JPH0249121B2 - - Google Patents

Info

Publication number
JPH0249121B2
JPH0249121B2 JP61264098A JP26409886A JPH0249121B2 JP H0249121 B2 JPH0249121 B2 JP H0249121B2 JP 61264098 A JP61264098 A JP 61264098A JP 26409886 A JP26409886 A JP 26409886A JP H0249121 B2 JPH0249121 B2 JP H0249121B2
Authority
JP
Japan
Prior art keywords
filtration
layer
filter layer
grid
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61264098A
Other languages
Japanese (ja)
Other versions
JPS63119818A (en
Inventor
Tetsuo Kataoka
Keiji Matsuoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP61264098A priority Critical patent/JPS63119818A/en
Publication of JPS63119818A publication Critical patent/JPS63119818A/en
Publication of JPH0249121B2 publication Critical patent/JPH0249121B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Filtration Of Liquid (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、処理流体を濾層に対して上向に通す
ことによつて濾過する上向流濾過装置に関し、特
に下水処理の3次処理等に用いて好適な上向流濾
過装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an upflow filtration device that filters a treated fluid by passing it upwardly through a filter layer, and particularly relates to an upflow filtration device for filtering a treated fluid by passing it upwardly through a filter layer, and particularly for tertiary treatment of sewage treatment. The present invention relates to an upward flow filtration device suitable for use in applications such as the above.

(従来の技術) この種の従来装置について、第5図を参照しつ
つ説明する。
(Prior Art) This type of conventional device will be explained with reference to FIG.

汚濁水は、濾過槽1の底部から流入され、分水
装置2、支持砂利層3,4、下層濾過層5および
上層濾過層6を順次に通つて、濾過槽1の上部で
集水される。なお、下層濾過層5および上層濾過
層6によつて濾層7が形成されている。
Polluted water flows in from the bottom of the filtration tank 1, sequentially passes through the water diversion device 2, supporting gravel layers 3 and 4, the lower filtration layer 5, and the upper filtration layer 6, and is collected at the upper part of the filtration tank 1. . Note that the lower filtration layer 5 and the upper filtration layer 6 form a filtration layer 7.

ところで、濾過を継続して行くと、汚濁水中の
浮遊物が濾層7内に抑留され、この抑留が増大す
るにつれて濾層内損失水頭が、濾層7を構成する
濾過材の水中重量と等しくなる。更に、濾過を継
続して行くと、濾層内損失水頭の方が大きくな
り、濾層7の一部が浮遊状態となつて、抑留した
浮遊物が濾過水に流出するようになる。この現象
をブレークスルーといつて、このブレークスルー
が生じた時点で濾過の機能が失われることにな
る。
By the way, as filtration continues, suspended matter in the polluted water is retained within the filter layer 7, and as this retention increases, the head loss within the filter layer becomes equal to the underwater weight of the filter media constituting the filter layer 7. Become. Furthermore, as the filtration continues, the head loss in the filter layer becomes larger, a part of the filter layer 7 becomes floating, and the trapped suspended matter flows out into the filtrate water. This phenomenon is called a breakthrough, and once this breakthrough occurs, the filtration function is lost.

従来においては、このブレークスルーを防止す
るために、図示されるように、濾層7内で濾層7
表面下、言い換えれば上層濾過層6の表面下に
は、グリツド8が固設されている。このグリツド
8により、グリツド8の格子間において濾層7を
構成する濾過材の砂がかみ合つて逆ブリツジがで
きて、砂は自重以上の力を前記格子に伝達するこ
とから、いわゆるブリツジ効果によつてブレーク
スルーを防いでいる。
Conventionally, in order to prevent this breakthrough, as shown in the figure, the filter layer 7 is
Below the surface, in other words, below the surface of the upper filtration layer 6, a grid 8 is fixedly installed. Due to this grid 8, the sand of the filter medium that constitutes the filter layer 7 is interlocked between the grids of the grid 8, creating a reverse bridge, and the sand transmits a force greater than its own weight to the grid, resulting in the so-called bridge effect. This prevents breakthroughs.

