JPS63117668A - Snubber energy regenerative circuit for inverter - Google Patents

Snubber energy regenerative circuit for inverter

Info

Publication number
JPS63117668A
JPS63117668A JP61262480A JP26248086A JPS63117668A JP S63117668 A JPS63117668 A JP S63117668A JP 61262480 A JP61262480 A JP 61262480A JP 26248086 A JP26248086 A JP 26248086A JP S63117668 A JPS63117668 A JP S63117668A
Authority
JP
Japan
Prior art keywords
snubber
inverter
diode
energy
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61262480A
Other languages
Japanese (ja)
Inventor
Sadanari Yano
矢野 禎成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61262480A priority Critical patent/JPS63117668A/en
Publication of JPS63117668A publication Critical patent/JPS63117668A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Inverter Devices (AREA)

Abstract

PURPOSE:To eliminate an influence of a DC magnetic deviation by connecting a regenerative transformer to the AC output side of a power source two-split inverter. CONSTITUTION:In a snubber energy regenerative circuit for an inverter, snubber capacitors 4a-4b, snubber diodes 5a-5b are provided at an arm element formed of self-arc extinguishing element (GTO) 2a-2b, and flywheel diodes 3a-3b. In this case, a power source two-split inverter 40 is formed of commutation energy absorbing capacitors 21a-21b, transistors 22a-22b, a regenerative transformer 24, etc., and bridge-connected regenerative diodes 25 and a current suppressing impedance 27 are provided. Thus, commutation energy including snubber energy is temporarily absorbed to the capacitors 21a-21b, converted by the inverter 40 to AC, full-wave rectified by the diodes 25 from the transformer 24, and returned to a power source 1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明に、直流電力から又流電力を得るインバータ装
置、特にスイッチング素子に自己消弧形素子を使用した
インバータ装置のスナバ−エネルギー回生回路に関する
ものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an inverter device that obtains current power from direct current power, and particularly relates to a snubber energy regeneration circuit for an inverter device that uses self-extinguishing elements as switching elements. It is something.

〔従来の技術〕[Conventional technology]

第4図に例えばアイイーイーイー アイニーニス(IE
gE  IAS)1985年(1’、20〜27)エフ
イシエント スナバーズ 7オー ボルテージ−ソース
 インペンターズ) (「EHicientSnubb
ers  for Voltage−8ource  
1nvertersJ)に示された従来のスナバ−エネ
ルギーの回生回路図であり、図において、1に直流電源
、2a、2bに自己消弧形素子(以下GTO累子と略称
する)で7ライホイールダイオード3a、3bと逆並列
に接続されてアーム素子を形成する。4a。
Figure 4 shows, for example,
gE IAS) 1985 (1', 20-27) Efficient Snubbers 7O Voltage-Source Inpenters) ("EHicientSnubb
ers for Voltage-8source
This is a conventional snubber energy regeneration circuit diagram shown in 1nvertersJ), in which 1 is a DC power supply, 2a and 2b are self-extinguishing elements (hereinafter abbreviated as GTO resistors), and 7 live wheel diodes 3a. , 3b in antiparallel to form an arm element. 4a.

4biスナバ−コンデンサ、5a、5biスナバ−ダイ
オード、6に限流リアクトル、7にエネルギー回生用U
T(以下、帰還eTと略称する)、8に回生用ダイオー
ドである。
4bi snubber capacitor, 5a, 5bi snubber diode, 6 current limiting reactor, 7 energy regeneration U
T (hereinafter abbreviated as feedback eT) and 8 are regeneration diodes.

