JPS63119818A - Upward stream filtrating device - Google Patents

Upward stream filtrating device

Info

Publication number
JPS63119818A
JPS63119818A JP26409886A JP26409886A JPS63119818A JP S63119818 A JPS63119818 A JP S63119818A JP 26409886 A JP26409886 A JP 26409886A JP 26409886 A JP26409886 A JP 26409886A JP S63119818 A JPS63119818 A JP S63119818A
Authority
JP
Japan
Prior art keywords
filtration
grid
layer
lattice body
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26409886A
Other languages
Japanese (ja)
Other versions
JPH0249121B2 (en
Inventor
Tetsuo Kataoka
片岡 哲夫
Keiji Matsuoka
慶二 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP26409886A priority Critical patent/JPS63119818A/en
Publication of JPS63119818A publication Critical patent/JPS63119818A/en
Publication of JPH0249121B2 publication Critical patent/JPH0249121B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To secure the reliability of treating capacity of a device by providing a fixed lattice body in a specified position in a filtration layer. CONSTITUTION:The fixed lattice body consisting of grids such as plane plates arranged in parallel is provided in such a position in the filtration layer that the head loss in the filtration layer is not increased in the case of filtrating operation and the position is in the downstream. As a result, the filter medium near the fixed lattice body receives underwater weight of the filter medium of higher position than the fixed lattice body, and accordingly it ensures bridge effect which surely prevents the floating-up of a filtration layer 17 by the fixed lattice body. Consequently, the critical range for break-through is largely improved, the stability of operation is increased, and the reliability of treating capacity of the device is secured.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、処理流体を濾層に対して上向に通すことによ
って濾過する上向流濾過装置に関し、特に下水処理の3
次処理等に用いて好適な上向流濾過装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an upward flow filtration device that filters a treatment fluid by passing it upwardly through a filter layer, and particularly relates to an upflow filtration device that filters a treatment fluid by passing it upwardly through a filter layer.
The present invention relates to an upward flow filtration device suitable for use in subsequent processing.

(従来の技術) この種の従来装置について、第5°図を参照しつつ説明
する。
(Prior Art) This type of conventional device will be explained with reference to FIG. 5.

汚濁水は、濾過槽1の底部から流入され、分水装置2、
支持砂利層3,4、上層濾過層5および上層濾過層6を
順次に通って、濾過槽1の上部で集水される。なお、下
WHjl過R5および上層濾過WJ6によってa濾層7
が形成されている。
The polluted water flows into the bottom of the filter tank 1, and is passed through the water diversion device 2,
The water passes through the supporting gravel layers 3 and 4, the upper filtration layer 5 and the upper filtration layer 6 in order, and is collected at the upper part of the filtration tank 1. Note that the a filter layer 7 is filtered by the lower WHjl filtration R5 and the upper layer filtration WJ6.
is formed.

ところで、濾過を継続して行くと、汚濁水中の浮遊物が
線層7内に抑留され、この抑留が増大するにつれて濾層
内損失水頭が、濾層7を構成する濾過材の水中1闇と笠
しくなる。更に、濾過を継続して行くと、a層内損失水
頭の方が大きくなり、濾層7の一部が浮遊状態となって
、抑留した浮遊物が濾過水に流出するようになる。この
現象をブレークスルーといって、このブレークスルーが
生じた時点で濾過の機能が失われることになる。
By the way, as filtration continues, suspended matter in the polluted water is trapped in the linear layer 7, and as this retention increases, the head loss in the filter layer increases with the amount of water in the filter medium constituting the filter layer 7. I feel hazy. Furthermore, as the filtration continues, the head loss in the a-layer becomes larger, a part of the filter layer 7 becomes floating, and the trapped suspended matter flows out into the filtrate water. This phenomenon is called a breakthrough, and once this breakthrough occurs, the filtration function is lost.

