルから噴出し、図示しないパルス電
源からワイヤ電極1と被加工体5間にパルスを加え、パ
ルス放電を発生して加工する。テープ入力装置22から
はプログラムした加工形状信号が入力し、CNC装置1
8によって演算した送り信号が制御装置23に加わり、
XY軸モータ81,82を駆動して被加工体5にワイヤ
電極1に対する相対形状送りを与える。The CNC device 18 sends signals to the control devices 25 and 26 to control the winding motor 14 and the brake device 10 to control the tension and speed of the running wire electrode 1 to predetermined optimum values according to the processing conditions. As a result, the wire electrode 1 is moved linearly between the upper and lower guides 3.4 with a predetermined tension and speed. The workpiece 5 is attached to the wire electrode 1 between the guides.
Machining liquid is normally jetted into the gap facing the upper and lower guides 3 and 4 from a nozzle provided so as to surround the upper and lower guides 3 and 4, and a pulse is applied between the wire electrode 1 and the workpiece 5 from a pulse power source (not shown) to generate a pulse discharge. Process. A programmed machining shape signal is input from the tape input device 22, and the CNC device 1
The sending signal calculated by 8 is applied to the control device 23,
The XY-axis motors 81 and 82 are driven to give the workpiece 5 relative shape feed with respect to the wire electrode 1.
勿論加工間隙の信号を検出してアーク・短絡時には送り
を止めたり後退させたり適応制御しながら加工の進行に
追従制御する。この加工送りによって被加工体5は送り
形状にカットされるが、ワイヤ電極1が被加工体5の上
面から加工溝に入って裏面から出るまでの間に放電によ
って消耗するため、第2図のように被加工体5に対向す
るワイヤ電極1は加工溝の入口にあるときにより出口に
移動じたとき線径が細くなる(d−d’)。これにより
加工された被加工体5のカットされた切断面にテーバが
形成される。このワイヤ電極1の消耗は次のようにして
求められる。Of course, it detects the machining gap signal and, in the event of an arc or short circuit, stops or retreats the feed and performs adaptive control to follow the progress of machining. The workpiece 5 is cut into the feed shape by this machining feed, but the wire electrode 1 enters the machining groove from the top surface of the workpiece 5 and is consumed by electrical discharge until it exits from the back surface, so as shown in FIG. As shown, the wire diameter of the wire electrode 1 facing the workpiece 5 becomes smaller when it is at the entrance of the processing groove and when it moves to the exit (dd'). As a result, a taper is formed on the cut surface of the processed workpiece 5. This wear of the wire electrode 1 is determined as follows.
先ずワイヤ電極の一点が加工溝の入口から入って出口を
通過するまでの時間に加工される被加工体の加工量Wは
、電気加工条件(τon、τoff、Ip、r)、ワイ
ヤ電極の線径d、材質、走行移動速度F1被加工体の材
質(比重ρ)、板厚を等によって定まり、第3図のよう
に通過中に平均長さAの加工が行なわれたとすると、ハ
ツチング部但し、Dは加工溝幅で、線径d及び加工条件
によってきまる加工拡大代によって定まり、予め求めら
れ、又ωは加工条件によってきまる一発の放電による加
工量でこれからAが求められる。First, the processing amount W of the workpiece that is processed during the time from when one point of the wire electrode enters the processing groove to when it passes through the exit is determined by the electrical processing conditions (τon, τoff, Ip, r) and the line of the wire electrode. The diameter d, the material, the travel speed F1, the material (specific gravity ρ) of the workpiece, the plate thickness, etc. are determined by the following, and if machining of average length A is performed during passing as shown in Figure 3, then the hatching part, however, , D is the machining groove width, which is determined by the machining expansion margin determined by the wire diameter d and the machining conditions, and is determined in advance, and ω is the machining amount by one discharge, which is determined by the machining conditions, and A is determined from this.
電極の線径消耗A′は被加工体の加工量に対して加工条
件にしたがって定まる消耗比γ(%)によって、
A’ =□・γ・A
A′は板厚tのときの平均値であり、実際には第2図の
ように消耗しているからワイヤ電極の出口側の消耗長さ
Xを求めると、
tanθ=2A′
x=ttanθ=2A′
となる。従ってワイヤ電極1に角度θの傾斜送りをすれ
ばワイヤ電極1の出口側のXはOになり、被加工体の切
断面のテーパを除去でき、垂直断面のカットができるこ
とになる。The wire diameter consumption A' of the electrode is determined by the consumption ratio γ (%) determined according to the machining conditions with respect to the machining amount of the workpiece, A' = □・γ・A A' is the average value when the plate thickness is t. In reality, the wire electrode is worn out as shown in FIG. 2, so the worn length X on the exit side of the wire electrode is calculated as follows: tanθ=2A'x=ttanθ=2A'. Therefore, if the wire electrode 1 is fed obliquely at an angle θ, X on the exit side of the wire electrode 1 becomes O, the taper of the cut surface of the workpiece can be removed, and a vertical cross-section can be cut.
