JPS63117941A - Hydration exothermic speed reducer for mass concrete - Google Patents

Hydration exothermic speed reducer for mass concrete

Info

Publication number
JPS63117941A
JPS63117941A JP26387086A JP26387086A JPS63117941A JP S63117941 A JPS63117941 A JP S63117941A JP 26387086 A JP26387086 A JP 26387086A JP 26387086 A JP26387086 A JP 26387086A JP S63117941 A JPS63117941 A JP S63117941A
Authority
JP
Japan
Prior art keywords
cement
hydration
concrete
temperature
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26387086A
Other languages
Japanese (ja)
Other versions
JPH0579619B2 (en
Inventor
内田 清彦
尚 井ノ川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Cement Co Ltd
Original Assignee
Sumitomo Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Cement Co Ltd filed Critical Sumitomo Cement Co Ltd
Priority to JP26387086A priority Critical patent/JPS63117941A/en
Publication of JPS63117941A publication Critical patent/JPS63117941A/en
Publication of JPH0579619B2 publication Critical patent/JPH0579619B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/38Polysaccharides or derivatives thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、加水分解性タンニンからなる。マスコンクリ
ートの水和発熱速度を低減するための添加剤に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention consists of hydrolyzable tannins. This invention relates to additives for reducing the hydration exotherm rate of mass concrete.

コンクリート構造物の大型化、および施工方法の進歩発
展による大型急速施工の増加に伴い、コンクリートの硬
化過程で生じる水和熱による構造物の温度変化に伴って
生じる温度応力が、構造物にひび割れを発生きせたシ、
あるいは残留温度応力が設計上無視出来ない場合がある
With the increasing size of concrete structures and the increase in large-scale rapid construction due to advancements in construction methods, the temperature stress that occurs due to temperature changes in structures due to the heat of hydration generated during the hardening process of concrete is causing cracks in structures. Occurred,
Alternatively, residual temperature stress may not be negligible in the design.

特にマスコンクリートの重要な問題として、セメントの
水和発熱によシコンクリートの内部に大きな温度上昇が
生じ、その温度上昇に引き継いで起こる温度降下による
変形が隣接する岩盤や既設コンクリートに拘束されたり
、また内部と表面の温度差によυ生じる一種の内的拘束
によシ生じる超大で有害なひび割れの発生がある。この
コンクリートの温度応力を解析するために現在種々の方
法でコンクリートの温度上昇の予測が行われているが、
マスコンクリートの温度上昇を決定する要因はセメント
の混和材や骨材の種類や配合量、外気温養生や施工全般
など多岐にわたっている。しかし、コンクリートの温度
上昇は、セメントの水和発熱に起因してお多単位セメン
ト量にほぼ比例するが、セメントの水和発熱速度を制御
できれば温度上昇も制御できる。一般的に中庸熱ポルト
ランドセメント、高炉セメント、フライアッシュセメン
ト等の低発熱型のセメントを使用することが望ましい。
A particularly important problem with mass concrete is that a large temperature rise occurs inside the concrete due to the heat generated by hydration of the cement, and deformation due to the temperature drop that follows this temperature rise may be restrained by the adjacent bedrock or existing concrete. In addition, extremely large and harmful cracks occur due to a type of internal restraint caused by the temperature difference between the inside and the surface. In order to analyze this temperature stress in concrete, various methods are currently being used to predict the temperature rise of concrete.
There are a wide variety of factors that determine the temperature rise of mass concrete, including the type and amount of cement admixtures and aggregates, outside temperature curing, and overall construction. However, the temperature rise in concrete is almost proportional to the amount of cement per unit due to the heat generated by hydration of the cement, but if the rate of heat generation due to hydration of the cement can be controlled, the temperature rise can also be controlled. Generally, it is desirable to use low heat generation cement such as moderate heat Portland cement, blast furnace cement, and fly ash cement.