前記グリツド8を厚さ6〜9mm、幅15〜20cmの
平板を間隔15cmで配した鋼製格子として、その上
端面が濾層7表面下10cmになるように設け、また
上層濾過層6の濾過材をケイ砂として、その厚み
を1.5〜1.7mとした場合には、濾層内損失水頭が
3m程度まではほぼブレークスルーが生じないこ
とが認められている。
The grid 8 is a steel grid in which flat plates with a thickness of 6 to 9 mm and a width of 15 to 20 cm are arranged at intervals of 15 cm, and the upper end surface thereof is 10 cm below the surface of the filter layer 7. When the material is silica sand and the thickness is 1.5 to 1.7 m, it is recognized that breakthrough does not occur until the head loss in the filter layer is about 3 m.

(発明が解決しようとする問題点) しかしながら、実際には、前述のようにしてグ
リツド8が設けられてはいても、ブレークスルー
に対しては不安定である。例えば、濾層7の洗浄
が不十分、あるいは濾層7の締め固めが不十分、
更にはわずかな濾過速度の変動等の要因によつ
て、ブレークスルーは所定の濾層内損失水頭の70
〜80%の損失水頭でもしばしば起こり、装置の処
理能力の信頼性が損なわれるという問題点が生じ
る。
(Problems to be Solved by the Invention) However, in reality, even though the grid 8 is provided as described above, it is unstable against breakthrough. For example, the filter layer 7 is insufficiently washed, or the filter layer 7 is insufficiently compacted.
Furthermore, due to factors such as slight fluctuations in filtration rate, breakthrough may occur at 70% of the head loss in the filter bed.
Even head losses of ~80% often occur, creating problems in which the reliability of the throughput of the equipment is compromised.

本発明は、このような問題点を解決する目的で
なされたものである。
The present invention has been made to solve these problems.

(問題点を解決するための手段) 本発明による上向流濾過装置は、上下砂利層よ
りなる支持層の上方に上下濾過層よりなる濾層を
具備し、処理流体を前記濾層に対して上向に通す
ことによつて濾過する上向流濾過装置において、
前記濾層内であるとともに、前記濾層内の上層濾
過層の上下における中央部付近の位置に固定格子
体を設けることを特徴とする。
(Means for Solving the Problems) The upflow filtration device according to the present invention is provided with a filter layer consisting of upper and lower filtration layers above a support layer consisting of upper and lower gravel layers, and the processing fluid is directed to the filter layer. In an upward flow filtration device that filters by passing upward,
The present invention is characterized in that a fixed lattice body is provided within the filter layer and at a position near the central portion above and below the upper filter layer within the filter layer.

(作用) 上述の損失水頭とは、流入水が濾層を通して濾
過されて流出する場合、濾層はある抵抗となるの
で、流れる水は流入水の水位と流出水の水位との
水位(差Δh)すなわち水頭差を必要とする。濾
層がつまつてくると抵抗が増大するので水位差
Δhは徐々に大きくなる。
(Function) The above-mentioned head loss means that when inflow water is filtered through a filter layer and flows out, the filter layer provides a certain resistance, so the flowing water is caused by the difference in the water level between the inflow water level and the outflow water level (Δh ) In other words, a head difference is required. As the filter layer becomes clogged, the resistance increases, so the water level difference Δh gradually increases.

濾過における損失水頭とは流入水が濾層を通じ
て濾過さて流出する場合、流入水の水位と流出水
との水位差Δhをいう。すなわち、損失水頭とは
濾層の水の流れに対する抵抗の量をその水頭差
(水頭差Δh)で表わしたもので通常メートル
(m)で表わす。第5図中9は流入水の水位、1
0は流出水の水位、Δhは流入水の水位と流出水
の水位との水位差で損失水頭という。
Head loss in filtration refers to the water level difference Δh between the inflow water level and the outflow water when the inflow water is filtered through a filter layer and then flows out. That is, the head loss is the amount of resistance to the flow of water in the filter layer expressed by the head difference (head difference Δh), and is usually expressed in meters (m). 9 in Figure 5 is the water level of inflow water, 1
0 is the water level of the outflow water, and Δh is the water level difference between the water level of the inflow water and the water level of the outflow water, which is called the head loss.

なお、上述の濾層内の上層濾過層の上下におけ
る中央部付近の位置とは中央線の上下方向に全濾
層厚の±25%の範囲すなわち、中央線をはさんで
50%の範囲をいう。
The above-mentioned position near the center of the upper filtration layer in the filtration layer means the range of ±25% of the total filtration layer thickness in the vertical direction of the center line, that is, across the center line.
50% range.