以上のような傾斜角度の計算は、加工条件、電極、被加
工体条件等の各条件を手動入力装置21によてCNC装
置18に入力して計算し−て記憶装置19に記憶させて
もよく、予め計算した値を手動入力装置21によって入
力してもよい。加工中CNC装置18は記憶量を呼び出
しながら所定の傾斜角度が1qられるように制御装@2
4に信号を出力し、モータ67.62を駆動してクロス
テーブル6をLIV軸に駆動し、固定した上ガイド3を
移動してガイド3.4間のワイヤ電極1を傾斜させる。The above-mentioned calculation of the inclination angle can be performed by inputting various conditions such as machining conditions, electrodes, workpiece conditions, etc. into the CNC device 18 using the manual input device 21 and storing the calculations in the storage device 19. Often, pre-calculated values may be entered by manual input device 21. During machining, the CNC device 18 controls the control device @2 so that the predetermined inclination angle is 1q while calling up the stored amount.
4, the motors 67 and 62 are driven to drive the cross table 6 along the LIV axis, and the fixed upper guide 3 is moved to tilt the wire electrode 1 between the guides 3 and 4.
傾斜方向は制御装置23による加工送り方向に対して直
角方向に、即ち加工送りの分配信号によってモータ81
を駆動してX軸方向に送るときは対応する分配信号によ
ってモータ62を駆動してV軸に所定分送って傾斜させ
、加工送りをY軸方向に送る場合はU軸に傾斜送りを与
えるように関連制御する。しかもその傾斜は被加工体の
加工して残す製品側に傾斜させ、即ち第2図に於て、被
加工体5の左側を切落し、右側を製品とする場合は、ワ
イヤ電極1の上方を左に傾斜制御を行なう。これにより
所要形状にカットされた被加工体5の輪郭切断面は上下
寸法が等しく常に垂直面で切断され、テーパを完全に除
去することができる。The direction of inclination is perpendicular to the processing feed direction by the control device 23, that is, the motor 81 is controlled by the processing feed distribution signal.
When the machining feed is to be sent in the X-axis direction, the motor 62 is driven by the corresponding distribution signal to feed the V-axis a predetermined amount and tilted, and when the machining feed is to be sent in the Y-axis direction, the U-axis is given a tilted feed. related to control. Moreover, the inclination is made to slope toward the product side of the workpiece to be processed, that is, when cutting off the left side of the workpiece 5 and using the right side as the product in FIG. 2, the upper part of the wire electrode 1 is cut off. Perform tilt control to the left. As a result, the contour cut surface of the workpiece 5 cut into the desired shape has equal upper and lower dimensions and is always cut on a vertical plane, making it possible to completely eliminate taper.
尚、電極消耗は実験によれば、板厚50111+1 t
、線径0.3mmφのワイヤ電極で平均加工電圧VIl
+=50V、平均電流In−835Aの条件で加工する
とき、ワイヤ電極の走行移動速度と電極消耗は次の通り
であった。According to experiments, the electrode consumption is determined by plate thickness 50111+1 t.
, the average machining voltage VIl with a wire electrode with a wire diameter of 0.3 mmφ
When processing under the conditions of +=50V and average current In-835A, the running speed of the wire electrode and the electrode wear were as follows.
ができ、予め各種ワイヤ電極によって傾斜角度を求める
ことができる。そしてこの実験値を手動入力装置21に
よって入力し情報記憶装置19に記憶しておくことによ
り加工中ワイヤ電極1の傾斜制御をすることができ、高
精度加工することができる。The inclination angle can be determined in advance using various wire electrodes. By inputting this experimental value using the manual input device 21 and storing it in the information storage device 19, the inclination of the wire electrode 1 can be controlled during machining, and high precision machining can be achieved.