従来においては、このブレークスルーを防止するために
、図示されるように、81117内で濾M7表面下、言
い換えれば上Jli濾過1i!6の表面下には、グリッ
ド8が固設されている。このグリッド8により、グリッ
ド8の格子間においてuiH7を構成する濾過材の砂が
かみ合って逆ブリッジができて、砂は自重以上の力を前
記格子に伝達することから、いわゆるブリッジ効果によ
ってブレークスルーを防いでいる。
Conventionally, in order to prevent this breakthrough, as shown in the figure, in 81117, the filtration M7 is below the surface, in other words, above the Jli filtration 1i! A grid 8 is fixedly provided below the surface of 6. With this grid 8, the sand of the filtering medium that constitutes the uiH7 is interlocked between the grids of the grid 8, creating a reverse bridge, and the sand transmits a force greater than its own weight to the grid, resulting in a breakthrough due to the so-called bridge effect. Preventing.

前記グリッド8を厚さ6〜9 n、幅15〜20CIの
平板を間隔15C1で配した鋼製格子として、その上端
面が′t11図1濾層7表0agになるように設け、ま
た上層濾過層6の濾過材をケイ砂として、その厚みを1
.5〜1.7mとした場合には、1lIH内損失水頭が
31程度まではほぼブレークスルーが生じないことが認
められている。
The grid 8 is a steel grid in which flat plates with a thickness of 6 to 9 nm and a width of 15 to 20 CI are arranged at intervals of 15C1, and the upper end surface thereof is set to be the filtration layer 7 surface 0ag. The filter material for layer 6 is silica sand, and its thickness is 1
.. When the distance is 5 to 1.7 m, it is recognized that almost no breakthrough occurs until the head loss within 1 lIH is about 31 m.

(発明が解決しようとする問題点) しかしながら、実際には、前述のようにしてグリッド8
が設けられてはいても、ブレークスルーに対しては不安
定である。例えば、Ill7の洗浄が不十分、あるいは
濾層7の締め固めが不十分、更にはわずかな濾過速度の
変動等の要因によって、ブレークスルーは所定のi1m
W4内損失水頭の70〜80%の損失水頭でもしばしば
起こり、装置の処理能力の信頼性が損なわれるという問
題点が生じる。
(Problem to be solved by the invention) However, in reality, the grid 8 is
Even if it is provided, it is unstable against breakthroughs. For example, due to factors such as insufficient cleaning of the Ill7, insufficient compaction of the filter layer 7, or even slight fluctuations in the filtration rate, breakthrough may occur at a given I1m.
A head loss of 70 to 80% of the W4 internal head loss often occurs, resulting in a problem that the reliability of the throughput of the device is impaired.

本発明は、このような問題点を解決する目的でなされた
ものである。
The present invention has been made to solve these problems.

(問題点を解決するための手段) 本発明による上向流濾過装置は、前記目的を達成するた
めに、前述したものにおいて、前記i1濾層内であると
ともに、濾過にともなう#Ii層内損失水頭の変化が殆
んど生じない位置で、かつ下方側の位置に固定格子体を
設けることを特徴とするものである。
(Means for Solving the Problems) In order to achieve the above-mentioned object, the upflow filtration device according to the present invention, in the above-mentioned device, is configured to reduce the loss within the #Ii layer due to filtration. This system is characterized in that the fixed grid is provided at a position on the lower side where almost no change in water head occurs.

(作用) 前述のような位置に固定格子体を設けることによって、
固定格子体のまわりのIllを構成する濾過材に、固定
格子体より上方の濾過材の水中重量が十分に加わる。こ
れにより、濾過材が締め固められて、固定格子体の格子
間の濾過材どうしのかみ合い、また格子と濾過材とのか
みあいが極めて強固になり、ブリッジ効果が十分に期待
される。
(Function) By providing the fixed grid at the position described above,
The underwater weight of the filtration material above the fixed lattice is sufficiently applied to the filtration material constituting Ill around the fixed lattice. As a result, the filtering media are compacted, and the meshing between the filtering media between the grids of the fixed grid body and the meshing between the grids and the filtering media become extremely strong, and a bridging effect can be fully expected.