前述のような上層濾過層の上下の中央部付近の
位置に固定格子体を設けることによつて、固定格
子体のまわりの濾層を構成する濾過材に、固定格
子体より上方の濾過材の水中重量が十分に加わ
る。これにより、濾過材が締め固められて、固定
格子体の格子間の濾過材どうしのかみ合い、また
格子と濾過材とのかみあいが極めて強固になり、
ブリツジ効果が十分に期待される。したがつて、
濾層の浮き上がりを確実に固定格子体によつて受
け止めることができる。
By providing the fixed lattice body at a position near the center of the top and bottom of the upper filtration layer as described above, the filtration material forming the filtration layer around the fixed lattice body has the same effect as that of the filtration material above the fixed lattice body. Sufficient weight is added in the water. As a result, the filter media is compacted, and the mesh between the filter media between the grids of the fixed grid body, as well as the mesh between the grid and the filter media, becomes extremely strong.
A bridging effect is fully expected. Therefore,
The floating of the filter layer can be reliably caught by the fixed grid body.

(実施例) 次に、本発明による上向流濾過装置の具体的一
実施例につき、図面を参照しつつ説明する。
(Example) Next, a specific example of the upflow filtration device according to the present invention will be described with reference to the drawings.

第1図において、鋼板等の金属またはコンクリ
ート等により構成される濾過槽11内には、下方
から順次に上方に、濾過時又は洗浄時の水を均等
に分配する分水機能を有する分水装置12、支持
材としての径30〜50mmの砂利から成る下層砂利層
13、径8〜20mmの砂利から成る上層砂利層1
4、濾過材としての径2〜3mmの砂利から成る下
層濾過層15、更には濾過材としての径1〜2mm
のケイ砂から成る上層濾過層16が設けられてい
る。これら下層濾過層15および上層濾過層16
によつて、濾層17が形成されている。なお、下
層および上層砂利層13,14からなる支持層の
厚みは約25cmで、下層濾過層15および上層濾過
層16の厚みは、夫々約25cmおよび約110cmであ
る。
In FIG. 1, inside the filtration tank 11 made of metal such as a steel plate or concrete, there is a water diversion device having a water diversion function that evenly distributes water during filtration or washing from the bottom to the top. 12. Lower gravel layer 13 consisting of gravel with a diameter of 30 to 50 mm as supporting material; Upper gravel layer 1 consisting of gravel with a diameter of 8 to 20 mm
4. Lower filtration layer 15 consisting of gravel with a diameter of 2 to 3 mm as a filter medium, and further a diameter of 1 to 2 mm as a filter medium
An upper filtration layer 16 made of silica sand is provided. These lower filtration layer 15 and upper filtration layer 16
A filter layer 17 is formed by this. The thickness of the support layer consisting of the lower and upper gravel layers 13 and 14 is about 25 cm, and the thicknesses of the lower filtration layer 15 and the upper filtration layer 16 are about 25 cm and about 110 cm, respectively.

なお、本実施例ではブレークスルーに対する抵
抗力を調べるため濾層17の厚みを薄くしたが、
通常は上層濾過層16の厚みは150cm程度である。
In addition, in this example, the thickness of the filter layer 17 was made thin in order to examine the resistance against breakthrough.
Normally, the thickness of the upper filtration layer 16 is about 150 cm.

前記上層濾過層16の中央部には、上層濾過層1
6の表面から50cm下方に、その上端面が位置する
ようにグリツド18が前記濾過層11に周知の手
段によつて固着されて設けられている。このグリ
ツド18の構造は、第2図に示されるように、厚
さA6mm、幅B15cmの平板を、間隔C15cmで平行に
なるように配した鋼製または合成樹脂製等の格子
体である。
In the center of the upper filtration layer 16, there is an upper filtration layer 1.
A grid 18 is fixed to the filter layer 11 by well-known means so that its upper end surface is located 50 cm below the surface of the filter layer 11. As shown in FIG. 2, the structure of the grid 18 is a lattice body made of steel or synthetic resin, etc., in which flat plates with a thickness of A6 mm and a width of B15 cm are arranged in parallel with an interval of C15 cm.