ところが、セメントの水和発熱速度は系の温度に強く影
響される。すなわち、系の温度が高くなるほど水和は促
進され、水和発熱速度は大きくなる。発生した熱が逸散
しにくいマスコンクリート内部では80℃以上にもなる
ことが知られている。
However, the hydration heat generation rate of cement is strongly influenced by the temperature of the system. That is, the higher the temperature of the system, the more hydration is promoted and the rate of hydration heat generation becomes higher. It is known that the temperature inside mass concrete, where the generated heat is difficult to dissipate, can reach temperatures of 80°C or higher.

〈従来の技術〉 従来、マスコンクリートの水和発熱を抑えるために超遅
延剤とよばれる、セメントの水和を抑制する添加剤を加
えることが行われている。たとえば、グルコン酸塩やケ
イフッ化物等である。これらの超遅延剤はある量添加す
るとセメントの水和する1での時間を延ばすことはでき
るが、−旦、水和が始まると無添加のコンクリートと同
様に急速に発熱してしまう。また、水和が始まるまでは
全く強度がでないなど問題が多い。
<Prior Art> Conventionally, in order to suppress the hydration heat generation of mass concrete, an additive called a super retardant that suppresses the hydration of cement has been added. For example, gluconates and silicofluorides. When added in a certain amount, these super-retarders can prolong the time it takes for cement to hydrate, but once hydration begins, it quickly generates heat, similar to concrete without additives. In addition, there are many problems such as no strength at all until hydration begins.

そこで、デキストリンの溶解度が温度によって大きく異
なることを利用して、室温では溶出速度が遅いために有
効な遅延剤が液中に少なく、従ってセメントの水和に与
える影響も少ないが、高温になると液中に遅延剤がよシ
多く溶解しセメントの水和発熱を強く抑える添加剤が特
許出願されている(特開昭55−75956号公報)。
Therefore, by taking advantage of the fact that the solubility of dextrin varies greatly depending on temperature, at room temperature, the elution rate is slow, so there is little effective retardant in the solution, and therefore it has little effect on cement hydration, but at high temperatures, the A patent application has been filed for an additive in which a large amount of retardant is dissolved in the cement to strongly suppress heat generation due to hydration of cement (Japanese Patent Application Laid-Open No. 75956/1983).

この場合、溶出速度が温度によシ異なることを利用して
いるため、コンクリート中に遅延剤の濃度分布ができ、
これが欠陥となる。また、有効に水和遅延させるために
は、1.5チ程度添加しなくてはならず価格的にも、ま
た硬化コンクリートの物性に与える影響も問題と力る。
In this case, since the elution rate differs depending on the temperature, a concentration distribution of the retarder is created in the concrete.
This becomes a defect. Furthermore, in order to effectively retard hydration, it is necessary to add about 1.5 g, which poses problems in terms of cost and the effect it has on the physical properties of hardened concrete.

〈発明が解決しようとする問題点〉 本発明者らは、これらの欠点を解決し、マスコンクリー
トの水和発熱速度を抑制するための良好な添加剤を開発
すべく鋭意研究を重ねた。
<Problems to be Solved by the Invention> The present inventors have conducted extensive research in order to solve these drawbacks and develop a good additive for suppressing the hydration heat generation rate of mass concrete.

〈問題点を解決するだめの手段〉 その結果、加水分解性タンニンが上記目的に適合する添
加剤であることを見出し、かかる知見に基づいて本発明
を達成した。すなわち本発明は、加水分解性タンニンか
らなるマスコンクリート用水和発熱速度低減剤である。
<Means for Solving the Problems> As a result, it was discovered that hydrolyzable tannin is an additive suitable for the above purpose, and the present invention was achieved based on this knowledge. That is, the present invention is a hydration exotherm rate reducing agent for mass concrete comprising hydrolyzable tannin.