したがって、dlmの浮き上がりを確実に固定格子体に
よって受は止めることができる。
Therefore, lifting of the dlm can be reliably prevented by the fixed grid.

(実施例) 次に、本発明による上向流濾過装置の具体的一実施例に
つき、図面を参照しつつ説明する。
(Example) Next, a specific example of the upflow filtration device according to the present invention will be described with reference to the drawings.

第1図においで1鋼板等の金属またはコンクリート等に
より構成される濾過槽11内には、下方から順次に上方
に、濾過時又は洗浄時の水を均等に分配する分水機能を
有する分水装置12、支持材としての径30〜50nの
砂利から成る下層砂利1@13、径8〜20 nの砂利
から成る上層砂利層14、−過材としての径2〜3nの
砂利から成る上層濾過1!1715、更には濾過材とし
ての径1〜2 nのケイ砂から成る上層濾過層16が設
けられている。これら下11111過R15および上層
濾過H16によって、濾廂17が形成されでいる。なお
、下層および上層砂利層13゜14からなる支持肩の厚
みは約25CI+で、下層濾過層15および上層濾過[
16の厚みは、夫々的25ci11および約110CI
である。
In Fig. 1, a filtration tank 11 made of metal such as a steel plate, concrete, etc. has a water diversion function that evenly distributes water during filtration or washing from the bottom to the top. Device 12, lower gravel layer 1@13 consisting of gravel with a diameter of 30 to 50 nm as support material, upper layer of gravel 14 consisting of gravel with a diameter of 8 to 20 nm, - upper layer of filtration consisting of gravel with a diameter of 2 to 3 nm as filter material 1!1715, and an upper filtration layer 16 made of silica sand having a diameter of 1 to 2 nm as a filter material. A filter rim 17 is formed by the lower 11111 filtration R15 and the upper filtration H16. The thickness of the support shoulder consisting of the lower and upper gravel layers 13 and 14 is approximately 25CI+, and the lower and upper filtration layers 15 and 14 have a thickness of approximately 25CI+.
The thickness of 16 is 25ci11 and about 110ci, respectively.
It is.

なお、本実施例ではブレークスルーに対する抵抗力を調
べるため濾@111の厚みを薄クシたが、通常は上層濾
過wJ16の厚みは150ai程度である。
In this example, the thickness of the filter @111 was made thin in order to examine the resistance against breakthrough, but the thickness of the upper layer filtration wJ16 is usually about 150 ai.

前記上層濾過層16の中央部には、上H濾過層16の表
面から50C11下方に、その上端面が位置するように
グリッド18が前記濾過槽11に周知の手段によって固
着されて設けられている。このグリッド18の構造は、
第2図に示されるように、厚さA 6 a 。
A grid 18 is provided in the center of the upper filtration layer 16 by being fixed to the filtration tank 11 by a well-known means such that its upper end surface is located below 50C11 from the surface of the upper H filtration layer 16. . The structure of this grid 18 is
As shown in FIG. 2, the thickness A 6 a.

幅315amの平板を、間隔C15CIllで平行にな
るように配した鋼製または合成樹脂製等の格子体である
It is a lattice body made of steel or synthetic resin, etc., in which flat plates with a width of 315 am are arranged parallel to each other with an interval of C15 CIll.

原水とじて下水2次処理水等が、前記濾過槽11の底部
から流入され、分水装置12′で分水されて、上向きに
下層および上層砂利層13.14から成る支持層および
、下層および上農濾過層15.16から成るl1濾層1
7を順次に通り、濾過槽11の上部で集水されて清澄な
処理水として取り出される。
Raw water as well as secondary treated sewage water, etc. are introduced from the bottom of the filter tank 11, separated by a water diversion device 12', and are directed upward to a support layer consisting of a lower layer and an upper gravel layer 13, 14, and a lower layer and l1 filter layer 1 consisting of 15 and 16 filter layers
7 successively, the water is collected at the upper part of the filtration tank 11, and taken out as clear treated water.