以上のようにしてワイヤ電極の傾斜制御によって被加工
体の切断面に発生するテーパを除去できるから、巻取ロ
ーラ13及びブレーキローラ9によって制御されるワイ
ヤ電極1の走行移動速度を充分低速にすることができ、
断線しない程度に従来の高速移動の場合の1/3〜1/
10以下にすることができ、又加工電流も20〜30A
程度の増加して高速加工を行なうことができる。As described above, the taper generated on the cut surface of the workpiece can be removed by controlling the inclination of the wire electrode, so that the traveling speed of the wire electrode 1 controlled by the take-up roller 13 and the brake roller 9 can be made sufficiently low. It is possible,
1/3 to 1/3 of conventional high-speed movement to the extent that the wire does not break.
10 or less, and the processing current can also be 20 to 30A.
It is possible to perform high-speed processing by increasing the degree of processing.
尚、傾斜制御は被加工体側に与えてもよく、又加工送り
をワイヤ電極側に与えてもよい。Incidentally, the tilt control may be applied to the workpiece side, and the machining feed may be applied to the wire electrode side.
以上のように本発明は、ワイヤ電極と被加工体との相対
間にワイヤ電極の貫通する加工溝の入口と出口間の電極
消耗による線径寸法差に対応した角度の傾斜制御を加工
送りに直角方向に与えながら加工するようにしたので、
ワイヤカットにより被加工体に発生するテーパを除去す
ることができ、常に垂直切断面の高精度加工をすること
ができる。As described above, the present invention provides angle inclination control for machining feed that corresponds to the wire diameter dimension difference due to electrode wear between the entrance and exit of the machining groove that the wire electrode penetrates between the wire electrode and the workpiece. Since the machining is performed while feeding in the right angle direction,
The taper that occurs in the workpiece can be removed by wire cutting, and vertical cutting surfaces can always be machined with high precision.
従ってワイヤ電極の走行移動速度は充分に低速にするこ
とができ、ワイヤ消費量を従来の1/3〜1710以下
に経済的に加工することができる。又ワイヤ電極の低速
移動制御によってワイヤ走行経路に於けるショック等が
少なく張力変動がなくなり安定した一定張力により断線
等もなくなり、安定した高精度の加工を行なうことがで
きる。又電極消耗によるテーパ発生がないから加工電流
も充分増加し大電流を流して高速高能率の加工を可能と
する効果がある。更に高速加工後のりカットの回数を減
少させて仕上加工ができるため極めて能率的な加工がで
きる。Therefore, the traveling speed of the wire electrode can be made sufficiently low, and the wire consumption can be economically processed to 1/3 to 1710 times less than that of the conventional method. Further, by controlling the movement of the wire electrode at a low speed, shocks and the like in the wire travel path are reduced, tension fluctuations are eliminated, and the stable constant tension eliminates wire breakage and the like, making it possible to perform stable and highly accurate machining. Further, since there is no taper caused by electrode wear, the machining current is sufficiently increased, and a large current can be passed to enable high-speed, high-efficiency machining. Furthermore, finishing can be performed by reducing the number of glue cuts after high-speed machining, resulting in extremely efficient machining.
第1図は本発明の一実施例装置の構成図、第2図は本発
明の説明図側面図、第3図はその説明図上面図である。
1・・・・・・・・・ワイヤ電極
3.4・・・・・・・・・ガイド
5・・・・・・・・・被加工体
6・・・・・・・・・Uvクロステーブル61.62・
・・・・・・・・UV軸駆動モータ8・・・・・・・・
・XYクロステーブル81.82・・・・・・・・・X
Y軸駆動モータ9・・・・・・・・・ブレーキ
13・・・・・・・・・巻取ローラ
18・・・・・・・・・CNC装置
19・・・・・・・・・記憶装置
20・・・・・・・・・表示装置
21・・・・・・・・・手動入力装置
22・・・・・・・・・テープ入力装置23・・・・・
・・・・XY軸制御装置24・・・・・・・・・Uv軸
制御装置特 許 出 願 人
株式会社井上ジャパックス研究所
代表者 井 上 潔
X1図FIG. 1 is a configuration diagram of an apparatus according to an embodiment of the present invention, FIG. 2 is an explanatory side view of the present invention, and FIG. 3 is an explanatory top view thereof. 1...Wire electrode 3.4...Guide 5...Workpiece 6...Uv cross Table 61.62・
......UV axis drive motor 8...
・XY cross table 81.82......X
Y-axis drive motor 9...Brake 13...Take-up roller 18...CNC device 19... Storage device 20...Display device 21...Manual input device 22...Tape input device 23...