タンニンは一般に加水分解型と縮合型とに大きく分れる
。縮合型はプロアントシアニジンと呼ばれる物質とほぼ
一致し、天然樹脂に多量に含まれる。針葉樹の樹皮中に
含有される物質がセメントの水和を遅延する原因は、こ
のタンニンによるためである。特開昭59−13653
号公報の「セメントの凝結遅延用組成物」はこのタンニ
ンの遅延作用を利用したものである。本発明における加
水分解性タンニンとは、フェノール性カルがン酸と糖が
エステル結合した、ガロタニン、コリラジン、ケプラグ
酸、ケプリン酸などの物質を主成分とする物質やタンニ
ン酸として知られるm−ガロイル没食子酸などである。
Tannins are generally divided into two types: hydrolyzed tannins and condensed tannins. The condensed type closely matches a substance called proanthocyanidin, which is found in large amounts in natural resins. It is this tannin that causes the substances contained in the bark of coniferous trees to retard the hydration of cement. Japanese Patent Publication No. 59-13653
The "composition for retarding the setting of cement" in the publication utilizes the retarding effect of tannins. In the present invention, hydrolyzable tannin refers to substances whose main components are gallotanin, corilazine, keplagic acid, kepric acid, etc., in which phenolic carcinic acid and sugar are ester-bonded, and m-galloyl, which is known as tannic acid. Examples include gallic acid.

これらの物質は加水分解によシ没食子酸やエラグ酸や糖
になる。これらの物質が酸性およびアルカリ性で加水分
解を起こしやすいことは良く知られている。
These substances are hydrolyzed into gallic acid, ellagic acid, and sugar. It is well known that these substances are susceptible to hydrolysis under acidic and alkaline conditions.

さらに、この添加剤は他の混和剤すなわち、リグニン系
、ナフタリンスルホン酸塩ホルマリン縮合物7などの減
水剤やリグニン系やオキシカルボン酸塩糸、ケイフッ化
物などの従来からよく知られた遅延剤と併用してもよい
Furthermore, this additive can be used with other admixtures, such as water reducing agents such as lignin-based, naphthalene sulfonate formalin condensate7, and conventionally well-known retarders such as lignin-based, oxycarboxylate yarns, and silicofluorides. May be used together.

用いることのできるセメントとしては普通、中庸熱、早
強、超早強、耐硫酸塩、白色ポルトランドセメントやシ
リカセメント、フライアッシュセメント、高炉セメント
力どの混合セメント、あるいはカルシウムアルミネート
を主成分とするアルミナセメントやC11A7CaF2
を主成分とする超速硬セメントやカルシウムサルフォア
ルミネート(C4A、S )を用いた特殊セメントなど
である。また、本発明による添加剤はセメントに対して
0.05チ〜3.0チ添加するのが好ましい。添加量は
セメントの種類によって大きく異なるが普通ポルトラン
ドセメントでは0.1から1.0チの範囲が良い。
The cements that can be used are usually moderate heat, early strength, very early strength, sulfate resistant, mixed cements such as white Portland cement, silica cement, fly ash cement, blast furnace cement, or calcium aluminate as the main component. Alumina cement and C11A7CaF2
These include ultra-fast-hardening cement whose main ingredient is calcium sulfoaluminate (C4A, S), and special cement that uses calcium sulfoaluminate (C4A, S). Further, it is preferable that the additive according to the present invention is added to the cement in an amount of 0.05 to 3.0 g. The amount added varies greatly depending on the type of cement, but it is usually in the range of 0.1 to 1.0 g for Portland cement.

本発明による添加剤は粉体として前もってセメントと混
合しておいても良いし、水溶性なので混線水中に溶解さ
せて使用しても良い。気泡を生じる場合には既知のシリ
コーン系、アルコール系の消泡剤を添加することができ
る。
The additive according to the present invention may be mixed with cement in advance as a powder, or because it is water-soluble, it may be used by dissolving it in mixed water. When bubbles are generated, known silicone-based or alcohol-based antifoaming agents can be added.

