JPS63119163A - Fuel cell generating system - Google Patents

Fuel cell generating system

Info

Publication number
JPS63119163A
JPS63119163A JP61265047A JP26504786A JPS63119163A JP S63119163 A JPS63119163 A JP S63119163A JP 61265047 A JP61265047 A JP 61265047A JP 26504786 A JP26504786 A JP 26504786A JP S63119163 A JPS63119163 A JP S63119163A
Authority
JP
Japan
Prior art keywords
exhaust gas
fuel cell
moisture
steam
psa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61265047A
Other languages
Japanese (ja)
Inventor
Shozo Kaneko
祥三 金子
Tadashi Gengo
義 玄後
Kazuji Fukui
和司 福井
Mitsuo Kamisaka
光男 神坂
Yasuhiro Yamauchi
康弘 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP61265047A priority Critical patent/JPS63119163A/en
Publication of JPS63119163A publication Critical patent/JPS63119163A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To improve the efficiency of a plant, by leading an exhaust gas, after separating the steam produced as a reaction product from the exhaust gas by a gas separator such as PSA, to a molten carbonate type fuel cell or an energy recovery device. CONSTITUTION:The exhaust gas released from an air heater combustor 5 flows through a high pressure gas turbine 6a and a low pressure gas turbine 6b, and the energy is recovered. After the temperature of the exhaust gas goes down adequately, the moisture in the exhaust gas is collected by a PSA device 12, and the collected moisture is led to the entrance of a SOFC anode 4 and used as an inner reforming steam. The exhaust gas from which the moisture is removed flows through a waste heat recovery boiler 7, and is released from a stack 9. The steam produced at the boiler 7 is led to a steam turbine 8. The air is preheated by a primary air preheater 11 furnished at the high pressure and the low pressure gas turbines 6a and 6b.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は固体電解質型燃料電池(5olid oXid
edFuel Ca1l : 5OFC)又は溶融炭酸
塩型燃料電池を有する発電システムの改良に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a solid oxide fuel cell (solid oxide fuel cell).
edFuel Ca1l: 5OFC) or a molten carbonate fuel cell.

〔従来の技術〕[Conventional technology]

近年、エネルギ需要の増加、化石燃料である石油9石炭
等の不足により、新技術高効率発電システムの開発の要
求が、以前にも増して強くなっている。そこで以前よυ
高効率発電システムとじて注目され、開発が進められて
いるものとして、5OFCによる発電システムがある。
In recent years, due to an increase in energy demand and a shortage of fossil fuels such as petroleum and coal, the demand for the development of new technology and high efficiency power generation systems has become stronger than ever. That's where it was before.
A power generation system using 5OFC is attracting attention as a highly efficient power generation system and is currently being developed.

従来型5OFC発電システムの一例として第3図に示す
An example of a conventional 5OFC power generation system is shown in FIG.

第3図において、大気中よシ供給された空気はエアーヒ
ータ長コンパスタ5において予熱され、固体電解質3を
有する5OFCJのカソード2を通シ、エアーヒータ&
コンパスタ5に導びかれ、アノード4を通ってきた燃料
ガスと混合、燃焼される。エアーヒータ長コンパスタ5
を出た燃焼排ガスはガスタービン6、排熱回収ボイ27
を通り、エネルギ回収を行なった後、そのまま煙突9よ
シ排出される。また、排熱回収?イラ7で発生した水蒸
気はスチームタービン8へ導ひかれる。
In FIG. 3, air supplied from the atmosphere is preheated in an air heater long comparator 5, passed through a cathode 2 of a 5OFCJ having a solid electrolyte 3, and then passed through an air heater &
The gas is guided to the comparator 5, mixed with the fuel gas that has passed through the anode 4, and burned. Air heater length comparator 5
The combustion exhaust gas that exits the gas turbine 6 and the exhaust heat recovery boiler 27.
After the energy is recovered, it is discharged directly through the chimney 9. Also, waste heat recovery? The steam generated in the boiler 7 is guided to a steam turbine 8.

