JPS63116405A - Manufacture of resin-coupled rare earth element magnet - Google Patents

Manufacture of resin-coupled rare earth element magnet

Info

Publication number
JPS63116405A
JPS63116405A JP61263269A JP26326986A JPS63116405A JP S63116405 A JPS63116405 A JP S63116405A JP 61263269 A JP61263269 A JP 61263269A JP 26326986 A JP26326986 A JP 26326986A JP S63116405 A JPS63116405 A JP S63116405A
Authority
JP
Japan
Prior art keywords
powder
resin
rare earth
magnetic field
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61263269A
Other languages
Japanese (ja)
Other versions
JPH0440841B2 (en
Inventor
Masanori Sato
正則 佐藤
Kazuo Matsui
一雄 松井
Hirofumi Nakano
廣文 中野
Masakuni Kamiya
神谷 昌邦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP61263269A priority Critical patent/JPS63116405A/en
Publication of JPS63116405A publication Critical patent/JPS63116405A/en
Publication of JPH0440841B2 publication Critical patent/JPH0440841B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To improve the orientation of a rare earth element magnet thereby to maintain its coercive force high by compression molding 2-17 rare earth element magnet powder having 100-70wt.% and 0.9 or more of sphericality in a magnetic field so that its coercive force is 6kOe or less, age-hardening it and impregnating it with resin. CONSTITUTION:A sintered material is first pulverized, and the particles are sphered to become 0.9 or more of sphericity. Then, it grain size is regulated to become 70wt.% of powder from larger particle diameter toward smaller particle diameter. Then, the magnet powder is compression molded in a magnetic field in the state that coercive force is small before age-hardening, and age-hardened while the molded shape is held. It is eventually impregnated with thermoset synthetic resin, and aftercured.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、樹脂を用いて磁石粉体を結合する樹脂結合型
磁石の製造方法に関し、更に詳しくは、はぼ球形で時効
処理する前の2−17系希土類磁石粉体を磁場中で圧縮
成形し、その後に時効処理し、樹脂を含浸させて結合す
る樹脂結合型希土類磁石の製造方法に関するものである
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a method for manufacturing a resin-bonded magnet in which magnet powder is bonded using a resin, and more specifically, the present invention relates to a method for manufacturing a resin-bonded magnet in which magnet powder is bonded using a resin. The present invention relates to a method for manufacturing a resin bonded rare earth magnet, in which 2-17 rare earth magnet powder is compression molded in a magnetic field, then subjected to aging treatment, impregnated with resin, and bonded.

[従来の技術] 希土類磁石粉体を結合剤(バインダ)により結合した磁
石は従来公知である。結合剤としては熱可塑性あるいは
熱硬化性樹脂が用いられ、圧縮、射出、押し出し等の成
形法により製造されている。これらの磁石は、磁気特性
が良好で量産性に優れ寸法精度が出し易く、また形状の
自由度が大きい等の利点があり、近年、急速に様々な用
途で使用されつつある。
[Prior Art] Magnets in which rare earth magnet powder is bonded with a binder are conventionally known. Thermoplastic or thermosetting resin is used as the binder, and it is manufactured by molding methods such as compression, injection, and extrusion. These magnets have advantages such as good magnetic properties, excellent mass productivity, easy dimensional accuracy, and a large degree of freedom in shape, and are rapidly being used in a variety of applications in recent years.

圧縮成形法に関し、従来、既に多くの製造方法が開発さ
れているが、代表的な例は第2図あるいは第3図に示す
ような方法である。第2図の場合、先ず所定組成の合金
を粉砕し成形して焼結した後、そのまま時効処理を行う
、それを粉砕し、粒度調整を行い、PVA、PVB、C
MC,PEG、パラフィン等の成形助剤と混練して磁場
中で圧縮成形する。そして加熱して成形助剤を飛ばし、
樹脂を含浸させ、アフターキュア処理を行う。また第3
図の場合には、粒度調整したものを樹脂と混練し、磁場
中圧縮成形を行い、アフターキュア処理を行う。
Regarding the compression molding method, many manufacturing methods have already been developed, and a typical example is the method shown in FIG. 2 or 3. In the case of Fig. 2, an alloy of a predetermined composition is first crushed, formed, and sintered, and then subjected to aging treatment as it is.
It is kneaded with molding aids such as MC, PEG, and paraffin, and compression molded in a magnetic field. Then, heat to evaporate the forming aid,
Impregnate with resin and perform after-cure treatment. Also the third
In the case shown in the figure, the particle size-adjusted material is kneaded with resin, compression molded in a magnetic field, and then subjected to an after-cure treatment.