次に動作について説明する。今、G 1” 0素子2a
が導通しておV第4図におけ゛る負荷電流チ璽が矢印の
方向に流nているものとする。このときGTO累子2a
のゲートに逆電流全流し、これをターン・オフした時の
転流動作を第5図を参照して説明する。まず、同図(a
)はターン・オフ直後の電流の通路を示すもので、スナ
バ−コンデンサ4aH矢印の方向に充電され、またスナ
バ−コンデンサ4bは矢印の方向に放電する。このとき
帰還CT方向に流れ、他方2次巻線7SICi帰還CT
7(7)1次72次巻数比に従って、図示の極性に夫々
電流が流れる。かくして、スナバ−コンデンサ4bの電
圧が零1で放電すると、85図(b)の動作となり、フ
ライホイールダイオード6bが導通し、限流リアクトル
6に蓄積さnているエネルギーは、帰還CT7@介して
電源に帰還さn/)。そしてついにに、スナバ−ダイオ
ード5aの電流が零となって帰還モードに終了する。第
5図(c)にその状態を示した。第6図(a) 、 f
bl 、 fc)に負荷電流工。が点線で示すスナバ−
ダイオード2bt通って供給さnている状態から、次に
GTO累子2at点弧した場合の転流動作時における夫
々の電流の流れを示している。
Next, the operation will be explained. Now, G 1”0 element 2a
It is assumed that V is conductive and the load current shown in FIG. 4 is flowing in the direction of the arrow. At this time, GTO Yuko 2a
The commutation operation when a full reverse current is passed through the gate of the transistor and turned off will be explained with reference to FIG. First, the same figure (a
) shows the current path immediately after turn-off, and the snubber capacitor 4aH is charged in the direction of the arrow, and the snubber capacitor 4b is discharged in the direction of the arrow. At this time, the current flows in the feedback CT direction, and the other secondary winding 7SICi feedback CT
7 (7) Current flows in each of the illustrated polarities according to the primary and 72nd turns ratio. Thus, when the voltage of the snubber capacitor 4b is discharged to zero, the operation shown in Fig. 85(b) occurs, the flywheel diode 6b becomes conductive, and the energy stored in the current limiting reactor 6 is transferred via the feedback CT7. returned to the power supply n/). Finally, the current in the snubber diode 5a becomes zero and the feedback mode ends. The state is shown in FIG. 5(c). Figure 6(a), f
Load current engineering for bl, fc). is the snubber indicated by the dotted line.
It shows the respective current flows during commutation operation when the GTO resistor 2at is then fired from the state in which the current is supplied through the diode 2bt.

すなわち、GTO素子2a’に点弧すると、GTO素子
2a−限流リアクドル6−スナバ−ダイオード5bの回
路で短絡電流が流n%GTO素子2aの電流が負荷電流
I。に達した時点でスナバ−ダイオード5bの電流に零
となり、第5図(a)のモードが形成さnる。続いて、
スナバ−コンデンサ4bが充ti開始すると、スナバ−
コンデンサ4ai放電ヲ開始する。そしてスナバ−コン
デンサ4aの電圧が零になると、スナバ−ダイオード5
aが導通し、同図(blのモードが形成される。同図(
b)の状態でに、第4図と同じように、限流リアクトル
6に蓄積さnたエネルギーは帰還(、’ 1” 7 i
介して電源に帰還さnる。そしてついにはスナバ−ダイ
オード5a、5bの電流は零となり、第5図(clの状
態となυ転流が完了する。
That is, when the GTO element 2a' is ignited, a short circuit current flows in the circuit of the GTO element 2a, the current limiting reactor 6, the snubber diode 5b, and the current of the GTO element 2a becomes the load current I by n%. When the current in the snubber diode 5b reaches zero, the mode shown in FIG. 5(a) is formed. continue,
When the snubber capacitor 4b starts charging, the snubber capacitor 4b starts charging.
Capacitor 4ai discharge starts. When the voltage of the snubber capacitor 4a becomes zero, the snubber diode 5
a becomes conductive, and the mode of bl is formed in the same figure (
In state b), as in Fig. 4, the energy accumulated in the current limiting reactor 6 is returned (, '1'' 7 i
It is returned to the power supply via. Finally, the currents in the snubber diodes 5a and 5b become zero, and the υ commutation is completed in the state shown in FIG. 5 (cl).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のインバータ装置のスナバ−エネルギー回生回路に
以上のように構成されているので、帰還CTの1次巻線
7Pの電流に常に一定の方向に流nるものであジ、かつ
、直流が流nる0この為に帰還CTのリセットが遅くな
り、インバータ装置を高周波で動作させることが困難で
おった。すなわち、帰還CTのリセット電圧が十分に確
保できないという問題点があった。
Since the snubber energy regeneration circuit of the conventional inverter device is configured as described above, the current in the primary winding 7P of the feedback CT always flows in a constant direction, and the current flows in the primary winding 7P of the feedback CT in a constant direction. For this reason, the resetting of the feedback CT becomes slow, making it difficult to operate the inverter device at a high frequency. That is, there was a problem that a sufficient reset voltage for the feedback CT could not be secured.

この発明に上記のような問題点を解消するためになされ
たもので、高周波で動作させることのできるインバータ
装置のスナバ−エネルギー回生回路七得ることを目的と
する。
This invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a snubber energy regeneration circuit for an inverter device that can be operated at high frequencies.