〔発明が解法しようとする問題点〕[Problem that the invention attempts to solve]

上記した従来の5OFC発電システムの場合、5OFC
Iの7ノード4に供給している改質用水蒸気(H2O)
は、外部システムより供給していたため、その水蒸気の
製造設備の必要があシ、その動力、設備建築コスト等の
必要性から、メンテナンスコストの増加、効率低下の原
因となっていた。
In the case of the conventional 5OFC power generation system described above, 5OFC
Reforming steam (H2O) supplied to 7 node 4 of I
Since the water vapor was supplied from an external system, it required equipment to produce the steam, power for it, construction costs for the equipment, etc., resulting in increased maintenance costs and decreased efficiency.

また、5OFC1から出た排ガスはエネルギ回収以外の
処理は全く行なわれず直接煙突よシ排出されるため、5
OFCJのように排ガス中に含まれる水分量が多い場合
、排ガス中水分の潜熱として放出される熱エネルギが多
く、プラント効率の低下の原因となっていた。
In addition, the exhaust gas emitted from 5OFC1 is directly discharged up the chimney without any processing other than energy recovery.
When the amount of moisture contained in the exhaust gas is large as in OFCJ, a large amount of thermal energy is released as latent heat of the moisture in the exhaust gas, causing a decrease in plant efficiency.

そこで、本発明はプラント効率の向上が図れる燃料電池
発電システムを提供することを目的とする。
Therefore, an object of the present invention is to provide a fuel cell power generation system that can improve plant efficiency.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記目的を達成するため、固体電解質型燃料電
池又は溶融炭酸塩型燃料電池を有する燃料電池発電シス
テムにおいて、PSA等のガス分離装置によシ、反応物
として生成した水蒸気を排ガス中よシ分離し、上記水蒸
気を上記燃料電池もしくはエネルギー回収装置に導入す
ることを特徴とするものである。
In order to achieve the above object, the present invention uses a fuel cell power generation system having a solid oxide fuel cell or a molten carbonate fuel cell, in which water vapor generated as a reactant is removed from exhaust gas by a gas separation device such as a PSA. The method is characterized in that the water vapor is separated and the water vapor is introduced into the fuel cell or energy recovery device.

〔作用〕[Effect]

上記のように構成することによシ、システム外へ排出さ
れる排ガス中水分の潜熱による熱エネルギ損失要減少で
き、プラント効率が向上する。
By configuring as described above, it is possible to reduce the thermal energy loss due to the latent heat of the moisture in the exhaust gas discharged to the outside of the system, thereby improving the plant efficiency.

〔実施例〕〔Example〕

以下、本発明について図面に示す実施例を参照して説明
する。
The present invention will be described below with reference to embodiments shown in the drawings.

第1図はその一実施例を示す系統図であシ、第3図の従
来の5OFC発電システムの排ガス系統の中間、具体的
に低圧ガスタービン6bと排熱回収がイラ7との間にH
20分離用PSA装置12を設置し、5OFC1の生成
水分を回収し、これを5OFC1のアノード4に供給さ
せたものである。ことで、PSA(Pressure 
Swing Adsorption )装w、12とは
、吸着剤の再生に加熱ガスを使用せず、加圧下で吸着し
た水分を等温減圧下でパージガス中に拡散脱離し、再生
するものである。このため、吸着−脱着のサイクルが加
熱再生法に比して極めて短く、所要動力も比較的に少な
い。
FIG. 1 is a system diagram showing one embodiment of the system.
A PSA device 12 for separation was installed, and water produced by 5OFC1 was collected, and this was supplied to the anode 4 of 5OFC1. By doing so, PSA (Pressure
The Swing Adsorption system (12) does not use heated gas to regenerate the adsorbent, but instead regenerates the adsorbent by diffusing and desorbing moisture adsorbed under pressure into a purge gas under isothermal reduced pressure. Therefore, the adsorption-desorption cycle is extremely short compared to the thermal regeneration method, and the required power is also relatively small.