[発明が解決しようとする問題点] 樹脂結合型希土類磁石の磁気特性を高くするには磁石粉
体を高充填し配向度を高くすることが肝要である。磁場
中で成形を行う時に磁石粉体を完全配向させるためには
、印加する磁場の強さは素材である磁石粉体の保磁力の
4〜5倍以上が必要であると言われている。このため従
来技術において、例えばS m z Co Hq系樹脂
結合型磁石の場合には、40〜50kOe以上の強い磁
場が必要となる。
[Problems to be Solved by the Invention] In order to improve the magnetic properties of a resin-bonded rare earth magnet, it is important to highly fill the magnet powder and increase the degree of orientation. It is said that in order to completely orient the magnetic powder during molding in a magnetic field, the strength of the applied magnetic field needs to be at least 4 to 5 times the coercive force of the raw material, the magnetic powder. Therefore, in the prior art, for example, in the case of an S m z Co Hq resin-bonded magnet, a strong magnetic field of 40 to 50 kOe or more is required.

しかし現在広く用いられている磁場成形機で得られる磁
場の強さは上記の値に達しない(−般に製造ラインで印
加可能な磁場は15kOe程度である)ため、実際に行
われている磁場中成形では素材原料粉体を十分に配向で
きない。
However, the strength of the magnetic field obtained by the currently widely used magnetic field forming machines does not reach the above value (generally, the magnetic field that can be applied on the production line is about 15 kOe), so the magnetic field strength that is actually used In medium molding, raw material powder cannot be oriented sufficiently.

このため磁気特性が十分高くならない欠点がある。For this reason, there is a drawback that the magnetic properties are not sufficiently high.

また従来技術では高充填化のために粒度調整を行い、且
つ成形前に成形助荊あるいは樹脂を混練しているものの
、粉砕したままの不定形の磁石粉体を用いているため配
向磁場を印加しても磁石粉体が回転し難く、高充填化に
見合うだけの磁気特性の向上が得られない。
In addition, in conventional technology, particle size is adjusted to achieve high filling, and molding additives or resin are kneaded before molding, but since pulverized magnet powder with an irregular shape is used, an orienting magnetic field is applied. However, it is difficult for the magnet powder to rotate, and the magnetic properties cannot be improved to a degree commensurate with the higher filling.

本発明の目的は上記のような従来技術の欠点を解消し、
磁気特性の優れた、特に配向度が向上した高保磁力を有
する樹脂結合型の2−17系希土類磁石を製造できる方
法を提供することにある。
The purpose of the present invention is to eliminate the drawbacks of the prior art as described above,
The object of the present invention is to provide a method for producing a resin-bonded 2-17 rare earth magnet having excellent magnetic properties, particularly an improved degree of orientation, and a high coercive force.

[問題点を解決するための手段] 上記のような目的を達成することのできる本発明は、粒
子径の大きい方から小さい方に向かって少なくとも70
重量%までに分布している粗粒の形状が球形度0.9以
上である2−17系希土類磁石粉体を、時効処理する以
前の保磁力が6kOe以下の時に磁場中で圧縮成形し、
次いで時効処理を行った後、樹脂を含浸し結合するよう
にした樹脂結合型希土類磁石の製造方法である。
[Means for Solving the Problems] The present invention, which can achieve the above objects, has a particle diameter of at least 70
Compression molding of 2-17 rare earth magnet powder in which the shape of coarse particles distributed by weight percent has a sphericity of 0.9 or more in a magnetic field when the coercive force before aging treatment is 6 kOe or less,
This is a method for producing a resin-bonded rare earth magnet in which the magnet is then subjected to an aging treatment and then impregnated with a resin and bonded.

原料となる2−17系の希土類磁石粉体は、RtT M
 +y (但し、RはYを含むSm、Ce。
The raw material 2-17 rare earth magnet powder is RtTM
+y (However, R is Sm or Ce containing Y.