原水として下水2次処理水等が、前記濾過槽1
1の底部から流入され、分水装置12で分水され
て、上向きに下層および上層砂利層13,14か
ら成る支持層および、下層および上層濾過層1
5,16から成る濾層17を順次に通り、濾過槽
11の上部で集水されて清澄な処理水として取り
出される。
Secondary treated sewage water etc. as raw water is fed to the filter tank 1.
Water flows in from the bottom of 1, is divided by a water diversion device 12, and flows upward into a supporting layer consisting of a lower layer and an upper gravel layer 13, 14, and a lower layer and an upper layer filtration layer 1.
The water passes sequentially through a filter layer 17 consisting of 5 and 16, is collected at the upper part of the filtration tank 11, and is taken out as clear treated water.

次に、前記グリツド18の濾層17内での位置
に関して詳述する。第3図には、前記濾層17
と、この濾層17内での損失水頭分布の濾過速度
300m/日および400m/日夫々での初期損失およ
び最終損失とについて示されている。なお、図中
において、Xaは濾過速度300m/日の初期損失
(すなわち洗浄直後の損失水頭)を表わす線、Xb
はその最終損失(すなわち洗浄直前の損失水頭)
を表わす線、またYaは濾過速度、400m/日の初
期損失(すなわち洗浄直後の損失水頭)を表わす
線、Ybは最終損失(すなわち洗浄直前の損失水
頭)を表わす線を示している。
Next, the position of the grid 18 within the filter layer 17 will be explained in detail. In FIG. 3, the filter layer 17
and the filtration rate of the water head loss distribution within this filter layer 17.
Initial and final losses are shown at 300 m/day and 400 m/day, respectively. In the figure, Xa is a line representing the initial loss (i.e. head loss immediately after washing) at a filtration rate of 300 m/day, and Xb
is its final loss (i.e. head loss just before cleaning)
, Ya is the filtration rate, 400 m/day is the line representing the initial loss (i.e., the head loss immediately after washing), and Yb is the line representing the final loss (i.e., the head loss immediately before washing).

前記損失を表わす線Xa,Xb,Ya,Ybが、前
記濾層17の濾過材の積層荷重による水中重量を
示す直線Z(第3図には、水中重量が損失水頭に
換算されて表わされている。)より下方側に位置
しておれば、濾過材の水中重量の方が下方からの
圧力よりも大きいことになり、ブレークスルーに
対して安全な状態にある。逆に、前記線Xa,
Xb,Ya,Ybが直線Zより上方側に位置してお
れば、ブレークスルーに対して不安定状態にあ
る。前記グリツド18は、濾層17の損失水頭が
濾過材の水中重量を上まわつた時に、両者の差に
当る水頭圧を吸収するためのものであることか
ら、その位置は前述の最終損失に関して濾過材の
水中重量が上まわらない位置で選択されることに
なる。
The lines Xa, Xb, Ya, and Yb representing the losses are the straight line Z representing the underwater weight due to the laminated load of the filter media of the filter layer 17 (in FIG. 3, the underwater weight is converted into head loss and is expressed ), the weight of the filter medium in the water is greater than the pressure from below, and the filter is in a safe state against breakthrough. Conversely, the line Xa,
If Xb, Ya, and Yb are located above the straight line Z, the state is unstable with respect to breakthrough. The grid 18 is for absorbing the difference in head pressure when the head loss of the filtration layer 17 exceeds the weight of the filter medium in the water, so its position is determined by the filtration with respect to the final loss mentioned above. The location will be selected at a location where the weight of the wood in the water will not be exceeded.

