JPS6311882A - Sonar receiver - Google Patents

Sonar receiver

Info

Publication number
JPS6311882A
JPS6311882A JP15643486A JP15643486A JPS6311882A JP S6311882 A JPS6311882 A JP S6311882A JP 15643486 A JP15643486 A JP 15643486A JP 15643486 A JP15643486 A JP 15643486A JP S6311882 A JPS6311882 A JP S6311882A
Authority
JP
Japan
Prior art keywords
circuit
frequency
input
converter
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15643486A
Other languages
Japanese (ja)
Inventor
Takashi Ikeda
孝 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP15643486A priority Critical patent/JPS6311882A/en
Publication of JPS6311882A publication Critical patent/JPS6311882A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve searching to a weak signal, by providing an adaptive filter automatically tuning with the frequency spectrum of an input sonic wave to a listening system. CONSTITUTION:An input sonic wave is received by a receiver 1 to be converted to an electrical signal which is, in turn, inputted an FFT (fast Fourier transform) circuit 31 through an A/D converter 2 to be subjected to spectrum analysis and the analytical result is supplied to convolution operation circuit 32 and CPU34. CPU34 determines the impulse response train of a filter and reads impulse response train frequency characteristic data to supply the same to the circuit 32. The circuit 32 performs the multipulication of input data from the circuit 31 and CPU 34 to obtain desired filter output which is, in turn, supplied to an IFFT (inverse FFT) circuit 33. The circuit 33 converts input data to a time region value to supply the same to a frequency converting circuit 5 which then converts input frequency to preset listening frequency. The output of the circuit 5 is listened in a high S/N state by a headphone 8 through a D/A converter 6 and an amplifier 7.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はンーナー受信装置に関し、特に入力する微弱信
号に対する探知、識別機能の改善を図ったソーナー受信
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a sonar receiving device, and more particularly to a sonar receiving device with improved detection and identification functions for weak input signals.

〔従来の技術〕[Conventional technology]

パッシブおよびアクチプソーナーには、入力音波を可聴
周波数に変換し、ヘッドホン等の端末機器でソーナー操
作員が聴音して目標の探知、識別を行なう聴音機能が付
与されたソーナー受信装置を備えたものが多く、入力を
所定の可聴周波数に変換する形式で目標の聴音受信を行
なっている。
Passive and active sonar are equipped with a sonar receiving device that converts input sound waves into audible frequencies and allows the sonar operator to listen to them using terminal equipment such as headphones to detect and identify targets. In many cases, the target audible sound is received by converting the input to a predetermined audible frequency.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来のンーナー受信装置は、映像系に対して行
なわれる信号処理、特に受信信号のS/NI4号対雑音
比)の改善を考慮して行なわれる信号処理が聴音系に対
しては適用されず、専ら操作員の経験と練度とに期待し
ているのが現状であり、このためS/Nの低い微弱信号
に対しては映像系による探知、識別のみで対応せざるを
得す、また聴音系自体の運用も練度の高い操作員を必要
とするという問題がある。
In the above-mentioned conventional receiver, the signal processing performed on the video system, especially the signal processing performed with consideration to improving the S/NI No. 4-to-noise ratio of the received signal, is not applied to the audio system. Currently, we rely solely on the experience and skill of the operator, and for this reason, we have no choice but to respond to weak signals with low S/N only by detecting and identifying them using the video system. Another problem is that the operation of the listening system itself requires highly trained operators.

本発明の目的は上述した欠点を除去し、ソーナー受信装
置の聴音系に対しS/N改善を施すことにより、微弱信
号に対する聴音系の探知、識別処理を映像系と同等に確
保して探知/識別機能を著しく増大するとともに操作員
に必要な聴音練度の程度を大幅に緩和しうるンーナー受
信装置を提供することにある。
The purpose of the present invention is to eliminate the above-mentioned drawbacks and improve the S/N of the hearing system of a sonar receiver, thereby ensuring that the hearing system performs the same detection and identification processing as the video system for weak signals. It is an object of the present invention to provide a listener receiving device which can significantly increase the discrimination function and greatly reduce the level of listening skill required of an operator.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の装置は、ソーナー受信装置において、入力音波
の周波数スペクトルに自動的に同調する適応型フィルタ
を聴音系に含んで構成される。
The device of the present invention is a sonar receiving device in which the hearing system includes an adaptive filter that automatically tunes to the frequency spectrum of an input sound wave.

〔実施例〕〔Example〕

次に図面を参照して不発明の詳細な説明する。 Next, the invention will be described in detail with reference to the drawings.