Pr、Nd等の希土類元素の1種または2種以上、TM
はCo、Fe、Niを主体とする遷移金属元素)で表さ
れる組成を主成分とするものである。このような原料は
、通常、所定の組成を有する合金を粉砕した後、一定の
形状に成形し焼結したもの、また必要があればそれを所
定の条件で溶体化処理したものである。
One or more rare earth elements such as Pr and Nd, TM
The main component is a transition metal element mainly consisting of Co, Fe, and Ni. Such raw materials are usually obtained by pulverizing an alloy having a predetermined composition, forming it into a predetermined shape and sintering it, and, if necessary, solution-treating it under predetermined conditions.

2−17系希土類磁石は、時効処理により析出硬化が起
こり高保磁力が出現する。また使用粉体がほぼ球形であ
れば粒子表面の凹凸が少なく配向磁場を印加した時に動
き易くなり、成形の際に粒子の形状の関係から起こりう
る配向の乱れも生じにくい0本発明はこれらの現象に着
目しなされたものである。
In 2-17 rare earth magnets, precipitation hardening occurs due to aging treatment and a high coercive force appears. In addition, if the powder used is approximately spherical, there will be less unevenness on the particle surface, and it will move more easily when an orienting magnetic field is applied, and the disorder of orientation that may occur due to the shape of the particles during molding will be less likely to occur. It was created by focusing on the phenomenon.

第1図に示すように、本発明では上記のような原料焼結
体を先ず粉砕し、球形度0.9以上になるように球形化
する。次に粒子径の大きい方から小さい方に向かって少
なくとも70重量%の粉体が上記のものであるように粒
度調整する。ここで球形度とは下記の式で表される値を
いう。
As shown in FIG. 1, in the present invention, the raw material sintered body as described above is first crushed and sphericalized to have a sphericity of 0.9 or more. Next, the particle size is adjusted from the larger particle size to the smaller particle size so that at least 70% by weight of the powder is as described above. Here, sphericity refers to a value expressed by the following formula.

(実際の粒子の表面積) はぼ球形の粒子を得るためには、エツチング法や機械的
な摩耗による方法等が用いられる。例えば磁石粉体が易
溶解する酸(塩酸や硝酸等)に磁石粉体を入れ、適当な
時間攪拌する。一般に溶解は磁石粉体のエツジ(鋭い角
)から起きるから、それによって目的の球形度の磁石粉
体を得ることができる。酸処理後、十分に水洗し乾燥す
る。あるいは研磨材をライニングした容器に磁石粉体を
入れ、適当な気体(空気、窒素ガス、アルゴンガス等)
を吹き込んで攪拌し、粉体を器壁に衝突させエツジを摩
耗させることにより球形化することもできる。
(Actual particle surface area) In order to obtain spherical particles, an etching method, a method using mechanical abrasion, etc. are used. For example, the magnet powder is placed in an acid (hydrochloric acid, nitric acid, etc.) in which the magnet powder easily dissolves, and stirred for an appropriate period of time. Since melting generally occurs from the edges (sharp corners) of the magnet powder, it is thereby possible to obtain the magnet powder with the desired sphericity. After acid treatment, thoroughly wash with water and dry. Alternatively, put the magnetic powder in a container lined with abrasive material and apply a suitable gas (air, nitrogen gas, argon gas, etc.)
It is also possible to make the powder into a spherical shape by blowing and stirring the powder, causing the powder to collide with the vessel wall and abrading the edges.

また上記とは異なり、溶融合金からも球形化することが
できる。それには例えば次に挙げるようないくつかの方
法がある。
Also, unlike the above, spheroidization can also be made from molten alloy. There are several ways to do this, such as the following:

■ スプレー法(アトマイズ法) 溶融合金をノズルから流出させ、その溶融合金流に高圧
の噴霧媒(液体あるいは気体)を吹き付けて粉化するこ
とにより球形化する。
■ Spray method (atomization method) Molten alloy is made to flow out of a nozzle, and a high-pressure spray medium (liquid or gas) is sprayed onto the molten alloy flow to pulverize it and make it spherical.

■ キャビテーション法 2個のロールの僅かな隙間に溶融金属を噴出させると、
2個のロール内の溶融金属中にキャビテーシヨンが起こ
り、粉末として飛び出し、これを冷却板あるいは水溶液
で急冷することによって球形化できる。
■ Cavitation method When molten metal is squirted into the small gap between two rolls,
Cavitation occurs in the molten metal in the two rolls and the powder is ejected, which can be spheroidized by being rapidly cooled with a cooling plate or an aqueous solution.