第1図のように構成されたものにおいて、エアヒータ&
コンパスタ5を出た排ガスは、高圧ガスタービン6aお
よび低圧ガスタービン6bを通シ、エネルギ回収を行な
い、排ガス温度が適当に下がった後、PSA装置12に
よシ排ガス中の水分を回収し、回収した水分は、5OF
Cアノード4の入口に導ひかれ、内部改質用水蒸気とし
て使用される。
In the configuration shown in Figure 1, the air heater &
The exhaust gas that has exited the comparator 5 passes through a high-pressure gas turbine 6a and a low-pressure gas turbine 6b to recover energy, and after the temperature of the exhaust gas has been appropriately lowered, it is passed through a PSA device 12 to recover moisture in the exhaust gas. The water content is 5OF
It is led to the inlet of the C anode 4 and used as steam for internal reforming.

水分が分離された排ガスは排熱回収ボイラ7を通シ、煙
突9よシ排出される。排熱回収ボイラ7で発生した水蒸
気は、スチームタービン8に導びかれる。また、高圧ガ
スタービン6aと低圧ガスタービン6bの間には一次空
気予熱器11が設置され、空気の予熱を行なっている。
The exhaust gas from which moisture has been separated passes through an exhaust heat recovery boiler 7 and is discharged through a chimney 9. Steam generated in the exhaust heat recovery boiler 7 is guided to a steam turbine 8. Further, a primary air preheater 11 is installed between the high pressure gas turbine 6a and the low pressure gas turbine 6b to preheat the air.

以上述べたように、排ガス系統にPSA装置12を設置
することによシ、排ガス中から5OFC1の生成水分を
回収することで、従来のように改質用水蒸気の補給が不
用となシ、メンテナンスの増加を防ぐことができる。
As described above, by installing the PSA device 12 in the exhaust gas system, the water produced by 5OFC1 can be recovered from the exhaust gas, thereby eliminating the need for replenishment of reforming steam as in the past, and maintenance. can prevent an increase in

また、システム外へ持ち出される排ガス中水分の潜熱に
よる熱エネルギ損失の減少から、5OFC発電プラント
効率が向上する。
Furthermore, the efficiency of the 5OFC power generation plant is improved due to the reduction in thermal energy loss due to latent heat of moisture in the exhaust gas carried out of the system.

すなわち、図のように5OFC1の出口排ガス温度(エ
アヒータ長コンパスタ出口)を930℃(圧力10 a
ta ) 、低圧ガスタービン6bの出口温度を450
℃(圧力1.03 ata )、H2Oによる煙突9が
出ていく熱量を7920kd/sとすると、第3図の従
来システム(石炭ガス化炉との組合せの場合)が53%
であったものが、第1図のシステムでは54.6%と1
.6%効率が向上する。
That is, as shown in the figure, the outlet exhaust gas temperature of 5OFC1 (air heater length comparator outlet) is set to 930℃ (pressure 10a
ta), the outlet temperature of the low pressure gas turbine 6b is set to 450
℃ (pressure 1.03 ata), and assuming that the amount of heat coming out of the chimney 9 due to H2O is 7920 kd/s, the conventional system shown in Figure 3 (when combined with a coal gasifier) is 53%
However, in the system shown in Figure 1, it was 54.6%, 1
.. 6% efficiency improvement.