第1図は本発明のソーナー受信装置の一実施例を示すブ
ロック図である。第1図に示す実施例は、受波器1.A
/Dコンバータ2.適応型フィルタ3、制御回路41周
波数変換回路5.D/Aコンバータ6、増幅器7および
ヘッドホン8等を備えて構成され、さらに、適応型フィ
ルタ3はFFT(Fast Fourier Tran
sform)回路31、たたみ込み乗算回路32、FF
T(Inverse FFT)回路33およびCPU3
4等を備えて構成される。
FIG. 1 is a block diagram showing an embodiment of the sonar receiving device of the present invention. The embodiment shown in FIG. 1 includes a receiver 1. A
/D converter 2. Adaptive filter 3, control circuit 41 frequency conversion circuit 5. The adaptive filter 3 is configured to include a D/A converter 6, an amplifier 7, headphones 8, etc.
sform) circuit 31, convolution multiplication circuit 32, FF
T (Inverse FFT) circuit 33 and CPU 3
It is composed of 4th grade.

受波器1はアクチブもしくはパンシプソーナー〇受波セ
ンサとして入力音波を受波して電気的信号に変換しこれ
をA/Dコンバータ2に供給する。
The receiver 1 is an active or panship sonar sensor that receives input sound waves, converts them into electrical signals, and supplies the electrical signals to the A/D converter 2 .

A/Dコンバータ2は入力を所定のサンプリング周波数
で標本化したうえ所定のビット数でディジタル化し、こ
の量子化データをFFT回路31に供給する。
The A/D converter 2 samples the input at a predetermined sampling frequency, digitizes it with a predetermined number of bits, and supplies this quantized data to the FFT circuit 31 .

FFT回路31は、時間領域の入力信号を周波数領域の
データに変換、すなわちスペクトル分析を行ない、この
スペクトル分析結果をソーナー装置の表示・記録器に供
給して映像表示せしめるとともに、また、たたみ込み演
算回路32およびCPU34に供給する。
The FFT circuit 31 converts the input signal in the time domain into data in the frequency domain, that is, performs spectrum analysis, and supplies the result of this spectrum analysis to the display/recorder of the sonar device for video display, and also performs convolution calculation. The signal is supplied to the circuit 32 and the CPU 34.

cpu34は、制御回路4から受信処理における基本設
定条件、たとえばアクチブ探信もしくはパッシブ探信の
別、聴音動作に関する指令、ソーナー運用諸元等に関す
る制御指令を受けつつ適応型フィルタ3のCPUとして
機能する。適応型フィルタ3は、全体として信号入力の
スペクトル成分の周波数に対して適応的にその中心周波
数と帯域幅とを制御しつ周波数領域処理における帯域フ
ィルタパンクとして機能する。周波数領域で行なうフィ
ルタリングは、周波数領域に変換した入力系列とインパ
ルス応答列の周波数特性との積すなわちたたみ込み演算
を得て、そのあとIFFF処理で時間領域のデータに変
換すればよく、入力系列の周波数領域変換はFFTによ
って行なわれるのが一般的である。
The CPU 34 functions as the CPU of the adaptive filter 3 while receiving control commands from the control circuit 4 regarding basic setting conditions in reception processing, such as active detection or passive detection, commands regarding listening operations, sonar operational specifications, etc. . The adaptive filter 3 adaptively controls its center frequency and bandwidth with respect to the frequencies of the spectral components of the signal input as a whole, and functions as a bandpass filter puncture in frequency domain processing. Filtering performed in the frequency domain can be done by obtaining the product of the input sequence converted to the frequency domain and the frequency characteristics of the impulse response sequence, that is, by obtaining a convolution operation, and then converting it to time domain data using IFFF processing. Frequency domain transformation is generally performed by FFT.

CPU34はFFT回路31から構成せんとする帯域フ
ィルタの中心周波数fOに関する情報を得ると、これと
あらかじめ設定したfo/ΔBの条件から帯域幅ΔBを
決定、これにもとづき構成されるべきフィルタのインパ
ルス応答列を決定する。構成すべきフィルタの特性、従
ってインパルス応答は中心周波数と帯域幅とを関連して
あらかじめ設定され、内蔵メモリにはその周波数領域変
換データが格納されている。CPU34はこのインパル
ス応、  答列周波数特性データを読出し、たたみ込み
演算回路32に供給する。
When the CPU 34 obtains information regarding the center frequency fO of the bandpass filter to be constructed from the FFT circuit 31, the CPU 34 determines the bandwidth ΔB from this and the preset condition of fo/ΔB, and based on this, determines the impulse response of the filter to be constructed. Determine the column. The characteristics of the filter to be configured, and hence the impulse response, are set in advance in relation to the center frequency and bandwidth, and the frequency domain transformation data thereof is stored in the built-in memory. The CPU 34 reads this impulse response string frequency characteristic data and supplies it to the convolution calculation circuit 32.