■ 回転液中噴出法 回転ドラム内壁に遠心力により液体層を形成させ、この
回転液層中に溶融合金ビームを噴出させると、その噴出
条件により球形化粉体を製造できる。
(2) Ejection method in rotating liquid By forming a liquid layer on the inner wall of a rotating drum by centrifugal force and ejecting a molten alloy beam into this rotating liquid layer, spheroidized powder can be produced depending on the ejection conditions.

■ 円錐ロール法 溶融合金をノズルから噴出させ、回転する円錐状回転体
上に接触飛散させて粉状にし、これを冷却することによ
り球形化粉体を製造できる。
(2) Conical roll method A spheroidized powder can be produced by ejecting molten alloy from a nozzle, making it contact and scatter onto a rotating conical body to form a powder, and cooling the powder.

なお、上記■〜■は一般に急冷法と呼ばれる金属や合金
粉体の作製法であり、磁場中、電場中熱処理、応力をか
けた状態での熱処理等を行うことにより異方性化できる
。また粉体の粒度や球形度は製造条件で制御可能であり
、且つ前述のエツチング法および機械的な摩耗による方
法とは異なり球形化する時のロスが生じず量産性に冨む
方法である。
Incidentally, the above-mentioned methods (1) to (2) are methods for producing metal or alloy powders, which are generally called quenching methods, and anisotropy can be achieved by heat treatment in a magnetic field, electric field, heat treatment under stress, or the like. Further, the particle size and sphericity of the powder can be controlled by manufacturing conditions, and unlike the above-mentioned etching method and method using mechanical abrasion, there is no loss during sphericalization, making this method suitable for mass production.

時効処理前の保磁力の小さな状JLi (6k Oe以
下)で上記のように粒度調整した磁石粉体を用いて磁場
中で圧縮成形を行い、次に成形した形状を保持したまま
時効処理を行って高い保磁力を出現させる。最後にエポ
キシ樹脂やフェノール樹脂あるいはアクリル樹脂等の熱
硬化性合成樹脂を含浸しアフターキュア処理を行って結
合一体化する。
Compression molding is performed in a magnetic field using magnet powder with a small coercive force (6 k Oe or less) whose particle size has been adjusted as described above before aging treatment, and then aging treatment is performed while maintaining the molded shape. to produce high coercive force. Finally, it is impregnated with a thermosetting synthetic resin such as epoxy resin, phenol resin, or acrylic resin, and subjected to an after-cure treatment to be bonded and integrated.

更に磁気特性、特に残留磁束密度を向上し、成形性を良
くするためには、成形時にPVA。
Furthermore, in order to improve magnetic properties, especially residual magnetic flux density, and improve moldability, PVA is used during molding.

PVB、CMC,PEG、パラフィン等の成形助剤を用
い、時効処理前あるいは時効処理中にこれらの成形助剤
を加熱飛散させてもよい。
Molding aids such as PVB, CMC, PEG, paraffin, etc. may be used and these shaping aids may be blown off by heating before or during the aging treatment.

本発明において粒子径の大きい方から小さい方に向かっ
て少なくとも70重量%の粗粒の球形度が0.9以上と
したのは、本発明者等が磁石粉体の球形度が充填率や配
向度に与える影響について研究した結果、磁石粉体の粒
子径の大きい方から小さい方に向かって少なくとも70
重量%の粗粒を球形度0.9以上とすることが適当であ
ることを見出したことによる。この値は下限値であり、
70重量%以上また球形度0.9以上の方が充填率を上
げたとき配向度が向上することは勿論である。
In the present invention, the sphericity of at least 70% by weight of coarse particles is set to be 0.9 or more from the larger particle size to the smaller particle size because the sphericity of the magnet powder is determined by the filling rate and orientation. As a result of research on the effect on magnetic powder particle size, it was found that at least 70
This is because it has been found that it is appropriate for the sphericity of the coarse particles to have a sphericity of 0.9 or more by weight. This value is the lower limit value,
Of course, when the filling rate is increased to 70% by weight or more and the sphericity is 0.9 or more, the degree of orientation is improved.