次に、前記グリッド18のl!濾層濾層内7内位置に関
して詳述する。第3図には、前記m層17と、この濾m
17内での損失水頭分布の濾過速度300m/日および
400m/日夫々での初期損失および最終損失とについ
て示されている。なお、図中において、Xaは濾過速度
300m/日の初期損失を表わす線、xbはその最終損
失を表わす線、またyaは濾過速度400ra/日の初
期損失を表わす線、Ybはその最終損失を表わす線を示
している。
Next, l! of the grid 18! The position within the filter layer 7 will be explained in detail. FIG. 3 shows the m layer 17 and this filter m
The head loss distribution in 17 is shown for initial and final losses at filtration rates of 300 m/day and 400 m/day, respectively. In the figure, Xa is a line representing the initial loss at a filtration rate of 300 m/day, xb is a line representing the final loss, ya is a line representing the initial loss at a filtration rate of 400 ra/day, and Yb is the final loss. It shows the lines that represent it.

前記損失を表わす線Xa 、Xb 、Ya 、Ybが、
前記躍層17の濾過材の積層荷重による水中重量を示す
直線Z(第3図には、水中重量が損失水頭に換算されて
表わされている。)より下方側に位置しておれば、濾過
材の水中重量の方が下方からの圧力よりも大きいことに
なり、ブレークスルーに対して安全な状態にある。逆に
、前記線Xa。
The lines Xa, Xb, Ya, Yb representing the losses are
If it is located below the straight line Z indicating the underwater weight due to the laminated load of the filtration material of the cline 17 (in FIG. 3, the underwater weight is expressed in terms of head loss), The weight of the filter material underwater is greater than the pressure from below, making it safe from breakthrough. Conversely, the line Xa.

Xb 、Ya 、Ybが直線Zより上方側に位置してお
れば、ブレークスルーに対して不安定状態にある。前記
グリッド18は、濾11117の損失水頭が濾過材の水
中重塁を上まわった時に、両者の差に当る水頭圧を吸収
するためのものであることから、その位置は前述の最終
損失に関して濾過材の水中重量が上まわらない位置で選
択されることになる。
If Xb, Ya, and Yb are located above the straight line Z, the state is unstable with respect to breakthrough. The grid 18 is for absorbing the difference in water head pressure when the water head loss of the filter 11117 exceeds the submerged base of the filter medium, so its position is determined by the filtration with respect to the final loss mentioned above. The location will be selected at a location where the weight of the wood in the water will not be exceeded.

一方、前記グリッド18による[1l17の浮き上がり
防止の機能は、グリッド18の格子を構成する平板の厚
みによる浮き上がりに対する支持力に加えて、格子間の
濾過材どうしのかみ合いと、格子および濾過材のかみ合
いとによって生じる逆ブリッジによる浮き上がりに対す
る阻止である。この逆ブリッジによるブリッジ効果は、
グリッド18のまわりの′a層17、具体的には上層濾
過層16の濾過材であるケイ砂の締め固めが進んでケイ
砂の密度が高くなり、前述のかみ合いが強固になればな
る程大きくなる。したがって、グリッド18の躍層11
の浮き上がりに対するブリッジ効果による防止力は、グ
リッド18上の1lll17の厚みが大きくなり、この
厚みによるケイ砂の水中重量によってグリッド18のま
わりのケイ砂の密度が高くなれば大きくなる。
On the other hand, the function of preventing lifting of [1l17] by the grid 18 is due to the supporting force against lifting due to the thickness of the flat plate constituting the lattice of the grid 18, as well as the engagement between the filter media between the grids, and the engagement between the grid and the filter material. This is to prevent lifting due to reverse bridges caused by The bridging effect due to this reverse bridge is
As the compaction of the 'a layer 17 around the grid 18, specifically the silica sand which is the filtering material of the upper filtration layer 16, progresses, the density of the silica sand increases, and the stronger the aforementioned interlocking, the larger the Become. Therefore, the cline 11 of the grid 18
The prevention force due to the bridging effect against floating increases as the thickness of 11117 on the grid 18 increases and as the density of the silica sand around the grid 18 increases due to the underwater weight of the silica sand due to this thickness.