乗算回路32はFFT回路31とCPU34からの入力
データの乗算を行なうことによって所望のフィルタ出力
を得てこれをIFFT回路33に供給する。
The multiplication circuit 32 multiplies the input data from the FFT circuit 31 and the CPU 34 to obtain a desired filter output and supplies it to the IFFT circuit 33.

IFFT回路33は入力データをIFFTによって再び
時間領域の値に変換し周波数変換回路5に供給し、こう
して適応型フィルタ3によって入力周波数に適応動作す
るフィルタ処理が行なわれる。
The IFFT circuit 33 converts the input data into a time domain value again by IFFT and supplies it to the frequency conversion circuit 5. In this way, the adaptive filter 3 performs filter processing that operates adaptively to the input frequency.

よく知られるように1 この周波数領域でのフィルタ処
理は時間領域での処理に比して演算速度を高速化するこ
とが可能でそのぶん処理周波数領域の拡大が見込める。
As is well known, 1 filter processing in the frequency domain can increase the calculation speed compared to processing in the time domain, and the processing frequency domain can be expected to expand accordingly.

こうして適応型フィルタ3から出力される信号入力は、
適応型フィルタ3の特性と対応して著しくS/N比が改
善された状態で周波数変換回路5に供給される。
In this way, the signal input output from the adaptive filter 3 is
The signal is supplied to the frequency conversion circuit 5 in a state where the S/N ratio has been significantly improved in accordance with the characteristics of the adaptive filter 3.

周波数変換回路5は、入力周波数をあらかじめ設定した
聴音周波数に変換しその出力をD/Aコンバータ6に供
給する。
The frequency conversion circuit 5 converts the input frequency into a preset listening frequency and supplies the output to the D/A converter 6.

D/Aコンバータ6はディジタル入力のアナログ変換を
行ない増幅器7に供給する。
The D/A converter 6 performs analog conversion of the digital input and supplies it to the amplifier 7.

増幅器7は入力を所定のレベルまで増幅しヘッドホン8
に出力、オペレータはヘッドホン8によって聴音出力を
高S/N状態で聴音する。こうして、映像系と同様Pc
s/Hの改善を前提とする聴音処理を入力音波の周波数
スペクトルに自動的に同調する適応型フィルタ挿入の形
式で実施できる。
Amplifier 7 amplifies the input to a predetermined level and outputs it to headphones 8.
The operator listens to the audible output through headphones 8 in a high S/N state. In this way, similar to the video system, Pc
Auditory processing predicated on improving s/H can be implemented in the form of adaptive filter insertion that automatically tunes to the frequency spectrum of the input sound waves.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く本発明によれば、ソーナー受信装置に
おいて、入力音波の周波数スペクトルに自動的に同調す
る適応型フィルタを聴音系に含んで聴音処理することに
より、微弱信号の場合でも高S/N聴音が可能となり、
映像系との併用により探知性能を著しく改善しうるとと
もにオペレータの練炭に対する条件も大幅に緩和しうる
ソーナー受信装置が実現できるという効果がある。
As explained above, according to the present invention, in a sonar receiving device, an adaptive filter that automatically tunes to the frequency spectrum of an input sound wave is included in the listening system to perform listening processing, thereby achieving a high S/N even in the case of a weak signal. Hearing becomes possible,
When used in combination with a video system, it is possible to realize a sonar receiving device that can significantly improve detection performance and greatly ease the operator's requirements for briquetting.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のブロック図である。 l・・・・・・受波器、2・・・・・・A/Dコンバー
タ、3・・・・・・適応型フィルタ、4・・・・・・制
御回路、5・・・・・・周波数変換回路、6・・・・・
・D/Aコンバータ、7・・・・・・増幅器、8・・・
・・・ヘッドホン、31・・・・・・FFT回路、32
・・・・・・たたみ込み演算回路、33・・・・・・I
FFT回路、34・・・・・・CPU。 郷l 図
FIG. 1 is a block diagram of one embodiment of the present invention. 1... Receiver, 2... A/D converter, 3... Adaptive filter, 4... Control circuit, 5...・Frequency conversion circuit, 6...
・D/A converter, 7...Amplifier, 8...
...Headphones, 31...FFT circuit, 32
...Convolution operation circuit, 33...I
FFT circuit, 34...CPU. town map