本発明において磁場中成形する時効処理前の磁石粉体が
6kOe以下であるとしたのは以下の理由による。前述
のように磁場中で成形を行う時に磁石粉体を十分配向さ
せるためには印加する磁場の強さは素材である磁石粉体
の4〜5倍以上が必要である。それ故、磁場中成形を行
う時の、時効処理する以前の磁石粉体の保磁力はなるべ
く低い方が望ましい、また一般に製造ラインで印加可能
な磁場は15kOe程度である。
The reason why the magnet powder before aging treatment which is molded in a magnetic field in the present invention is set to be 6 kOe or less is as follows. As mentioned above, in order to sufficiently orient the magnetic powder when molding is performed in a magnetic field, the strength of the applied magnetic field needs to be at least 4 to 5 times as strong as the magnetic powder that is the raw material. Therefore, when forming in a magnetic field, it is desirable that the coercive force of the magnet powder before aging treatment be as low as possible, and generally the magnetic field that can be applied on the production line is about 15 kOe.

本発明者等は磁場中成形前の磁石粉体の保磁力と時効処
理後の樹脂結合型希土類磁石の磁気特性の関係について
種々の実験を行い、保磁力が6kOe以下の磁石粉体を
用いて本発明方法に基づき樹脂結合型希土類磁石を作製
すれば、従来法により得られる樹脂結合型希土類磁石に
比べて掻めて磁気特性が良好になることを見出した。こ
の値は上限であり、6kOe以下の磁石粉体を用いた時
、磁気特性の向上が顕著に現れるのは前述した通りであ
る。
The present inventors conducted various experiments on the relationship between the coercive force of magnet powder before molding in a magnetic field and the magnetic properties of resin-bonded rare earth magnets after aging treatment, and found that using magnet powder with a coercive force of 6 kOe or less, It has been found that by producing a resin-bonded rare earth magnet based on the method of the present invention, magnetic properties are much better than resin-bonded rare earth magnets obtained by conventional methods. This value is the upper limit, and as described above, when magnetic powder of 6 kOe or less is used, the magnetic properties are significantly improved.

磁場中成形における配向磁場の方向は、製作すべき製品
に応じて縦、横、ラジアル、多極等任意の配向方向の磁
場を適用できる。
Regarding the direction of the orientation magnetic field during molding in a magnetic field, a magnetic field in any orientation direction such as vertical, horizontal, radial, multipolar, etc. can be applied depending on the product to be manufactured.

[作用] 磁場中成形を行う時の磁石粉体は、時効処理以前の粉体
であるから保磁力は小さい、しがもその粒子径の大きい
方から小さい方に向かって70重量%以上の粗粒がほぼ
球形をなしている。
[Function] The magnetic powder used when forming in a magnetic field is a powder that has not been subjected to aging treatment, so its coercive force is small. The grains are almost spherical.

このため本発明では磁石粉体が動きゃすいから成形時に
おける配向の乱れが小さく、十分な配向がなされる。そ
してその状態のまま時効処理が行われるから、時効処理
後の磁石粉体の保磁力が大きくなっても配向状態がその
まま保持される。
Therefore, in the present invention, since the magnet powder moves easily, there is little disturbance in orientation during molding, and sufficient orientation is achieved. Since the aging treatment is performed in that state, the orientation state is maintained as it is even if the coercive force of the magnet powder increases after the aging treatment.

この結果、本発明によれば従来よりもはるかに磁気特性
の優れた樹脂結合型磁石を製造できることになる。
As a result, according to the present invention, it is possible to manufacture a resin-bonded magnet with far superior magnetic properties than conventional magnets.

[実施例1] 平均粒径1000μmのサマリウム−コバルト(Sml
Co+y)系合金をジェットミルにより平均粒径4μm
に粉砕し、その粉体を磁場中成形して焼結し本実施例で
の原料とした。
[Example 1] Samarium-cobalt (Sml) with an average particle size of 1000 μm
Co+y) based alloy was milled with an average particle size of 4 μm by jet milling.
The resulting powder was molded in a magnetic field and sintered to serve as the raw material in this example.

本実施例ではこの原料焼結体をショークラッシャーによ
り粉砕し、粒径約300μmの不定形磁石粉体を得た0
粒径約300μmの不定形粉体の一部をトルエン中でボ
ールミルにより粉砕し、粒径約40μmの不定形微粉体
を得た。
In this example, this raw material sintered body was crushed using a show crusher to obtain irregularly shaped magnet powder with a particle size of approximately 300 μm.
A part of the amorphous powder with a particle size of about 300 μm was ground in toluene using a ball mill to obtain an amorphous fine powder with a particle size of about 40 μm.