く作用〉 加水分解性タンニンは主としてフェノール性カルがン酸
と糖がエステル結合しておシ、セメントのようなアルカ
リ性物質存在下で徐々に加水分解してフェノール性カル
がン酸と糖を生成する。これらの物質は著しくセメント
の水相に与える影響が異なシ、加水分解性タンニンは比
較的物い遅延作用があるが、生成するフェノール性カル
がン酸と糖は非常に強い遅延作用があシ、そのために加
水分解速度の速い高温において常温での水和と比べて大
きな遅延作用を生じることを利用したものである。すな
わち、水溶性でかつ徐々に加水分解して、タンニンよシ
サらにセメントの水和を遅延する効果の大きな低分子量
のフェノール性カルボン酸と糖が生成するために、セメ
ントの水和を除徐に抑えて、マスコンクリートの温度上
昇速度を低下させる添加剤を提供するものである。
Hydrolyzable tannins are mainly composed of ester bonds between phenolic carganic acids and sugars, and are gradually hydrolyzed in the presence of alkaline substances such as cement to produce phenolic carganic acids and sugars. do. These substances have significantly different effects on the aqueous phase of cement; hydrolyzable tannins have a relatively slow retarding effect, while the phenolic carcinic acid and sugar produced have a very strong retarding effect. For this purpose, it takes advantage of the fact that at high temperatures, where the rate of hydrolysis is fast, a large retardation effect occurs compared to hydration at room temperature. In other words, water-soluble and gradual hydrolysis produces low-molecular-weight phenolic carboxylic acids and sugars that are highly effective in delaying the hydration of cement by tannins and other substances, thereby slowing down the hydration of cement. The purpose of the present invention is to provide an additive that reduces the temperature rise rate of mass concrete while suppressing the temperature increase.

第1図に示すように、一般的にはセメントは温度が高く
なるにつれて水和発熱速度は急激に上昇する(a)。し
かし、タンニン酸を0.2係添加しただけで水和発熱速
度は低下する(b)。05チ添加ではさらに低下する(
c)。しかも従来のセメント遅延剤のように低温はど遅
延するのとは逆に、温度が高い程遅延は大きい。
As shown in FIG. 1, generally, as the temperature of cement increases, the rate of heat generation due to hydration increases rapidly (a). However, the rate of hydration heat generation decreases by adding only 0.2 parts of tannic acid (b). The addition of 0.05% further decreases the amount (
c). Moreover, unlike conventional cement retarders, which retard at low temperatures, the higher the temperature, the greater the retardation.

以上説明したとうシ、本発明は加水分解性タンニンから
なるセメントの水和熱速度低減剤であシ、セメントの存
在下で徐々に加水分解し遅延性のよシ大きい物質を生成
するためにセメントの水和に基づくコンクリートの温度
上昇速度を低下させる効果がある。
As described above, the present invention is a cement hydration heat rate reducing agent consisting of hydrolyzable tannins, which gradually hydrolyzes in the presence of cement to produce a highly retarded substance. It has the effect of reducing the rate of temperature rise in concrete due to hydration.

〈実施例〉 以下に、実施例をあげて本発明をさらに具体的に説明す
る。
<Examples> The present invention will be described in more detail below with reference to Examples.

マスコンクリートの内部温度上昇を推定する方法として
コンクリートを容器につめ、中心部の温度にあわせて周
囲の槽の温度をあげていく断熱温度上昇試験機がある。
As a method for estimating the internal temperature rise of mass concrete, there is an adiabatic temperature rise tester in which the concrete is packed in a container and the temperature of the surrounding tank is raised to match the temperature at the center.