これによって、グリッド18の位置がl@17内の下方
側に行く程、大なるブリッジ効果が得られることになる
As a result, the further down the grid 18 is in l@17, the greater the bridging effect is obtained.

すなわち、グリッド18の設定位置は、できるだけ下方
が望ましい。
That is, the setting position of the grid 18 is preferably as low as possible.

以上から、グリッド18の位置は、濾過にともなう濾居
内損失水頭の変化が殆んど生じない位置で、かつできる
だけ下方側の位置に選択すれば良いことがわかる。実際
的には、通常の濾過速度は最大400m/日程度である
ために、前述のようにグリッド18の位置は、損失水頭
がほとんど生じない位置として第1図および第3図に図
示されるように、躍層17の表面から50C11下方に
その上端面が位置するように、a濾層11内の上層濾過
層16の上下における中央部付近になる。
From the above, it can be seen that the position of the grid 18 should be selected at a position where almost no change in head loss in the filter occurs due to filtration, and at a position as low as possible. In practice, since the normal filtration speed is about 400 m/day at maximum, the grid 18 is positioned as shown in FIGS. 1 and 3, where almost no head loss occurs, as described above. In this case, the upper filtration layer 16 in the a-filtration layer 11 is located near the vertical center of the upper filtration layer 16 so that its upper end surface is located below the surface of the cline layer 17.

前述されたような1N17の表面から50allの下方
にその上端面が位置するようにグリッド18を設けた本
実施例の場合(条件■)と、m層17の表面から10C
I+の下方にその上端面が位置するようにグリッド18
を設けた場合(条件■)との対比実験を行なったところ
、次のような結果を得た。なJ3、この実験は、濾過速
度30h/日として、実験条件を均一とするため無機濁
質(粘土)を約70b/β。
In this example, the grid 18 is provided so that its upper end surface is located 50all below the surface of the 1N17 as described above (condition ①), and
Grid 18 such that its upper end surface is located below I+.
When we conducted a comparative experiment with the case where (Condition ■) was provided, we obtained the following results. In this experiment, the filtration rate was 30 h/day, and the inorganic turbidity (clay) was approximately 70 b/β in order to make the experimental conditions uniform.

PAC30b/J2を注入した汚濁水を用いてブレーク
スルーが起こるまで行ない、これを10回繰返した。
The test was carried out using contaminated water injected with PAC30b/J2 until a breakthrough occurred, and this process was repeated 10 times.

前記条件■においては、ブレークスルーした濾H17の
全損失は、水柱にして1.75〜2,05 raで、平
均としr 1.9mであった。これに対して、前記条件
■においては、ブレークスルーした躍層11の全損失は
、水柱にして1.45〜1.6mで、平均として1.5
5 Itであった。両者は、平均で22%(=(1,9
m −1,55m ) / 1.55 m >の差が生
じ、条件■の最も不良な運転結果は条件■の良好な運転
結果を上まわっていた。
Under the above condition (2), the total loss of the breakthrough filtrate H17 was 1.75 to 2.05 ra in water column, with an average of r 1.9 m. On the other hand, under the above condition (3), the total loss of the breakthrough cline 11 is 1.45 to 1.6 m in water column, and 1.5 m on average.
5 It was. Both have an average of 22% (=(1,9
A difference of > m −1,55 m ) / 1.55 m > was generated, and the worst operating result of condition (①) exceeded the good operating result of condition (③).