また粒径約300μmの不定形粉体を濃塩酸中に5分間
浸漬してエツチングを行い、60分間へキサンで洗浄し
、乾燥して粒径約200μmで球形度0.9以上の粗粉
体を得た。
In addition, amorphous powder with a particle size of about 300 μm is etched by immersing it in concentrated hydrochloric acid for 5 minutes, washed with hexane for 60 minutes, and dried to obtain a coarse powder with a particle size of about 200 μm and a sphericity of 0.9 or more. I got it.

磁石粉体は、こうして得た球形度0.9以上で粒径約2
00μmの粗粉体75重量%と粒径約40μmで不定形
の微粉体25重重量を混合したものである。
The magnetic powder thus obtained has a sphericity of 0.9 or more and a particle size of approximately 2.
It is a mixture of 75% by weight of coarse powder of 0.00 μm and 25% by weight of irregularly shaped fine powder with particle size of about 40 μm.

成形助剤を使用せずに、この磁石粉体を磁場成形機によ
り12kOeの磁界中で3 ton / cm”で圧縮
成形した。そして得られた成形体を真空中で800℃、
1時間の時効処理を行った。最後に真空中で脱気し、エ
ポキシ樹脂を含浸させ、120℃、1時間のアフターキ
ュア処理を行い樹脂結合型希土類磁石を製作した。
Without using a molding aid, this magnetic powder was compression molded using a magnetic field molding machine in a magnetic field of 12 kOe at 3 ton/cm".The resulting molded product was then heated at 800°C in a vacuum.
Aging treatment was performed for 1 hour. Finally, it was degassed in vacuum, impregnated with epoxy resin, and subjected to an after-cure treatment at 120° C. for 1 hour to produce a resin-bonded rare earth magnet.

また比較のため第2図および第3図に示す従来方法に基
づき比較用試料を製作した。第2図に基づく方法は上記
原料焼結体を、先ず前記実施例と同様の条件で時効処理
し、粉砕して不定形の平均粒径200μmの磁石粉体を
得、成形助剤としてCMC(カルボキシメチルセルロー
ス)と混練してから同じ条件の磁場中で成形を行い、加
熱して成形助剤を飛ばした後、同様にエポキシ樹脂を含
浸させて一体化した。第3図に基づく方法は、上記第2
図の方法と同じ粉体を用い、エポキシ樹脂と混練してか
ら同様の磁場中成形を行い、アフターキュアした。
Further, for comparison, comparative samples were manufactured based on the conventional method shown in FIGS. 2 and 3. In the method based on FIG. 2, the raw material sintered body is first aged under the same conditions as in the above example, and then pulverized to obtain amorphous magnetic powder with an average particle size of 200 μm. After kneading with carboxymethylcellulose), molding was carried out in a magnetic field under the same conditions, and after heating to drive off the molding aid, they were similarly impregnated with epoxy resin and integrated. The method based on FIG.
Using the same powder as in the method shown in the figure, it was kneaded with epoxy resin, molded in the same magnetic field, and after-cured.

測定結果の一例を第1表に示す。An example of the measurement results is shown in Table 1.

第1表 従来方法の場合、磁石粉体の充填密度を向上させるため
に成形助剤または樹脂と磁石粉体とを混練しているが、
第1表に示したように配向性が悪いため磁気特性は低い
In the case of the conventional method shown in Table 1, the molding aid or resin is kneaded with the magnet powder in order to improve the packing density of the magnet powder.
As shown in Table 1, the magnetic properties are low due to poor orientation.

これに対して本発明では、成形助剤を使用しなくても配
向度が高くなるため磁気特性は極めて良好である。
On the other hand, in the present invention, the degree of orientation is high even without using a forming aid, so the magnetic properties are extremely good.

[実施例2コ 実施例1と同じ球形度0.9以上の粒径約200/Jm
の粗粉体75重量%と、粒径約40μmで不定形の微粉
体25重量%を混合した磁石粉体を使用し、成形助剤と
してCMCを用い、時効処理中にこの成形助剤を加熱飛
散させ、以降は実施例1と同様にして樹脂結合型希土類
磁石を製作した。
[Example 2] Particle size of about 200/Jm with sphericity of 0.9 or more, same as Example 1
Magnet powder is a mixture of 75% by weight of coarse powder and 25% by weight of irregularly shaped fine powder with a particle size of about 40 μm, CMC is used as a molding aid, and this molding aid is heated during the aging treatment. After scattering, a resin-bonded rare earth magnet was manufactured in the same manner as in Example 1.

得られた磁石の磁気特性は次の通りである。The magnetic properties of the obtained magnet are as follows.