第2図は本発明の他の実施例を示す系統図で、第1図の
従来型5OFC発電システムの高温排ガス系統の中間す
なわち一次空気予熱器11と低圧ガスタービン6bの間
にH20分離用PSA装置12を設置し、これによって
回収した水蒸気をエネルギ回収装置例えはPSA用スナ
スチームタービン8b給してこれを回し、これを回した
後の水蒸気は排熱回収がイラ7に供給されるようになっ
ている。
FIG. 2 is a system diagram showing another embodiment of the present invention, in which a PSA for H20 separation is installed in the middle of the high temperature exhaust gas system of the conventional 5OFC power generation system shown in FIG. 1, that is, between the primary air preheater 11 and the low pressure gas turbine 6b. A device 12 is installed, and the water vapor recovered by this is fed to an energy recovery device (for example, a snus steam turbine 8b for PSA) and rotated, and the steam after turning this is supplied to the irra 7 for exhaust heat recovery. It has become.

第2図のように構成されたものにおいて、エアーヒータ
&コンパスタ5を出た排ガスは高圧ガスタービン6aを
通シ、−次空気予熱器11でエアーコンプレッサー10
によシ加圧された空気を予熱した後、PSA装置12で
排ガス中水分が回収される。水分が取シ除かれた排ガス
はその後、低圧ガスタービン6b、排熱回収ボイラ7を
通り、煙突9から大気中に排出される。PSA装置12
より排ガス中水分が回収されるため、大気中に排出され
るエネルギ損失は減少する。PSA装置12で回収され
たH2O(水蒸気)はPSA用スナスチームタービン8
bひかれ、エネルギ回収され、排熱回収がイラ7で発生
した水蒸気と混合される。そしてさらにメインスチーム
タービン8aでエネルギーが回収される。
In the configuration as shown in FIG. 2, the exhaust gas leaving the air heater & comparator 5 is passed through a high pressure gas turbine 6a, and is then transferred to an air compressor 10 in a secondary air preheater 11.
After preheating the pressurized air, the moisture in the exhaust gas is recovered in the PSA device 12. The exhaust gas from which moisture has been removed then passes through the low-pressure gas turbine 6b and the exhaust heat recovery boiler 7, and is discharged from the chimney 9 into the atmosphere. PSA device 12
Since more moisture is recovered from the exhaust gas, energy loss emitted into the atmosphere is reduced. The H2O (water vapor) recovered by the PSA device 12 is sent to the PSA steam turbine 8.
b), energy is recovered, and the recovered waste heat is mixed with the water vapor generated in the slag 7. Further, energy is recovered by the main steam turbine 8a.

以上述べた第2図の構成によれば、5OFCIの排ガス
中からH2O(水蒸気)を回収し、排ガス中水分の潜熱
として大気中に排出される熱エネルギ損失を減少させ、
また、回収した水蒸気によシ、PSA用スナスチームタ
ービン8bして、供給燃料の節約とともにプラント効率
が向上する。具体的に第2図に示すような温度条件のと
き58.3%と従来システムの53チに比べて5.3チ
効率が向上する。
According to the configuration shown in FIG. 2 described above, H2O (water vapor) is recovered from the exhaust gas of the 5OFCI, and the loss of thermal energy discharged into the atmosphere as latent heat of moisture in the exhaust gas is reduced.
In addition, the recovered steam is used as a snus steam turbine 8b for the PSA, thereby saving fuel supply and improving plant efficiency. Specifically, under the temperature conditions shown in FIG. 2, the efficiency is 58.3%, which is an improvement of 5.3 chips compared to 53 chips of the conventional system.

なお、本発明は固体電解質型燃料電池発電システムに限
らず溶融炭酸塩型燃料電池発電システムにも適用できる
Note that the present invention is applicable not only to solid oxide fuel cell power generation systems but also to molten carbonate fuel cell power generation systems.