Claims (1)

【特許請求の範囲】[Claims] ソーナー受信装置において、入力音波の周波数スペクト
ルに自動的に同調する適応型フィルタを含んで成ること
を特徴とするソーナー受信装置。
What is claimed is: 1. A sonar receiver comprising an adaptive filter that automatically tunes to the frequency spectrum of an input sound wave.
JP15643486A 1986-07-02 1986-07-02 Sonar receiver Pending JPS6311882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15643486A JPS6311882A (en) 1986-07-02 1986-07-02 Sonar receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15643486A JPS6311882A (en) 1986-07-02 1986-07-02 Sonar receiver

Publications (1)

Publication Number Publication Date
JPS6311882A true JPS6311882A (en) 1988-01-19

Family

ID=15627664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15643486A Pending JPS6311882A (en) 1986-07-02 1986-07-02 Sonar receiver

Country Status (1)

Country Link
JP (1) JPS6311882A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001221848A (en) * 2000-02-04 2001-08-17 Nippon Soken Inc Ultrasonic sonar and ultrasonic transmission method thereof
CN103323831A (en) * 2013-05-31 2013-09-25 浙江大学 Three-dimensional camera shooting sonar wave beam forming method based on CZT and cut-off split radix fast Fourier transform
JP2019105508A (en) * 2017-12-12 2019-06-27 日本電気株式会社 Signal processing device, signal processing method and program

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001221848A (en) * 2000-02-04 2001-08-17 Nippon Soken Inc Ultrasonic sonar and ultrasonic transmission method thereof
FR2805615A1 (en) * 2000-02-04 2001-08-31 Denso Corp ULTRASONIC SONAR AND METHOD OF USING A TRANSMISSION FREQUENCY DIFFERENT FROM THE REVERBERATION FREQUENCY
US6490226B2 (en) 2000-02-04 2002-12-03 Nippon Soken, Inc. Ultrasonic sonar and method using transmission frequency different from reverberation frequency
CN103323831A (en) * 2013-05-31 2013-09-25 浙江大学 Three-dimensional camera shooting sonar wave beam forming method based on CZT and cut-off split radix fast Fourier transform
CN103323831B (en) * 2013-05-31 2014-12-03 浙江大学 Three-dimensional camera shooting sonar wave beam forming method based on CZT and cut-off split radix fast Fourier transform
JP2019105508A (en) * 2017-12-12 2019-06-27 日本電気株式会社 Signal processing device, signal processing method and program

Similar Documents

Publication Publication Date Title
CN106878866B (en) Audio signal processing method and device and terminal
US5245665A (en) Method and apparatus for adaptive audio resonant frequency filtering
CN104471879A (en) System and method for narrow bandwidth digital signal processing
CA2241454A1 (en) Method for the compression of recordings of ambient noise, method for the detection of program elements therein, and device therefor
CA2341834A1 (en) Apparatus and method for adaptive signal characterization and noise reduction in hearing aids and other audio devices
WO2002021817A3 (en) Method and system for elimination of acoustic feedback
CN101958693A (en) Volume-adjusting device and method
CN105515609A (en) Amplitude equalization circuit for mobile underwater sound frequency-hopping communication receiving system
JPS6311882A (en) Sonar receiver
GB1518574A (en) Sound reproducing system
JPH06289898A (en) Speech signal processor
CN110022514B (en) Method, device and system for reducing noise of audio signal and computer storage medium
CN110808064B (en) Audio processing method and device
US5930308A (en) Method and apparatus for detecting signaling tones in wide-band digitized cellular-telephone signals
CN114640939B (en) Method, device and system for detecting audio playing device and storage medium
JP3019423B2 (en) Receiver
US6885612B2 (en) Panoramic audio device for passive sonar
CN112887856B (en) Sound processing method and system for reducing noise
JPH01130608A (en) Correcting device for automatic sound field frequency characteristic
CN108156307B (en) Voice processing method and voice communication device
CN110910899A (en) Real-time audio signal consistency comparison detection method
CN112863544A (en) Early warning equipment and early warning method based on sound wave analysis
JPS62121500A (en) Voice recognition system
CN113038349A (en) Audio equipment
CN117425122A (en) Audio signal processing method for hearing aid and hearing aid