Br−8400G bHc=56000e (BH)−−X =15.8MG・Oeこのように成形
助剤を用いるならば、本発明により従来にない磁気特性
の優れた樹脂結合型希土類磁石を製作できる。
Br-8400G bHc=56000e (BH)--X=15.8MG.Oe If a molding aid is used in this way, the present invention can produce a resin-bonded rare earth magnet with unprecedented magnetic properties.

[実施例3] 前記実施例1と同様の3 m z CO+ q系合金を
素材とし、アルゴンガスを噴霧媒、非酸化性溶液を冷却
用溶液としてアトマイズ法で球形化し、この球形化合金
を磁場中熱処理することにより異方性化した。具体的に
は、球形化合金を電磁石の極間(約5 ko e)に設
置した電気炉に封入し、真空中(〜10−’Torr)
で770℃、5時間保持後炉冷し、室温まで冷却するこ
とにより行った。
[Example 3] Using the same 3 m z CO + q alloy as in Example 1 as a material, it was spheroidized by the atomization method using argon gas as a spray medium and a non-oxidizing solution as a cooling solution, and the spheroidized alloy was subjected to a magnetic field. Anisotropy was achieved by medium heat treatment. Specifically, a spheroidized alloy is sealed in an electric furnace installed between the poles of an electromagnet (approximately 5 koe), and heated in a vacuum (~10-' Torr).
The temperature was maintained at 770° C. for 5 hours, followed by cooling in a furnace and cooling to room temperature.

樹脂結合型希土類磁石の製造に使用した磁石粉体は、球
形度0.9以上、粒径約200μmで75重世%の球形
化合金粉体と、粒径約40μmで25重量%の微粉体の
混合物である。
The magnet powder used to manufacture the resin-bonded rare earth magnet was a spherical alloy powder with a sphericity of 0.9 or more and a particle size of about 200 μm and a weight of 75% by weight, and a fine powder with a particle size of about 40 μm and a weight of 25% by weight. It is a mixture of

このように粒度調整した磁石粉体を用い、成形助剤を使
用しない場合と使用した場合について樹脂結合型希土類
磁石を作製した。前者は実施例1と同じ方法であり、後
者は実施例2と同じ方法である。
Using the magnet powder whose particle size was adjusted in this manner, resin-bonded rare earth magnets were produced with and without the use of a forming aid. The former is the same method as in Example 1, and the latter is the same method as in Example 2.

得られた磁石の磁気特性を第2表に示す。The magnetic properties of the obtained magnet are shown in Table 2.

(以下余白) 第2表 [発明の効果コ 本発明は上記のようにほぼ球形をなす時効処理前の小さ
な保磁力の状態の2−17系希土類磁石粉体を用いて磁
場中圧縮成形し、その後その形状を保持したまま時効処
理して析出硬化させ高保磁力を出現させ、樹脂を含浸さ
せて結合する方法であるから、従来技術よりも大幅に磁
気特性が向上した高配向度の樹脂結合型希土類磁石を製
造できる優れた効果を存するものである。
(Leaving space below) Table 2 [Effects of the Invention] As described above, the present invention uses 2-17 rare earth magnet powder in a state of small coercive force, which is almost spherical and has not been aged, and is compressed in a magnetic field. The shape is then aged and precipitation hardened to develop a high coercive force, which is then impregnated with resin and bonded, resulting in a highly oriented resin-bonded type with significantly improved magnetic properties compared to conventional technology. This has an excellent effect in producing rare earth magnets.

また本発明によれば成形助剤を用いることな〈従来と同
等以上の磁気特性を実現できるため、成形助剤の混練や
成形後に加熱して成形助剤を飛ばす工程が不要となり、
製造工程を簡素化できる効果もある。更に従来技術と同
様に成形助剤を使用するならば、従来実現できなかった
良好な磁気特性が得られる。
In addition, according to the present invention, it is possible to achieve magnetic properties equivalent to or better than conventional ones without using a molding aid, so the process of kneading the molding aid or heating the molding aid after molding to evaporate the molding aid is no longer necessary.
This also has the effect of simplifying the manufacturing process. Furthermore, if a molding aid is used as in the prior art, good magnetic properties that could not be achieved in the past can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法による樹脂結合型希土類磁石の製造
工程の要部を示す工程説明図、第2図および第3図はそ
れぞれ従来工程の要部を示す工程説明図である。 特許出願人  富士電気化学株式会社 代  理  人     茂  見     穣第1図
    第2図 第3図 原料焼結体 製品
FIG. 1 is a process explanatory diagram showing the main part of the manufacturing process of a resin-bonded rare earth magnet according to the method of the present invention, and FIGS. 2 and 3 are process explanatory diagrams showing the main part of the conventional process, respectively. Patent applicant: Fuji Electric Chemical Co., Ltd. Representative: Minoru Shigeru Figure 1 Figure 2 Figure 3 Raw material sintered product