従来の試験機は容器からの熱の逃げがあシ、ゆっくシ水
和するコンクリートでは熱の逃げのためにコンクリート
の温度上昇が少なくなる。しかし、実際にマスコンクリ
ートを打設すると発熱は大きくなシ試験機のデータと異
なる。そこで、改良された住人セメント社製断熱温度上
昇試験機(特願昭59−226688号、特願昭60−
257266号)を用いて従来の超遅延剤を添加したコ
ンクリートとの比較試験を行った。熱の逃げを無視でき
るために同一のセメントを用いた場合、最終的に到達す
る温度はあまシ変わらない。
Conventional testing machines do not allow heat to escape from the container, and with concrete that hydrates slowly, the temperature rise of the concrete is reduced due to heat escape. However, when mass concrete is actually poured, the heat generated is large and differs from the data from the testing machine. Therefore, we developed an improved adiabatic temperature rise tester manufactured by Jujum Cement Co., Ltd.
No. 257266) was used to conduct a comparison test with concrete to which a conventional super retardant was added. Since heat loss can be ignored, the final temperature reached will remain the same if the same cement is used.

実施例1 普通ポルトランドセメントを用いたコンクIJ −トの
断熱温度上昇試験を行った。配合を表1に示す。
Example 1 An adiabatic temperature rise test was conducted on concrete IJ-t using ordinary Portland cement. The formulation is shown in Table 1.

表1 コンクリートの打ち込み条件 なお、スランプは9.0cn1、空気量3.6 %、打
ち込み実測温度は19.4℃であった。粗骨材の最大寸
法は50mを使用し、供試体としてはφ60X60mの
ものを用いた。
Table 1 Concrete pouring conditions The slump was 9.0cn1, the air content was 3.6%, and the actual pouring temperature was 19.4°C. The maximum dimension of the coarse aggregate was 50 m, and the specimen was φ60 x 60 m.

断熱温度上昇試験結果(コンクリート温度上昇に対する
各水和熱抑制剤の効果)を第2図に示す。
The results of the adiabatic temperature rise test (the effect of each heat of hydration inhibitor on concrete temperature rise) are shown in Figure 2.

本発明および従来の添加剤を用いた場合の物性の比較を
表2に示す。
Table 2 shows a comparison of physical properties when using the present invention and conventional additives.

表2 各種添加剤を加えたコンクリートの圧縮強度(2
0℃)使用添加剤 (セメントに 圧縮強度Ckg/6
n2)対するチ)     3日      7日  
28日(市販試薬) 2、  I/       O,5132170260
3、グルコン酸  0.2      73     
168 253ナトリウム 4、デキストリン   1.6       63  
    169 2545、 な  し     −1
48172248表2および第2図の添加剤において1
,2は本発明、3,4は従来のものである。
Table 2 Compressive strength of concrete with various additives (2
0℃) Additives used (for cement Compressive strength Ckg/6
n2) against h) 3 days 7 days
28th (commercial reagent) 2, I/O, 5132170260
3. Gluconic acid 0.2 73
168 253 Sodium 4, Dextrin 1.6 63
169 2545, None -1
48172248 Table 2 and Figure 2 Additives 1
, 2 are the present invention, and 3 and 4 are conventional ones.

前述のように、従来の断熱温度上昇試験機は熱の散逸が
あったが、本試験機は改良されておシ、はとんど熱の逃
げはない。そのだめ、同一セメントを用いた場合、最終
的に到達する温度はあまシカ・わらないが、無添加の場
合とグルコン酸塩を添加した場合には急激な発熱の立ち
上シが見られる。
As mentioned above, the conventional adiabatic temperature rise tester caused heat to dissipate, but this tester has been improved and almost no heat escapes. However, when the same cement is used, the final temperature reached is not so hot, but there is a rapid rise in heat generation when no additive is used and when gluconate is added.