...XY-axis control device 24 ......Uv-axis control device patent applicant Kiyoshi Inoue, representative of Inoue Japax Laboratory Co., Ltd.
Claims (1)
に走行移動させるワイヤ電極と被加工体とを対向させた
間隙に加工形状の追従加工送りを与えながらパルス放電
を行なつて加工するワイヤカット、放電加工方法に於て
、前記ワイヤ電極と被加工体との相対間にワイヤ電極の
貫通する加工溝の入口と出口間の電極消耗による線径寸
法差に対応した角度の傾斜制御を加工送りに直角方向に
与えながら加工することを特徴とするワイヤカット放電
加工方法。A wire that is machined by performing pulse discharge while giving a machining feed that follows the machining shape in the gap between a wire electrode that is moved in one direction between both guides of the machining section with a predetermined tension and speed, and the workpiece facing each other. In the cutting and electric discharge machining method, the inclination of the angle is controlled to correspond to the wire diameter size difference due to electrode wear between the entrance and exit of the machining groove that the wire electrode penetrates between the wire electrode and the workpiece. A wire cut electric discharge machining method characterized by machining while applying feed in a direction perpendicular to the feed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26438786A JPS63120030A (en) | 1986-11-06 | 1986-11-06 | Wire-cut electric discharge machining |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26438786A JPS63120030A (en) | 1986-11-06 | 1986-11-06 | Wire-cut electric discharge machining |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63120030A true JPS63120030A (en) | 1988-05-24 |
Family
ID=17402448
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26438786A Pending JPS63120030A (en) | 1986-11-06 | 1986-11-06 | Wire-cut electric discharge machining |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63120030A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6998561B2 (en) | 2002-10-24 | 2006-02-14 | Fanuc Ltd | Wire electric discharge machine |
JP2018120481A (en) * | 2017-01-26 | 2018-08-02 | ファナック株式会社 | Numerical control device |
-
1986
- 1986-11-06 JP JP26438786A patent/JPS63120030A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6998561B2 (en) | 2002-10-24 | 2006-02-14 | Fanuc Ltd | Wire electric discharge machine |
JP2018120481A (en) * | 2017-01-26 | 2018-08-02 | ファナック株式会社 | Numerical control device |
US10549369B2 (en) | 2017-01-26 | 2020-02-04 | Fanuc Corporation | Numerical controller |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4414456A (en) | Electroerosive wire-cutting method and apparatus with a shaped high-velocity stream of a cutting liquid medium | |
US4673787A (en) | Electroerosion method of wire-cutting a desired contour in a workpiece | |
US4418263A (en) | Electroerosive wire-cutting method and apparatus with a shaped wire electrode | |
US4475996A (en) | Multi-strand wire electroerosion machining method and apparatus | |
EP2295180B1 (en) | Wire electric discharge machining method, apparatus therefor, wire electric discharge machining program creating device, and computer-readable recording medium in which program for creating wire electric discharge machining program is stored | |
EP2845677B1 (en) | Numerical control apparatus for controlling wire electric discharge machine which performs taper machining | |
WO2002040208A1 (en) | Method and apparatus for electrodischarge wire machining | |
GB2079210A (en) | Wire-cutting electroerosion method and apparatus | |
US4611107A (en) | Precision TW electroerosion with superimposed multiple opening guides | |
US4510366A (en) | Fluid delivery rate control TW electrical machining method and apparatus | |
US4607149A (en) | Fluid delivery rate control tw electrical machining method and apparatus | |
US4479045A (en) | Traveling-wire electroerosive cutting method and apparatus | |
US4495038A (en) | Method of and apparatus for electroerosively wire-cutting a conductive workpiece | |
JPS63120030A (en) | Wire-cut electric discharge machining | |
GB2077171A (en) | Electroerosive wire-cutting method and apparatus | |
JPH079261A (en) | Method and device for wire electric discharge machining | |
JPS6254608B2 (en) | ||
JP3668607B2 (en) | Wire cut electric discharge machining method and apparatus | |
JPS618223A (en) | Electric discharge machine | |
JPS6247131B2 (en) | ||
JPS62102921A (en) | Wire cut electric discharge machine | |
JPS6144535A (en) | Wire-cut electric discharge machining | |
JPS629821A (en) | Electric discharge machine | |
JPH01222823A (en) | Wire electric discharge machine | |
JPS6357121A (en) | Electric discharge cutter |