一方、前記グリツド18による濾層17の浮き
上がり防止の機能は、グリツド18の格子を構成
する平板の厚みによる浮き上がりに対する支持力
に加えて、格子間の濾過材どうしのかみ合いと、
格子および濾過材のかみ合いとによつて生じる逆
ブリツジによる浮き上がりに対する阻止である。
この逆ブリツジによるブリツジ効果は、グリツド
18のまわりの濾層17、具体的には上層濾過層
16の濾過材であるケイ砂の締め固めが進んでケ
イ砂の密度が高くなり、前述のかみ合いが強固に
なればなる程大きくなる。したがつて、グリツド
18の濾層17の浮き上がりに対するブリツジ効
果による防止力は、グリツド18上の濾層17の
厚みが大きくなり、この厚みによるケイ砂の水中
重量によつてグリツド18のまわりのケイ砂の密
度が高くなれば大きくなる。これによつて、グリ
ツド18の位置が濾層17内の下方側に行く程、
大なるブリツジ効果が得られることになる。
On the other hand, the function of preventing the filter layer 17 from lifting up by the grid 18 is not only due to the supporting force against lifting due to the thickness of the flat plate constituting the lattice of the grid 18, but also due to the engagement of the filter media between the grids.
This prevents lifting due to reverse bridging caused by the interlocking of the grid and filter media.
The bridging effect caused by this reverse bridging is caused by the compaction of the silica sand, which is the filter material of the filter layer 17 around the grid 18, specifically the upper filtration layer 16, which increases the density of the silica sand, resulting in the above-mentioned interlocking. The stronger it gets, the bigger it gets. Therefore, the ability to prevent the lifting of the filter layer 17 of the grid 18 due to the bridge effect is due to the increase in the thickness of the filter layer 17 above the grid 18, and the weight of the silica sand in water due to this thickness. The higher the density of the sand, the larger the size. As a result, as the position of the grid 18 moves downward in the filter layer 17,
A great bridge effect will be obtained.

すなわち、グリツド18の設定位置は、できる
だけ下方が望ましい。第3図で上向流濾過装置の
濾層内の損失水頭を深さ方向へ測定すると洗浄直
後で初期損失(曲線Xa)のようになつている。
洗浄直前となり損失水頭が上昇した状態において
は最終損失(曲線Xb)のようになり、損失水頭
の増加分は上層濾過層16の中間部以下でのみ生
じている。
That is, the setting position of the grid 18 is preferably as low as possible. In Fig. 3, when the water head loss in the filter layer of the upflow filtration device is measured in the depth direction, it shows the initial loss (curve Xa) immediately after cleaning.
In a state where the head loss rises immediately before cleaning, the final loss (curve Xb) occurs, and the increase in the head loss occurs only below the middle part of the upper filtration layer 16.

従つて、濾過にともなう濾層内損失水頭の変化
が生じない位置で、かつできるだけ下方側の位置
とは濾層17の上層濾過層16の上下における中
央部付近の位置と定義することができる。
Therefore, the position where the head loss in the filter layer does not change due to filtration and which is as low as possible can be defined as a position near the center of the upper and lower filtration layers 16 of the filtration layer 17.

以上から、グリツド18の位置は、濾過にとも
なう濾層内損失水頭の変化が殆んど生じない位置
で、かつできるだけ下方側の位置に選択すれば良
いことがわかる。実際的には、通常の濾過速度は
最大400m/日程表であるために、前述のように
グリツド18の位置は、損失水頭がほとんど生じ
ない位置として第1図および第3図に図示される
ように、濾層17の表面から50cm下方にその上端
面が位置するように、濾層17内の上層濾過層1
6の上下における中央部付近になる。
From the above, it can be seen that the position of the grid 18 should be selected at a position where almost no change in head loss in the filter layer occurs due to filtration, and at a position as low as possible. In practice, since typical filtration speeds are up to 400 m/schedule, the position of grid 18, as mentioned above, should be as illustrated in Figures 1 and 3 as a position where little head loss occurs. The upper filtration layer 1 in the filtration layer 17 is placed so that its upper end surface is located 50 cm below the surface of the filtration layer 17.
It will be near the center between the top and bottom of 6.

前述されたような濾層17の表面から50cmの下
方にその上端面が位置するようにグリツド18を
設けた本実施例の場合(条件)と、濾層17の
表面から10cmの下方にその上端面が位置するよう
にグリツド18を設けた場合(条件)との対比
実験を行なつたところ、次のような結果を得た。
なお、この実験は、濾過速度300m/日として、
実験条件を均一とするため無機濁質(粘土)を約
70mg/,PAC30mg/を注入した汚濁水を用
いてブレークスルーが起こるまで行ない、これを
10回繰返した。
In the present embodiment (conditions), the grid 18 is provided so that its upper end surface is located 50 cm below the surface of the filter layer 17, and the grid 18 is provided 10 cm below the surface of the filter layer 17. A comparison experiment was conducted with a case (condition) in which the grid 18 was provided so that the end surface was located, and the following results were obtained.
In addition, in this experiment, the filtration speed was 300 m/day.
In order to make the experimental conditions uniform, the inorganic suspended matter (clay) was
Using polluted water injected with 70mg/, PAC30mg/, this was carried out until a breakthrough occurred.
Repeated 10 times.