一方、本発明の添加剤では徐々に温度が上昇しく10) ていくことがわかる。デキストリンでもほぼ同様の効果
が得られるが、本発明と同様の効果を得るための添加量
が1.6チと多く、またその効果も不十分である。
On the other hand, it can be seen that with the additive of the present invention, the temperature gradually increases10). Although almost the same effect can be obtained with dextrin, the amount added to obtain the same effect as the present invention is as large as 1.6 g, and the effect is also insufficient.

また、本発明添加剤の場合、圧縮強度は3日後では0.
5%添加で無添加の90チ位であシ、28日では無添加
以上にでておシ問題はない。
In addition, in the case of the additive of the present invention, the compressive strength was 0.3 days after 3 days.
With 5% additive, it was around 90 degrees without additives, and on the 28th it was higher than without additives, so there was no problem.

実施例2 中庸熱ポルトランドセメントを使用した場合の打ち込み
条件を表3に示す。
Example 2 Table 3 shows the driving conditions when medium heat Portland cement was used.

表3 コンクリートの打ち込み条件 なお、スランプは9.2 cm、空気量3.5%打ち込
み実測温度は19.5℃であった。粗骨材の最大寸法は
50甥である。供試体として実施例1と同様の寸法のも
のを用いた。
Table 3 Concrete pouring conditions The slump was 9.2 cm, the air content was 3.5%, and the actual measured temperature was 19.5°C. The maximum dimension of coarse aggregate is 50 mm. A specimen having the same dimensions as in Example 1 was used.

このコンクリートの断熱温度上昇試験結果を第3図に示
す。また、このコンクリートの物性試験結果を表4に示
す。
Figure 3 shows the results of the adiabatic temperature rise test for this concrete. Further, Table 4 shows the physical property test results of this concrete.

表4 各種添加剤を加えたコンクリートの圧縮強度(2
0℃)使用添加剤 (セメントに 圧縮強度OCI!7
.2)寸に%)   3日   7日 28日1、タン
ニン酸   0.5 (市販試薬)           65    13
5247グルコン酸  0,15 ナトリウム 4、なし  −91142238 なお、表4および第3図において、添加剤1は本発明に
よる実施例であシ、従来からある添加剤を併用した例で
ある。2,3は従来の添加剤による比較例である。
Table 4 Compressive strength of concrete with various additives (2
0℃) Additives used (for cement Compressive strength OCI!7
.. 2) 3 days 7 days 28 days 1, tannic acid 0.5 (commercial reagent) 65 13
5247 Gluconic Acid 0.15 Sodium 4, None -91142238 In Table 4 and FIG. 3, Additive 1 is an example according to the present invention, and is an example in which a conventional additive was used in combination. 2 and 3 are comparative examples using conventional additives.

コンクリート強度は3日では無添加に比べてやや小さい
が、28日強度では無添加以上にでていた。
The concrete strength at 3 days was slightly lower than that without additives, but the strength at 28 days was higher than that without additives.

〈発明の効果〉 本発明の加水分解性タンニンは、比較的弱い水和熱速度
遅延作用があるが、加水分解によシ生成する化合物が非
常に強い遅延作用があるので、加水分解速度の速い高温
において常温での水和と比べて大きな遅延作用化じるか
ら、セメントの水相ヲ徐々に抑えて、マスコンクリート
の温度上昇速度を低減させることができる。
<Effects of the Invention> The hydrolysable tannin of the present invention has a relatively weak effect of retarding the rate of hydration heat, but since the compounds produced by hydrolysis have a very strong retardant effect, the tannin of the present invention has a relatively weak effect of retarding the rate of hydration heat. Since hydration at high temperatures has a large retardation effect compared to hydration at room temperature, the water phase of cement can be gradually suppressed and the rate of temperature rise of mass concrete can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、セメントの水和において、その温度と水和発
熱速度との関係を示す。(、)は添加剤なし、(b)お
よび(C)はそれぞれタンニン酸を0.2%および0.
5チ添加した場合である。 第2図および第3図は、それぞれ普通ポルトランドセメ
ントおよび中庸熱ポルトランドセメントについて、コン
クリートの温度上昇に対する水和発熱抑制剤の効果を示
したものである。
FIG. 1 shows the relationship between temperature and hydration heat release rate during hydration of cement. (,) without additive, (b) and (C) with 0.2% and 0.0% tannic acid, respectively.
This is the case when 5. Figures 2 and 3 show the effect of the hydration heat generation inhibitor on the temperature rise of concrete for normal Portland cement and moderate heat Portland cement, respectively.