〔間′頂点を解決するための手段〕[Means for solving inter-vertices]

この発明に係るインバータ装置のスナバ−エネルギー回
生回路は、スナバ−エネルギーを一旦2個の直列コンデ
ンサに吸収し、これを新たな電源とする電源2分割のイ
ンバータ回路を構成し、該インバータの又流出力を変成
器(変流器あるいに変圧器)を介して直流電源に帰還す
るようにしたものである0 〔作用〕 この発明における回生用変成器に電源2分割インバータ
回路の又流出刃側に接続されるので直流偏磁の影響をう
けることがない0 〔実施例〕 以下、この発明の一実施例を図について説明する。図中
、第4図と同一の部分に同一の符号をもって図示した第
1図において、21a、21bi転流エネルギー吸収用
コンデンサ、22a 、22bに自己消弧形スイッチン
グ素子で、ここではトランジスタで図示している。23
a、23bU帰還ダイオード、24は回生用変成器、2
5にブリッジ接続された回生用ダイオード、26.27
H電流抑制用インピーダンス(リアクトル又は抵抗)、
40は電源2分割インバータである。
The snubber energy regeneration circuit of the inverter device according to the present invention comprises an inverter circuit with a power supply divided into two, in which the snubber energy is once absorbed into two series capacitors and used as a new power supply, and the snubber energy is also drained from the inverter. The power is returned to the DC power supply via a transformer (current transformer or transformer). Since it is connected to, it is not affected by DC bias magnetism. [Embodiment] Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In FIG. 1, the same parts as in FIG. 4 are shown with the same reference numerals, and 21a and 21bi are commutation energy absorbing capacitors, and 22a and 22b are self-extinguishing switching elements, which are shown as transistors here. ing. 23
a, 23bU feedback diode, 24 is regenerative transformer, 2
Regeneration diode bridge-connected to 5, 26.27
H current suppression impedance (reactor or resistance),
40 is a power supply two-split inverter.

次に動作について説明する。まず、$5図(b)、第6
図(blに示すように第4図における転流の最終過程で
は、転流リアクトル6の蓄積エネルギーは吸収モードと
なり、これを第1図について考えられる。すなわち、こ
のモードにおいてに第2図に示す如き等価回路で示さn
、パルス電流源30 Ipが存在し、この電流源を−H
転流エネルギー吸収用コンデンサ21a、21bに吸収
し、これを電源とする。そして電源2分割インバータ4
0を構成し、この交流出力全回生変流器24を介して全
波整流し、直流電源1に帰還する。
Next, the operation will be explained. First, $5 figure (b), 6th
In the final process of commutation in FIG. 4, as shown in FIG. As shown in an equivalent circuit like n
, a pulse current source 30 Ip exists, and this current source is connected to −H
The commutation energy is absorbed by the capacitors 21a and 21b and used as a power source. And power supply 2 split inverter 4
0, is full-wave rectified through this AC output full regenerative current transformer 24, and is fed back to the DC power supply 1.