これらの実験による1つの結果を例として、原水(処理
水)濁度ど全損失とに対する濾過時間の関係を示すと第
4図に示されるようになった。なお、実IJa 、 、
 b 、およびC4夫々は、条件■における原水濁度、
処理水濁度および全損失を示し、点線a2.b2#よび
C2夫々は、条件■における原水濁度、処理水濁度およ
び全損失を示している。また、ブレークスルーが起こる
と処理水濁度は原水濁度を上まわるようになる。
Taking one result of these experiments as an example, the relationship between the filtration time and the total loss such as turbidity of raw water (treated water) is shown in FIG. 4. In addition, the actual IJa, ,
b and C4 are the raw water turbidity under condition ■,
Showing the treated water turbidity and total loss, dotted line a2. b2# and C2 indicate the raw water turbidity, treated water turbidity, and total loss under condition (2), respectively. Additionally, when a breakthrough occurs, the turbidity of the treated water will exceed the turbidity of the raw water.

本実施例におけるグリッド18の平板においては、凹凸
の表面処理が施された平板、あるいは砂または硬性粒状
物が表面に添着された平板を用いてもよい。また、平板
に変えて!バー等を用いてもよい。更に、明細書に用い
られている格子自体の言葉には、格子の目が正方形、矩
形になる場合のみならず、菱形、平行四辺形等になる場
合も含まれるものとする。
The flat plate of the grid 18 in this embodiment may be a flat plate with an uneven surface treatment, or a flat plate with sand or hard granules attached to the surface. Also, change it to a flat plate! A bar or the like may also be used. Further, the word lattice itself used in the specification includes not only cases where the grid has squares and rectangles, but also cases where the grids have shapes such as rhombuses and parallelograms.

(発明の効果) 固定格子体のまわりの濾過材に、固定格子体より上方の
濾過材の水中重量が十分に加わって、ブリッジ効果が十
分に期待でき、msの浮き上がりが確実に固定格子体に
よって受は止められ得る。
(Effect of the invention) The underwater weight of the filter material above the fixed grid body is sufficiently added to the filter material around the fixed grid body, and a bridging effect can be fully expected. Uke can be stopped.

したがって、装置の運転上の最大の問題点であるブレー
クスルーに対して大幅に限界を高めることができ、安定
性を増し、装置の処1能力の信頼性が確保される。
Therefore, the limit for breakthrough, which is the biggest problem in the operation of the device, can be significantly raised, stability is increased, and reliability of the processing ability of the device is ensured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第4図は、本発明による上向流濾過装置を説
明するための図面であって、 第1図は装置の断面図、 第2図はグリッドの拡大斜視図、 第3図はmuと、この8濾層内での損失水頭分布とを示
す図、 第4図は原水(処理水)濁度と全損失とに対する濾過時
間の関係を示す図である、 また、第5図は、従来技術を説明するための第1図に対
応する図面である。 16・・・上岡濾過WJ17・・・躍層18・・・グリ
ッド 特許出願人   日本碍子株式会社 第1図
1 to 4 are drawings for explaining the upflow filtration device according to the present invention, in which FIG. 1 is a sectional view of the device, FIG. 2 is an enlarged perspective view of the grid, and FIG. Figure 4 is a diagram showing the relationship between filtration time and the turbidity of raw water (treated water) and total loss. , which corresponds to FIG. 1 for explaining the prior art. 16...Kamioka filtration WJ17...Cline 18...Grid patent applicant Nippon Insulators Co., Ltd. Figure 1

Claims (1)