〔発明の効果〕〔Effect of the invention〕

以上述べた本発明によれば、プラント効率の向上が図れ
る燃料電池発電システムを提供できる。
According to the present invention described above, it is possible to provide a fuel cell power generation system that can improve plant efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による固体電解質型燃料電池発電システ
ムの一実施例を示す系統図、第2図は本発明の他の実施
例を示す系統図、第3図は従来の一例を示す系統図であ
る。 1・−8OFC,2・・・カソード、3・・・固体電解
質、4・−7/−ド、s・・・エアーヒータ&コンパス
タ、6a・・・高圧ガスタービン、6b・・・低圧ガス
タービン、7・・・排熱回収ボイラ、8・・・スチーム
タービン、8&・−・メインスチームタービン、8b・
・・PSA用スナスチームタービン・・・煙突、10・
−・エアーコンプレッサー、11・・・−次空気予熱器
、12・・・H20分離用PSA装置。
Fig. 1 is a system diagram showing one embodiment of the solid oxide fuel cell power generation system according to the present invention, Fig. 2 is a system diagram showing another embodiment of the invention, and Fig. 3 is a system diagram showing a conventional example. It is. 1.-8OFC, 2...Cathode, 3...Solid electrolyte, 4.-7/-do, s...Air heater & comparator, 6a...High pressure gas turbine, 6b...Low pressure gas turbine , 7... Exhaust heat recovery boiler, 8... Steam turbine, 8&-- Main steam turbine, 8b...
...Suna steam turbine for PSA...Chimney, 10.
- Air compressor, 11... - Secondary air preheater, 12... PSA device for H20 separation.

Claims (1)

【特許請求の範囲】[Claims] 固体電解質型燃料電池又は溶融炭酸塩型燃料電池を有す
る燃料電池発電システムにおいて、PSA等のガス分離
装置により、反応物として生成した水蒸気を排ガス中よ
り分離し、上記水蒸気を上記燃料電池もしくはエネルギ
ー回収装置に導入することを特徴とする燃料電池発電シ
ステム。
In a fuel cell power generation system having a solid electrolyte fuel cell or a molten carbonate fuel cell, water vapor generated as a reactant is separated from the exhaust gas by a gas separation device such as a PSA, and the water vapor is transferred to the fuel cell or for energy recovery. A fuel cell power generation system characterized by being introduced into a device.
JP61265047A 1986-11-07 1986-11-07 Fuel cell generating system Pending JPS63119163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61265047A JPS63119163A (en) 1986-11-07 1986-11-07 Fuel cell generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61265047A JPS63119163A (en) 1986-11-07 1986-11-07 Fuel cell generating system

Publications (1)

Publication Number Publication Date
JPS63119163A true JPS63119163A (en) 1988-05-23

Family

ID=17411842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61265047A Pending JPS63119163A (en) 1986-11-07 1986-11-07 Fuel cell generating system

Country Status (1)

Country Link
JP (1) JPS63119163A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999035702A1 (en) * 1998-01-08 1999-07-15 Southern California Edison Company Power generation system utilizing turbine gas generator and fuel cell
WO2002067353A1 (en) * 2001-02-21 2002-08-29 Ballard Power Systems Inc. Fuel cell system having a pressure swing adsorption unit
JP2003507860A (en) * 1999-08-16 2003-02-25 セラミック・フューエル・セルズ・リミテッド Fuel cell system
WO2005001974A1 (en) * 2003-06-30 2005-01-06 Kawasaki Jukogyo Kabushiki Kaisha Fuel cell/constant pressure turbine/hybrid system
WO2008096623A1 (en) * 2007-02-07 2008-08-14 Central Research Institute Of Electric Power Industry Power generating installation
US7862938B2 (en) 2007-02-05 2011-01-04 Fuelcell Energy, Inc. Integrated fuel cell and heat engine hybrid system for high efficiency power generation
US8034504B2 (en) 2006-05-18 2011-10-11 Honda Motor Co., Ltd. Fuel cell system and method of operating same
US8062799B2 (en) 2008-08-19 2011-11-22 Fuelcell Energy, Inc. High-efficiency dual-stack molten carbonate fuel cell system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999035702A1 (en) * 1998-01-08 1999-07-15 Southern California Edison Company Power generation system utilizing turbine gas generator and fuel cell
JP2003507860A (en) * 1999-08-16 2003-02-25 セラミック・フューエル・セルズ・リミテッド Fuel cell system
WO2002067353A1 (en) * 2001-02-21 2002-08-29 Ballard Power Systems Inc. Fuel cell system having a pressure swing adsorption unit
WO2005001974A1 (en) * 2003-06-30 2005-01-06 Kawasaki Jukogyo Kabushiki Kaisha Fuel cell/constant pressure turbine/hybrid system
US7563527B2 (en) 2003-06-30 2009-07-21 Kawasaki Jukogyo Kabushiki Kaisha Fuel cell-atmospheric-pressure turbine hybrid system
US8034504B2 (en) 2006-05-18 2011-10-11 Honda Motor Co., Ltd. Fuel cell system and method of operating same
US7862938B2 (en) 2007-02-05 2011-01-04 Fuelcell Energy, Inc. Integrated fuel cell and heat engine hybrid system for high efficiency power generation
WO2008096623A1 (en) * 2007-02-07 2008-08-14 Central Research Institute Of Electric Power Industry Power generating installation
JPWO2008096623A1 (en) * 2007-02-07 2010-05-20 財団法人電力中央研究所 Power generation equipment
US8110310B2 (en) 2007-02-07 2012-02-07 Central Research Institute Of Electric Power Industry Power generating plant
US8062799B2 (en) 2008-08-19 2011-11-22 Fuelcell Energy, Inc. High-efficiency dual-stack molten carbonate fuel cell system
US8236458B2 (en) 2008-08-19 2012-08-07 Fuelcell Energy, Inc. High-efficiency dual-stack molten carbonate fuel cell system

Similar Documents

Publication Publication Date Title
KR102243776B1 (en) Methanation method and power plant comprising co₂ methanation of power plant flue gas
JP2572905B2 (en) Internal reforming molten carbonate fuel cell power generator
KR101137207B1 (en) Integrated high efficiency fossil fuel power plant/fuel cell system with co2 emissions abatement
US20080134666A1 (en) Systems and Methods Using an Unmixed Fuel Processor
JPH07201349A (en) Gas turbin cycle of indirect combustion type basing on fuel cell cycle
CN109301283A (en) A kind of band CO2The integral coal gasification fuel cell system of trapping
CA2094129A1 (en) Process and installation for the combined generation of electrical and mechanical energy
CN108321416A (en) CO2The integral coal gasification fuel cell generation and method of near-zero release
CN108729965B (en) Power generation system combining partial oxygen-enriched combustion of calcium-based chain and CO 2 Trapping method
CN209374564U (en) A kind of integral coal gasification fuel cell system of band CO2 trapping
US11433350B2 (en) Carbon dioxide recovery system, thermal power generation facility, and carbon dioxide recovery method
KR101457589B1 (en) Fuel cell system with structure for enlarging combustion limitation of combustor
JPS63119163A (en) Fuel cell generating system
JPH0845523A (en) Fuel cell/gas turbine combined generation system
CN208845240U (en) A kind of coal generating system of the part oxygen-enriched combusting of Combined with Calcium base chemical chain
CN107165688A (en) The device and method that a kind of utilization combustion gas and Steam Combined generate electricity
KR20170136144A (en) Combined cycle power generation system
CN208423065U (en) CO2The integral coal gasification fuel cell generation of near-zero release
US20160195270A1 (en) Arrangement of a carbon dioxide generation plant, a capture plant and an carbon dioxide utilization plant and method for its operation
CN111632456A (en) Resource clean discharge system and method for coal-fired power plant
CN110661014B (en) Efficient low-concentration gas power generation system and control method thereof
CN210584225U (en) Clean discharge system of coal fired power plant's resourceization
CN207538871U (en) A kind of near-zero release coal gasification power generation system with pollutant catabolic gene
CN113982753B (en) Hybrid power generation system integrating coal gasification and SOFC-HAT
KR100674622B1 (en) Fuel cell power generation system