ここで、各部の動作波形を第3図に示す。パルス電流源
30IpH転流エネルギー吸収用コンデンサ21a、2
1bk充電し、該コンデンサ電圧句は第3図(′b)の
ように充電さnる。−万、自己消弧形スイッチング素子
22a 、22bi交互にオン拳オフを繰返しており、
パルス電流源30Ipの周期T/2(TiGTOのスイ
ッチング周期)に玖べて十分短い周期で交互にオン・オ
フさせる。このとき電源2分割インバータ40の出力電
流1゜は転流エネルギー吸収用コンデンサ21a、21
bの電圧ecに応じて第3図(b)の如き交流の電流が
流れる。これに応じて回生電流ifに同図(d)の如く
電源に帰還さnる。なお電流抑制用インピーダンス26
゜27は少くともいずれか−1が含まれてお牡ばよいO 〔発明の効果〕 以上のように、この発明によnば、スナバ−エネルギー
を含めた転流エネルギーを一旦、転流エネルギー吸収用
コンデンサに吸収し、電源2分割の高周波インバータに
より、交流に変換し、かつ、回生変成器を介して全波整
流金し、電源に帰還するようにしたので、回生変成器が
小形となり帰還CTf確実にリセットするとともに、フ
ライホイールダイオードの耐圧も低くすることができる
ので、装置が安価となり、信頼性の高い高周波動作可能
のGTOインバータ装置が得られる効果がある0
Here, the operating waveforms of each part are shown in FIG. Pulse current source 30IpH commutation energy absorption capacitor 21a, 2
1bk is charged, and the capacitor voltage is charged as shown in FIG. 3('b). - 10,000, the self-arc-extinguishing switching elements 22a and 22bi are repeatedly turned on and off,
The pulse current source 30Ip is alternately turned on and off at a sufficiently short period of T/2 (the switching period of the TiGTO). At this time, the output current 1° of the power supply 2-split inverter 40 is generated by the commutation energy absorbing capacitors 21a and 21.
An alternating current as shown in FIG. 3(b) flows in accordance with the voltage ec of b. In response to this, the regenerative current if is fed back to the power source as shown in FIG. 4(d). In addition, current suppression impedance 26
゜27 should contain at least one of -1. The absorption capacitor absorbs the energy, converts it to alternating current using a high-frequency inverter that divides the power supply into two, and then performs full-wave rectification through the regenerative transformer, which is then returned to the power supply, making the regenerative transformer smaller and allowing it to be returned to the power supply. In addition to reliably resetting the CTf, the withstand voltage of the flywheel diode can also be lowered, making the device less expensive and having the effect of providing a highly reliable GTO inverter device that can operate at high frequencies.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図にこの発明の一実施例によるGTOインバータ装
置の回路図、第2図に第1図の実施例におけるエネルギ
ー回生モードの等価回路図、第3図に第2図における各
部の動作波形図、第4図に従来のインバータ装置の回路
図、第5図、第6図に第4図におけるターン・オフのタ
ーン・オン時の動作モードを示す説明図である。 図において、1に直流電源、2a、2bはGTO素子、
3a、3bHフライホイールダイオード、4a、4bに
スナバ−コンデンサ、5a 、5bはスナバ−ダイオー
ド、6に限流リアクトル、7に回生用CT、8に回生用
ダイオード、21 a 、 21 bに転流エネルギー
吸収用コンデンサ、22a、22bに自己消弧形スイッ
チング素子、23a 、23bに帰還ダイオード、24
に回生用変成器、25は回生用ダイオード−手≠4.2
6.27i電流抑制用インピーダンス、60はパルス電
流源、40に電源2分割インバータである。 なお、図中、同一符号に同一またに相当部分を示す。 特許出願人  三菱電機株式会社 第1図 ■ 40、   を隠2分舎」インバーダ 第2図
Fig. 1 is a circuit diagram of a GTO inverter device according to an embodiment of the present invention, Fig. 2 is an equivalent circuit diagram of the energy regeneration mode in the embodiment of Fig. 1, and Fig. 3 is an operation waveform diagram of each part in Fig. 2. , FIG. 4 is a circuit diagram of a conventional inverter device, and FIGS. 5 and 6 are explanatory diagrams showing operation modes during turn-off and turn-on in FIG. 4. In the figure, 1 is a DC power supply, 2a and 2b are GTO elements,
3a, 3bH flywheel diode, 4a, 4b are snubber capacitors, 5a, 5b are snubber diodes, 6 is current limiting reactor, 7 is CT for regeneration, 8 is regeneration diode, 21a, 21b is commutated energy Absorption capacitor, 22a, 22b self-extinguishing switching element, 23a, 23b feedback diode, 24
25 is a regenerative transformer, and 25 is a regenerative diode - ≠ 4.2
6.27i is an impedance for current suppression, 60 is a pulse current source, and 40 is a power supply splitting inverter. In addition, in the figures, the same reference numerals indicate the same or corresponding parts. Patent applicant: Mitsubishi Electric Corporation Figure 1 ■ 40, Invader Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)自己消弧形素子と逆並列に接続されたフライホィ
ールダイオードとでアーム素子を形成し、該アーム素子
を正負両側に配置した正負アーム素子間に限流リアクト
ルを配置し、該各アーム素子にはスナバーコンデンサ及
びスナバーダイオードとから成るスナバーを接続したイ
ンバータ装置のスナバーエネルギー回生回路において、
前記スナバーの正側スナバーダイオードの陽極と負側ス
ナバーダイオードの陰極間に電源2分割インバータを接
続し、前記自己消弧素子のスイッチング周波数より高周
波の交流を発生すると共に、該交流を回生変成器を介し
て高圧に変換し、回生用ダイオードを経て直流電源に接
続しスナバーエネルギーを帰還するようにしたことを特
徴とするインバータ装置のスナバーエネルギー回生回路
(1) An arm element is formed by a self-arc extinguishing element and a flywheel diode connected in antiparallel, and a current limiting reactor is arranged between the positive and negative arm elements with the arm elements arranged on both the positive and negative sides, and each arm In a snubber energy regeneration circuit of an inverter device in which a snubber consisting of a snubber capacitor and a snubber diode is connected to the element,
A two-part power supply inverter is connected between the anode of the positive snubber diode and the cathode of the negative snubber diode of the snubber, and generates an alternating current with a frequency higher than the switching frequency of the self-extinguishing element, and connects the alternating current to a regenerative transformer. A snubber energy regeneration circuit for an inverter device, characterized in that the snubber energy is converted to high voltage through a regeneration diode, connected to a DC power supply through a regeneration diode, and fed back.
(2)前記電源2分割インバータの構成として直流エネ
ルギー吸収用コンデンサを2個直列に接続し、該直流エ
ネルギー吸収用コンデンサを2分割電源とする少くとも
2個の自己消弧形スイッチング素子とでインバータ回路
を形成したことを特徴とする特許請求の範囲第1項記載
のインバータ装置のスナバーエネルギー回生回路。
(2) The inverter is constructed by connecting two DC energy absorbing capacitors in series, and at least two self-extinguishing switching elements using the DC energy absorbing capacitors as a two-divided power supply. A snubber energy regeneration circuit for an inverter device according to claim 1, characterized in that a circuit is formed.
(3)前記2個の直列接続された転流エネルギー吸収用
コンデンサ及び自己消弧形スイッチング素子とでインバ
ータ回路を形成した各直列接続中間点間に電流抑制用イ
ンピーダンスを接続し、該電流抑制用インピーダンスに
流れる交流を回生用変流器で検出し回生用ダイオードに
帰還するようにしたことを特徴とする特許請求の範囲第
1項記載のインバータ装置のスナバーエネルギー回生回
路。
(3) A current suppression impedance is connected between the intermediate points of the series connection of the two series-connected commutation energy absorbing capacitors and self-extinguishing switching elements forming an inverter circuit, and the current suppression impedance is 2. A snubber energy regeneration circuit for an inverter device according to claim 1, wherein alternating current flowing through the impedance is detected by a regeneration current transformer and fed back to a regeneration diode.
JP61262480A 1986-11-04 1986-11-04 Snubber energy regenerative circuit for inverter Pending JPS63117668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61262480A JPS63117668A (en) 1986-11-04 1986-11-04 Snubber energy regenerative circuit for inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61262480A JPS63117668A (en) 1986-11-04 1986-11-04 Snubber energy regenerative circuit for inverter