前記条件においては、ブレークスルーした濾
層17の全損失は、水柱にして、1.75〜2.05m
で、平均として、1.9mであつた。これに対して、
前記条件においては、ブレークスルーした濾層
17の全損失は、水柱にして、1.45〜1.6mで、
平均として1.55mであつた。両者は、平均で22%
(=(1.9m−1.55m)/1.55m)の差が生じ、条件
の最も不良な運転結果は条件の良好な運転結
果を上まわつていた。
Under the above conditions, the total loss of the breakthrough filter layer 17 is 1.75 to 2.05 m in water column.
The average length was 1.9m. On the contrary,
Under the above conditions, the total loss of the breakthrough filter layer 17 is 1.45 to 1.6 m in water column,
The average length was 1.55m. Both averaged 22%
A difference of (=(1.9m-1.55m)/1.55m) was generated, and the results of the operation under the worst conditions were higher than the results of the operation under the best conditions.

これらの実験による1つの結果を例として、原
水(処理水)濁度と全損失とに対する濾過時間の
関係を示すと第4図に示されるようになつた。な
お、実線a1,b1およびc1夫々は、条件における
原水濁度、処理水濁度および全損失を示し、点線
a2,b2およびc2夫々は、条件における原水濁
度、処理水濁度および全損失を示している。ま
た、ブレークスルーが起こると処理水濁度は原水
濁度を上まわるようになる。
Taking one result of these experiments as an example, the relationship between raw water (treated water) turbidity and filtration time with respect to total loss is shown in FIG. 4. In addition, the solid lines a 1 , b 1 and c 1 indicate the raw water turbidity, treated water turbidity and total loss under the conditions, and the dotted lines
a 2 , b 2 and c 2 respectively indicate the raw water turbidity, treated water turbidity and total loss at the conditions. Additionally, when a breakthrough occurs, the turbidity of the treated water will exceed the turbidity of the raw water.

本実施例におけるグリツド18の平板において
は、凹凸の表面処理が施された平板、あるいは砂
または硬性粒状物が表面に添着された平板を用い
てもよい。また、平板に変えてIバー等を用いて
もよい。更に、明細書に用いられている格子自体
の言葉には、格子の目が正方形、矩形になる場合
のみならず、菱形、平行四辺形等になる場合も含
まれるものとする。
The flat plate of the grid 18 in this embodiment may be a flat plate with an uneven surface treatment, or a flat plate with sand or hard granules attached to the surface. Further, an I-bar or the like may be used instead of a flat plate. Further, the word lattice itself used in the specification includes not only cases where the grid has squares and rectangles, but also cases where the grids have shapes such as rhombuses and parallelograms.

(発明の効果) 固定格子体のまわりの濾過材に、固定格子体よ
り上方の濾過材の水中重量が十分に加わつて、ブ
リツジ効果が十分に期待でき、濾層の浮き上がり
が確実に固定格子体によつて受け止められ得る。
したがつて、装置の運転上の最大の問題点である
ブレークスルーに対して大幅に限界を高めること
ができ、安定性を増し、装置の処理能力の信頼性
が確保される。
(Effect of the invention) The underwater weight of the filter material above the fixed grid body is sufficiently added to the filter material around the fixed grid body, so that a sufficient bridging effect can be expected, and the floating of the filter layer is ensured by the fixed grid body. can be accepted by
Therefore, the limit for breakthrough, which is the biggest problem in the operation of the device, can be significantly increased, stability is increased, and the reliability of the processing capacity of the device is ensured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第4図は、本発明による上向流濾過
装置を説明するための図面であつて、第1図は装
置の断面図、第2図はグリツドの拡大斜視図、第
3図は濾層と、この濾層内での損失水頭分布とを
示す図、第4図は原水(処理水)濁度と全損失と
に対する濾過時間の関係を示す図である、また、
第5図は、従来技術を説明するための第1図に対
応する図面である。 16……上層濾過層、17……濾層、18……
グリツド。
1 to 4 are drawings for explaining an upflow filtration device according to the present invention, in which FIG. 1 is a sectional view of the device, FIG. 2 is an enlarged perspective view of the grid, and FIG. A diagram showing a filter layer and a head loss distribution within the filter layer. FIG. 4 is a diagram showing the relationship between filtration time and raw water (treated water) turbidity and total loss.
FIG. 5 is a drawing corresponding to FIG. 1 for explaining the prior art. 16... Upper filtration layer, 17... Filter layer, 18...
Grid.