Claims (1)

【特許請求の範囲】[Claims] 1、粒子径の大きい方から小さい方に向かって少なくと
も70重量%までに分布している粗粒の形状が球形度0
.9以上である2−17系希土類磁石粉体を、時効処理
する以前の保磁力が6kOe以下の時に磁場中で圧縮成
形し、次いで時効処理を行った後、樹脂を含浸し結合す
ることを特徴とする樹脂結合型希土類磁石の製造方法。
1. The shape of the coarse particles, which are distributed at least 70% by weight from the larger particle size to the smaller particle size, has a sphericity of 0.
.. 9 or higher is compression molded in a magnetic field when the coercive force is 6 kOe or less before aging treatment, and then after aging treatment, it is impregnated with resin and bonded. A method for manufacturing a resin-bonded rare earth magnet.
JP61263269A 1986-11-05 1986-11-05 Manufacture of resin-coupled rare earth element magnet Granted JPS63116405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61263269A JPS63116405A (en) 1986-11-05 1986-11-05 Manufacture of resin-coupled rare earth element magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61263269A JPS63116405A (en) 1986-11-05 1986-11-05 Manufacture of resin-coupled rare earth element magnet

Publications (2)

Publication Number Publication Date
JPS63116405A true JPS63116405A (en) 1988-05-20
JPH0440841B2 JPH0440841B2 (en) 1992-07-06

Family

ID=17387112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61263269A Granted JPS63116405A (en) 1986-11-05 1986-11-05 Manufacture of resin-coupled rare earth element magnet

Country Status (1)

Country Link
JP (1) JPS63116405A (en)

Also Published As

Publication number Publication date
JPH0440841B2 (en) 1992-07-06

Similar Documents

Publication Publication Date Title
US4913745A (en) Method for producing a rare earth metal-iron-boron anisotropic bonded magnet from rapidly-quenched rare earth metal-iron-boron alloy ribbon-like flakes
US4842656A (en) Anisotropic neodymium-iron-boron powder with high coercivity
CN1331167C (en) Bonded magnets made with atomized permanent magnetic powders
KR0135209B1 (en) Fabrication method and equipment for granulated powders
JP2002294303A (en) METHOD FOR PRODUCING GRANULATED POWDER OF R-Fe-B BASED ALLOY AND METHOD FOR PRODUCING R-Fe-B BASED SINTERED COMPACT
JPS63116405A (en) Manufacture of resin-coupled rare earth element magnet
JP3201428B2 (en) Manufacturing method of powder for permanent magnet
JPH056323B2 (en)
JPH0314203A (en) Manufacture of high molecular compound rare earth magnet powder
JP3275055B2 (en) Rare earth bonded magnet
JPS6341004A (en) Anisotropic bonded magnet
JPS6353201A (en) Production of permanent magnet material
JPH08260112A (en) Alloy thin strip for permanent magnet, alloy powder obtained from the same, magnet and production of alloy thin strip for permanent magnet
KR100225497B1 (en) Method for manufacturing permanent magnet based on re-tm-b alloy
JP2002060806A (en) Method for producing alloy powder for permanent magnet and permanent magnet
JPH03198303A (en) Manufacture of powder for nd-fe-b anisotropic bond magnet
JPS63308902A (en) Manufacture of resin bond type permanent magnet
JPH0450725B2 (en)
JPS58125804A (en) Powder as raw material for permanent magnet and its manufacture
JP2001068313A (en) Anisotropic magnet power compound, its manufacturing method and manufacturing method of anisotropic bond magnet using the same
JPS63121602A (en) Production of nd-fe plastic magnet
JPH04110404A (en) Treatment of anisotropy rare earth metal-iron-boron series magnetic powder and plastic magnet with this magnetic powder and manufacture thereof
JPH0329302A (en) Manufacture of anisotropic high-polymer composite-type rare-earth magnet
JPH0544161B2 (en)
JPH0346202A (en) Bonded magnet and manufacture thereof