【特許請求の範囲】 1、処理流体を濾層に対して上向に通すことによって濾
過する上向流濾過装置において、前記濾層内であるとと
もに、濾過にともなう濾層内損失水頭の変化が殆んど生
じない位置で、かつ下方側の位置に固定格子体を設ける
ことを特徴とする上向流濾過装置。 2、前記濾過にともなう濾層内損失水頭の変化が殆んど
生じない位置で、かつ下方側の位置は、前記濾層内の上
層濾過層の上下における中央部付近であることを特徴と
する特許請求の範囲第1項に記載の上向流濾過装置。 3、前記固定格子体は、平板を平行にまたは縦横に組み
合わせたグリッドであることを特徴とする特許請求の範
囲第1項または第2項に記載の上向流濾過装置。
[Scope of Claims] 1. In an upward flow filtration device that filters a treated fluid by passing it upward through a filter layer, there is a change in head loss within the filter layer that occurs within the filter layer and accompanying filtration. An upward flow filtration device characterized in that a fixed grid body is provided at a position on the lower side where almost no flow occurs. 2. The position where the head loss in the filter layer hardly changes due to filtration, and the lower position is near the center between the top and bottom of the upper filtration layer in the filter layer. An upward flow filtration device according to claim 1. 3. The upward flow filtration device according to claim 1 or 2, wherein the fixed grid body is a grid in which flat plates are combined in parallel or vertically and horizontally.
JP26409886A 1986-11-07 1986-11-07 Upward stream filtrating device Granted JPS63119818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26409886A JPS63119818A (en) 1986-11-07 1986-11-07 Upward stream filtrating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26409886A JPS63119818A (en) 1986-11-07 1986-11-07 Upward stream filtrating device

Publications (2)

Publication Number Publication Date
JPS63119818A true JPS63119818A (en) 1988-05-24
JPH0249121B2 JPH0249121B2 (en) 1990-10-29

Family

ID=17398482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26409886A Granted JPS63119818A (en) 1986-11-07 1986-11-07 Upward stream filtrating device

Country Status (1)

Country Link
JP (1) JPS63119818A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52129064A (en) * 1976-03-24 1977-10-29 Kurita Water Ind Ltd Upward flow filter device
JPS54153378A (en) * 1978-05-24 1979-12-03 Takeda Chemical Industries Ltd Upper counterrcurrent movable bed system filter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52129064A (en) * 1976-03-24 1977-10-29 Kurita Water Ind Ltd Upward flow filter device
JPS54153378A (en) * 1978-05-24 1979-12-03 Takeda Chemical Industries Ltd Upper counterrcurrent movable bed system filter

Also Published As

Publication number Publication date
JPH0249121B2 (en) 1990-10-29

Similar Documents

Publication Publication Date Title
KR100348523B1 (en) Fluid treatment media support system
US3925205A (en) Method of separating solids suspended in a liquid
Cleasby et al. Backwashing of granular filters
US3542674A (en) Method for removing solids suspensions in liquids
US4162216A (en) Process for removal of suspended solids from liquid
US4818414A (en) Slime control for primary filtration systems
JPS63119818A (en) Upward stream filtrating device
Cleasby et al. Developments in backwashing of granular filters
Hudson Jr Functional design of rapid sand filters
CA2670393C (en) Low operating head polishing sand filter
Cleasby Status of declining rate filtration design
Hamann et al. Upflow filtration process
JP4585403B2 (en) Treatment method for sewage and secondary treatment water in rainy weather
JPH0460682B2 (en)
Qureshi Comparative performance of dual‐and mixed‐media filters
Al-Jadhai Pilot-plant study of the tertiary filtration of wastewater using local sand
Jackson et al. Granular media filtration in water and wastewater treatment, part 1
Sparham Improved settling tank efficiency by upward flow clarification
JP2004209439A (en) Filtration method for sewage
JPH09117676A (en) Countercurrent regeneration type ion exchange device and regeneration of ion exchange resin
Hebert Development of a new type of rapid sand filter
CA1116536A (en) Process for removal of suspended solids from liquid
JPH04110194U (en) Gravel contact purification equipment
Reed et al. Roughing filtration with polystyrene beads
Key CLEANING OF FILTER SANDS.(INCLUDES ADDENDUM).