Publications (1)

Publication Number Publication Date
JPS63117668A true JPS63117668A (en) 1988-05-21

Family

ID=17376370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61262480A Pending JPS63117668A (en) 1986-11-04 1986-11-04 Snubber energy regenerative circuit for inverter

Country Status (1)

Country Link
JP (1) JPS63117668A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5075838A (en) * 1990-04-10 1991-12-24 York International Corporation Energy efficient voltage snubber circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5075838A (en) * 1990-04-10 1991-12-24 York International Corporation Energy efficient voltage snubber circuit

Similar Documents

Publication Publication Date Title
JPS63502953A (en) Bidirectional switch for PWM inverter with clamped neutral point
JPS58151877A (en) Inverter device
JPS59178975A (en) Inverter
EP0309919B1 (en) A power conversion apparatus
JPS63117668A (en) Snubber energy regenerative circuit for inverter
JP3243666B2 (en) Resonant DC-DC converter
JPH01295675A (en) Snubber circuit for dc power supply
JPH0315430B2 (en)
JPH0685632B2 (en) DC / DC converter
JP2000184710A (en) Dc-dc converter insulated by transformer
JPH0336221Y2 (en)
JP2861430B2 (en) Rectifier circuit
JP3205631B2 (en) DC-DC converter
JP2555621B2 (en) Inverter energy recovery circuit
JPH01117653A (en) Power converter
JPS62250874A (en) Voltage type inverter for series resonance load
JP2948863B2 (en) Inverter
SU795799A1 (en) Welding current controller
JPH04271275A (en) Snubber circuit for rectifier
JPH0347437Y2 (en)
JPH0833313A (en) Snubber circuit for power converter
JPH0648904B2 (en) Parallel resonant converter
JPH07303366A (en) Snubber energy regenerative circuit
JPH03124374A (en) Ac arc welding power source
JPS61106068A (en) Power converter