Claims (1)

【特許請求の範囲】 1 上下砂利層よりなる支持層の上方に上下濾過
層よりなる濾層を具備し、処理流体を前記濾層に
対して上向に通すことによつて濾過する上向流濾
過装置において、前記濾層内であるとともに、前
記濾層内の上層濾過層の上下における中央部付近
の位置に固定格子体を設けることを特徴とする上
向流濾過装置。 2 前記固定格子体は、平板を平行にまたは縦横
に組み合わせたグリツドであることを特徴とする
特許請求の範囲第1項に記載の上向流濾過装置。
[Scope of Claims] 1. An upward flow comprising a filter layer consisting of upper and lower filtration layers above a support layer consisting of upper and lower gravel layers, and filtering the processing fluid by passing it upward through the filter layer. An upflow filtration device characterized in that a fixed lattice body is provided within the filtration layer and at a position near the central portion above and below the upper filtration layer within the filtration layer. 2. The upward flow filtration device according to claim 1, wherein the fixed grid body is a grid in which flat plates are combined in parallel or vertically and horizontally.
JP61264098A 1986-11-07 1986-11-07 Upward stream filtrating device Granted JPS63119818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61264098A JPS63119818A (en) 1986-11-07 1986-11-07 Upward stream filtrating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61264098A JPS63119818A (en) 1986-11-07 1986-11-07 Upward stream filtrating device

Publications (2)

Publication Number Publication Date
JPS63119818A JPS63119818A (en) 1988-05-24
JPH0249121B2 true JPH0249121B2 (en) 1990-10-29

Family

ID=17398482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61264098A Granted JPS63119818A (en) 1986-11-07 1986-11-07 Upward stream filtrating device

Country Status (1)

Country Link
JP (1) JPS63119818A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52129064A (en) * 1976-03-24 1977-10-29 Kurita Water Ind Ltd Upward flow filter device
JPS54153378A (en) * 1978-05-24 1979-12-03 Takeda Chemical Industries Ltd Upper counterrcurrent movable bed system filter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52129064A (en) * 1976-03-24 1977-10-29 Kurita Water Ind Ltd Upward flow filter device
JPS54153378A (en) * 1978-05-24 1979-12-03 Takeda Chemical Industries Ltd Upper counterrcurrent movable bed system filter

Also Published As

Publication number Publication date
JPS63119818A (en) 1988-05-24

Similar Documents

Publication Publication Date Title
KR100348523B1 (en) Fluid treatment media support system
US7138056B2 (en) Filter underdrain system for backwash flow and method for measuring same
Cleasby et al. Backwashing of granular filters
US3542674A (en) Method for removing solids suspensions in liquids
US5976370A (en) Underdrain structure for media filters
US7063787B2 (en) Filter media retaining cap and hold down grid
US4818414A (en) Slime control for primary filtration systems
JPH0249121B2 (en)
Cleasby et al. Developments in backwashing of granular filters
JP3853738B2 (en) High speed filtration method
CN206219386U (en) A kind of deep filter layer multimedium filter material filter pool for advanced treatment of wastewater
Hamann et al. Upflow filtration process
JPH0460682B2 (en)
Monk Design options for water filtration
JP3391498B2 (en) Gravity filtration device
GB2038387A (en) A Method and Apparatus for Storm Water Drainage
JPH0233846Y2 (en)
CA2543681C (en) Filter underdrain system for backwash flow and method for measuring same
Frissora An Advanced Water Filtration Plant
CA1147274A (en) Filtering apparatus for liquids
Key CLEANING OF FILTER SANDS.(INCLUDES ADDENDUM).
MXPA98008837A (en) Flui treatment media support system
JPS5845765Y2 (en) “Filtration” equipment for pond water, etc.
Jackson et al. Granular media filtration in water and wastewater treatment, part 1
Sparham Improved settling tank efficiency by upward flow clarification