Claims (1)

【特許請求の範囲】[Claims] 加水分解性タンニンからなるマスコンクリート用水和熱
速度低減剤。
Hydration heat rate reducing agent for mass concrete consisting of hydrolyzable tannins.
JP26387086A 1986-11-07 1986-11-07 Hydration exothermic speed reducer for mass concrete Granted JPS63117941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26387086A JPS63117941A (en) 1986-11-07 1986-11-07 Hydration exothermic speed reducer for mass concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26387086A JPS63117941A (en) 1986-11-07 1986-11-07 Hydration exothermic speed reducer for mass concrete

Publications (2)

Publication Number Publication Date
JPS63117941A true JPS63117941A (en) 1988-05-21
JPH0579619B2 JPH0579619B2 (en) 1993-11-04

Family

ID=17395385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26387086A Granted JPS63117941A (en) 1986-11-07 1986-11-07 Hydration exothermic speed reducer for mass concrete

Country Status (1)

Country Link
JP (1) JPS63117941A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012148933A (en) * 2011-01-20 2012-08-09 Sumitomo Osaka Cement Co Ltd Cement composition
CN108503251A (en) * 2018-04-18 2018-09-07 吉林建筑大学 A kind of concrete admixture and preparation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012148933A (en) * 2011-01-20 2012-08-09 Sumitomo Osaka Cement Co Ltd Cement composition
CN108503251A (en) * 2018-04-18 2018-09-07 吉林建筑大学 A kind of concrete admixture and preparation method

Also Published As

Publication number Publication date
JPH0579619B2 (en) 1993-11-04

Similar Documents

Publication Publication Date Title
AU776941B2 (en) Alkali-free setting and hardening accelerator
WO2009015520A1 (en) Cement-based grout composition
JPH06239950A (en) Condensation polymerization method
CN112521113B (en) Low-temperature hydration hardening gel material and preparation method and application thereof
CN105884299A (en) High permeable crystalline type repair material for over-self-healing-scale cracked concrete and preparation method of repair material
JP4287379B2 (en) Solidifying and curing accelerator for hydraulic binder and method for producing the same
CN109721270B (en) Magnesium oxide retarder for shaddock peel extracting solution, preparation method and application
CN113667061A (en) Water-absorbent resin and preparation method and application thereof
JPS6363505B2 (en)
JPS63117941A (en) Hydration exothermic speed reducer for mass concrete
CN115259728B (en) Gypsum retarder and preparation method thereof
CN110723919A (en) Composite early strength agent and preparation method thereof
NO20111524A1 (en) Curing accelerator and a method for accelerating the curing of hydraulic binders and mixtures thereof
JP4298838B2 (en) Low shrinkage cement composition
JPS5930748A (en) Manufacture of non-shrinkage binder
JPH02188457A (en) Additive for reducing heat of hydration of concrete
US20110132232A1 (en) Polyol-Based Admixtures for Hydraulic Cement
CN110423076B (en) High-strength non-shrinkage grouting material dry material
JPH089495B2 (en) Cement composition temperature rise suppressing agent and temperature rise suppressing method
JPH03115148A (en) Hydraulic cement
JP2563396B2 (en) How to delay the setting of cement
JPS5926963A (en) Hydraulic composition
JPH03141141A (en) Additive for rolled concrete
JP2004137091A (en) Cement admixture and cement composition
Ramachandran Interaction of admixtures in the cement-water system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees