JPS6311532A - Generating method for activated oxygen - Google Patents

Generating method for activated oxygen

Info

Publication number
JPS6311532A
JPS6311532A JP15503586A JP15503586A JPS6311532A JP S6311532 A JPS6311532 A JP S6311532A JP 15503586 A JP15503586 A JP 15503586A JP 15503586 A JP15503586 A JP 15503586A JP S6311532 A JPS6311532 A JP S6311532A
Authority
JP
Japan
Prior art keywords
reaction
soln
hydrogen peroxide
excited oxygen
port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15503586A
Other languages
Japanese (ja)
Other versions
JPH044241B2 (en
Inventor
Tomoo Fujioka
知夫 藤岡
Sanichirou Yoshida
吉田 賛一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOGYO KAIHATSU KENKYUSHO
Japan Science and Technology Agency
Original Assignee
KOGYO KAIHATSU KENKYUSHO
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOGYO KAIHATSU KENKYUSHO, Research Development Corp of Japan filed Critical KOGYO KAIHATSU KENKYUSHO
Priority to JP15503586A priority Critical patent/JPS6311532A/en
Publication of JPS6311532A publication Critical patent/JPS6311532A/en
Publication of JPH044241B2 publication Critical patent/JPH044241B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To generate activated oxygen in the range over a long time at high reaction efficiency and at low degree of deactivation by using an atomizer and making an alkaline hydrogen peroxide aq. soln. to an atomized state and thereafter allowing it to react with gaseous chlorine. CONSTITUTION:An alkaline hydrogen peroxide aq. soln. is introduced into the atomizers 5 of an atomizer nozzle through the feed port 1 of a reaction soln. and ejected through an ejecting port by a carrier gas such as Ar introduced from a cylinder 10 and a feed port 2 and is allowed to collide with each other at a point A and atomized. On the other hand, gaseous chlorine introduced from a cylinder 11 and a feed port 3 is ejected through the ejecting port 4. Thereby gaseous chlorine is allowed to react with the above-mentioned atomized alkaline hydrogen peroxide aq. soln. to generate activated oxygen. Atomized particles after the reaction fall to the bottom part 6 of an activated oxygen generator by gravity and are transferred to a soln. separator 8 via a discharge port 7 of the soln. Herein separated waste liquid is discarded through a takeout port 9 and the nonreacted soln. is fed back to the feed port 1 of the reaction soln. and reused.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、化学反応による励起酸素の発生方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a method for generating excited oxygen through a chemical reaction.

(従来技術) 励起酸素は、その高い活性度のため古くから生化学者の
興味をひいており1種々の有機化学反応に応用されてい
る。さらに近年においては、レーザー技術の発達に伴い
ヨウ素レーザーの駆動源として、注目を集めている。
(Prior Art) Excited oxygen has long been of interest to biochemists due to its high activity and has been applied to a variety of organic chemical reactions. Furthermore, in recent years, with the development of laser technology, it has attracted attention as a driving source for iodine lasers.

励起酸素、即ち一重項励起状態の酸素分子〔02(1Δ
)、0□(1Σ)、 これらはエネルギー準位が準安定
にあり、自然放出寿命は前者が45分、後者が7〜12
秒と非常に長い、〕(以下、単に励起酸素ということも
ある)の発生方法として ・直接光励起 ・オゾン(03)の光分解 ・放電(直流、高周波、マイクロウェーブ)・化学反応 を挙げることができる。このうち全酸素中に占めるo2
(1Δ)の割合(励起効率)を20%以上にすることが
できるということから、化学反応による励起酸素の発生
方法が注目されている。
Excited oxygen, that is, oxygen molecules in the singlet excited state [02(1Δ
), 0□(1Σ), these energy levels are metastable, and the spontaneous emission lifetime is 45 minutes for the former and 7 to 12 minutes for the latter.
(hereinafter also simply referred to as excited oxygen) can be generated by direct photoexcitation, photodecomposition of ozone (03), discharge (direct current, high frequency, microwave), and chemical reactions. can. Of this, o2 accounts for total oxygen
The method of generating excited oxygen by chemical reaction is attracting attention because it is possible to increase the ratio (1Δ) (excitation efficiency) to 20% or more.

なお、前記オゾンの光分解による方式においては90%
以上の励起効率が得られるものの、オゾン(Ol)の発
生効率、生成量に問題があり、実用的な発生方法とはな
っていない。
In addition, in the method using photolysis of ozone, 90%
Although the above excitation efficiency can be obtained, there are problems with the generation efficiency and amount of ozone (Ol), and it is not a practical generation method.

化学反応により励起酸素を生成させるには、いくつかの
方法があるが、最も効率の高い化学反応は過酸化水素B
I、o2)の分解反応によるものである。
There are several ways to generate excited oxygen through chemical reactions, but the most efficient chemical reaction is hydrogen peroxide B.
This is due to the decomposition reaction of I, o2).

過酸化水素(H202)と次亜塩素酸イオン(HOCQ
−)の反応により発生する酸素は、はぼ100%が02
(J:)、 02(1Δ) (7)励起状態のもである
。この励起WI素発生方法は現在、最も一般的に採用さ
れているものであり、実際的には反応速度を高めるため
に(PH=10で最大)、水酸化ナトリウム(NaOH
)でアルカリ性にした過酸化水素水溶液と塩素ガスを反
応させている。これを化学敬論的に示すと次式になる。
Hydrogen peroxide (H202) and hypochlorite ion (HOCQ)
-) The oxygen generated by the reaction is almost 100% 02
(J:), 02(1Δ) (7) Excited state. This excited WI element generation method is currently the most commonly adopted method, and in practice sodium hydroxide (NaOH
), a hydrogen peroxide aqueous solution made alkaline is reacted with chlorine gas. Expressing this in terms of chemical theory, it becomes the following formula.

H2O2十〇Q2+2NaOH →02(1Δ、′Σ、3Σ)+2NaCQ+2H,0前
記化学反応により励起酸素を発生させる方式としては、
アルカリ性過酸化水素水溶液(反応溶液)の下部にガラ
ス粉末圧縮体板(バブラー)を置き、ここから塩素ガス
を吹き込むバブラ一方式(第2図参照)、及び多数の細
管(400本以上)の壁面に沿ってアルカリ性過酸化水
素水溶液を流すことにより薄い反応溶液の層を形成し、
これに塩素ガスを通じて液層表面で両者を接触反応させ
るようにしたウェットカラム方式(第3図参照)が主流
である。
H2O2〇Q2+2NaOH →02(1Δ,′Σ,3Σ)+2NaCQ+2H,0The method for generating excited oxygen through the chemical reaction is as follows:
A glass powder compressed body plate (bubbler) is placed below the alkaline hydrogen peroxide aqueous solution (reaction solution), and a bubbler type (see Figure 2) from which chlorine gas is blown, and a wall surface of a large number of thin tubes (more than 400). A thin layer of reaction solution is formed by flowing an alkaline hydrogen peroxide aqueous solution along the
The mainstream method is a wet column method (see Fig. 3) in which chlorine gas is passed through the liquid layer to cause a contact reaction between the two on the surface of the liquid layer.

前記した従来の2方式は、化学反応以外により励起酸素
を得ようとする方式に比べ、圧倒的に高い収率を示す実
用的なものであるが、欠点も有する。
The two conventional methods described above are practical methods that show overwhelmingly higher yields than methods that attempt to obtain excited oxygen through a method other than a chemical reaction, but they also have drawbacks.

バブラ一方式では、原理上反応溶液を励起酸素発生器内
にため込む方式を採用しているため、反応後の溶液と未
反応の溶液とが分離できない。
In principle, the one-bubbler type adopts a method in which the reaction solution is stored in the excited oxygen generator, so that the solution after the reaction cannot be separated from the unreacted solution.

即ち、反応溶液の供給と廃液の取出し、及びその連続的
な再生を効率よく行なうことができず、長時間動作に適
さない、さらに励起酸素発生器内にため込まれる反応溶
液の層が厚いため1反応溶液の深部で生成した励起酸素
が反応溶液の表面に向かって進む際に、液相中にて失活
反応を生起し。
In other words, it is not possible to efficiently supply the reaction solution, take out the waste liquid, and continuously regenerate it, and it is not suitable for long-term operation.Furthermore, the layer of reaction solution accumulated in the excited oxygen generator is thick. 1. When excited oxygen generated deep in the reaction solution moves toward the surface of the reaction solution, a deactivation reaction occurs in the liquid phase.

励起酸素の生成効率が低下してしまう、一般に励起酸素
の失活率は、気相中より液相中の方が1桁程度大きいた
め、この失活過程は大きな損失となる。
Generally, the deactivation rate of excited oxygen, which reduces the production efficiency of excited oxygen, is about one order of magnitude higher in the liquid phase than in the gas phase, so this deactivation process results in a large loss.

また、ウェットカラム方式では、多数の細管表面に形成
される反応溶液相が薄いため、液相中での失活反応は抑
制されるものの、塩素ガスと反応溶液との接触面積が励
起酸素発生器の空間的占有容積に比して相対的に小さく
なるため装置の大型化がまぬがれない。
In addition, in the wet column method, the reaction solution phase formed on the surface of many capillary tubes is thin, so although the deactivation reaction in the liquid phase is suppressed, the contact area between the chlorine gas and the reaction solution is smaller than the excited oxygen generator. Since it is relatively small compared to the space occupied by the device, it is inevitable that the device will become larger.

また、反応溶液と塩素ガスの気相/液相反応が表面反応
であるため、反応効率を上げるためにはカラムをできる
−たけ細くする必要があり、装置の構造が複雑となる。
Furthermore, since the gas phase/liquid phase reaction between the reaction solution and chlorine gas is a surface reaction, the column must be made as thin as possible in order to increase the reaction efficiency, which complicates the structure of the apparatus.

(発明が解決しようとする問題点) 前記した従来の励起酸素方式の問題点を克服するために
は、気相/液相反応により励起酸素を高い収率で得るよ
うに塩素ガスとアルカリ性過酸化水素水溶液を高効率で
接触させ、失活反応を抑制するように生成した励起酸素
を液相に極力接触させないようにし、かつ反応後の溶液
を連続的に取出し、再生するために反応前後の溶液が分
離されるよような構造の励起酸素発生装置を開発する必
要がある。
(Problems to be Solved by the Invention) In order to overcome the problems of the conventional excited oxygen method described above, it is necessary to combine chlorine gas and alkaline peroxide in order to obtain excited oxygen at a high yield through a gas phase/liquid phase reaction. The hydrogen aqueous solution is brought into contact with high efficiency, and the generated excited oxygen is kept from contacting the liquid phase as much as possible to suppress the deactivation reaction, and the solution after the reaction is continuously taken out and the solution before and after the reaction is regenerated. It is necessary to develop an excited oxygen generator with a structure that separates the

本発明者らは、前記従来方式の問題点に鑑み、鋭意検討
した。その結果噴霧ノズル等によりアルカリ性過酸化水
素水溶液を霧化した後、塩素ガスと反応させた場合、高
反応率、低失活率、かつ長時間動作が容易な励起酸素の
発生方法となることを見い出し、本発明を完成するに至
った。
The inventors of the present invention conducted extensive studies in view of the problems of the conventional method. As a result, when an alkaline hydrogen peroxide aqueous solution is atomized using a spray nozzle and then reacted with chlorine gas, it is possible to generate excited oxygen with a high reaction rate, low deactivation rate, and easy operation over a long period of time. This finding led to the completion of the present invention.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明を概説すれば1本発明はアルカリ性過酸化水素水
溶液と塩素ガスを反応させることにより励起酸素を発生
させるに際して、前記アルカリ性過酸化水素水溶液を霧
化器により霧状とした後、塩素ガスと接触反応させるこ
とを特徴とする励起m素の発生方法に関するものである
(Means for Solving the Problems) To summarize the present invention, 1. When generating excited oxygen by reacting an alkaline hydrogen peroxide aqueous solution with chlorine gas, the alkaline hydrogen peroxide aqueous solution is transferred to an atomizer. The present invention relates to a method for generating excited m-elements, which is characterized in that the atomized elements are atomized and then subjected to a contact reaction with chlorine gas.

以下、図面を用いて本発明になる励起酸素の発生方法の
一実施例について、詳細に説明する。
Hereinafter, one embodiment of the method for generating excited oxygen according to the present invention will be described in detail with reference to the drawings.

本発明方法を具体化する励起酸素発生装置の主要部は、
第1図に示されるように、アルカリ性過酸化水素水溶液
を霧状にするための霧化器5と、霧状の反応溶液と反応
する塩素ガスを噴出するための塩素ガス噴出口4と、反
応後の反応溶液から未反応溶液を回収するための溶液分
離装置8とから構成される0図示されていないが、生成
した励起酸素は、励起酸素発生装置の上部から取り出さ
れる。 また、化学反応により生成する水蒸気(H2O
)(H202+CQ、+2NaOH−+O,(1Δ。
The main parts of the excited oxygen generator embodying the method of the present invention are:
As shown in FIG. 1, an atomizer 5 for atomizing the alkaline hydrogen peroxide aqueous solution, a chlorine gas outlet 4 for ejecting chlorine gas that reacts with the atomized reaction solution, and a reaction Although not shown, the generated excited oxygen is taken out from the upper part of the excited oxygen generator. In addition, water vapor (H2O
) (H202+CQ, +2NaOH-+O, (1Δ.

1Σ、3Σ) + 2 N a CQ + 2 H20
)は、やはり生成励起酸素と反応して励起酸素を失活す
るため、励起酸素の発生部になるべく近いところに水蒸
気トラップを設けることは好ましい。
1Σ, 3Σ) + 2 N a CQ + 2 H20
) also reacts with the generated excited oxygen to deactivate the excited oxygen, so it is preferable to provide a water vapor trap as close as possible to the excited oxygen generating area.

霧化器により霧状となったアルカリ性過酸化水素水溶液
は、塩素ガスと接触される。これにより、反応溶液の霧
粒子と塩素ガスのガス分子が衝突により接触し、励起酸
素の生成反応が促進される。
The alkaline hydrogen peroxide aqueous solution atomized by the atomizer is brought into contact with chlorine gas. As a result, the fog particles of the reaction solution and the gas molecules of the chlorine gas come into contact with each other through collision, and the reaction for producing excited oxygen is promoted.

第1図においては、霧化器として衝突型噴霧ノズルを用
いている。この方式のノズルを用いるとアルカリ性過酸
化水素水溶液程度の粘度を持つ液相でも効率よく霧化す
ることができる。アルカリ性過酸化水素水溶液は、反応
溶液供給口1から霧化器に入り、キャリアガスボンベ1
0及びキャリアガス供給口2から導入されたアルゴンガ
ス等の気体に随伴されて反応溶液噴出口から噴射図中A
点で互いに衝突し霧化される。一方塩素ガスは塩素ガス
ボンベ11及び塩素ガス供給口3より導入され、第3の
噴出口4より噴出して霧状のアルカリ性過酸化水素水溶
液と反応する。反応後の霧粒子は重力により励起酸素発
生装置の底部6に落ち、溶液排出ロアから溶液分離装置
8へと転送される。溶液分離装置8では、廃液と未反応
溶液とが分離され、廃液は取出し口9から廃棄され、未
反応溶液は再使用のため反応溶液供給口1ヘフイードバ
ツクされる。
In FIG. 1, an impingement type spray nozzle is used as the atomizer. When this type of nozzle is used, even a liquid phase having a viscosity comparable to that of an aqueous alkaline hydrogen peroxide solution can be efficiently atomized. The alkaline hydrogen peroxide aqueous solution enters the atomizer from the reaction solution supply port 1, and is transferred to the carrier gas cylinder 1.
0 and carrier gas supply port 2, the reaction solution is ejected from the ejection port A in the diagram.
They collide with each other at points and become atomized. On the other hand, chlorine gas is introduced from the chlorine gas cylinder 11 and the chlorine gas supply port 3, is ejected from the third ejection port 4, and reacts with the atomized alkaline hydrogen peroxide aqueous solution. The mist particles after the reaction fall by gravity to the bottom 6 of the excited oxygen generator and are transferred from the solution discharge lower to the solution separation device 8. In the solution separator 8, the waste liquid and the unreacted solution are separated, the waste liquid is discarded from the take-out port 9, and the unreacted solution is fed back to the reaction solution supply port 1 for reuse.

第1図においては、反応溶液の霧化器5として、衝突型
噴霧ノズル(アトマイザー・ノズル)を用いているもの
を示したが(ノズル方式)、本発明においては反応溶液
を霧化することができるものあれば特に制限はなく、こ
の他、市販の加湿器用の超音波発生素子(超音波方式)
を用いることができることはいうまでもないことである
In FIG. 1, a collision type spray nozzle (atomizer nozzle) is shown as the atomizer 5 for the reaction solution (nozzle method), but in the present invention, it is possible to atomize the reaction solution. There are no particular restrictions as long as it can be used, and in addition, commercially available ultrasonic generating elements for humidifiers (ultrasonic type)
It goes without saying that it is possible to use

前記ノズル方式においても、図示されたものとは別の反
応溶液流入口を2個設け、それぞれの入口から流入した
液体がノズルから吹き出すまで互いに混じり合わない様
な構造とすることもできる。
In the nozzle system as well, two reaction solution inlets other than those shown may be provided, and the structure may be such that the liquids flowing in from each inlet do not mix with each other until they are blown out from the nozzle.

この場合、 H,O,溶液とN a OH溶液は別々に
導入され、S化の時点で混合される。ノズル方式におい
ては、霧の量が導入される反応溶液の圧力。
In this case, the H,O, and NaOH solutions are introduced separately and mixed at the time of S-conversion. In the nozzle method, the amount of mist is the pressure of the reaction solution introduced.

または霧粒の直径はキャリアーガスの圧力によって制御
される。
Or the diameter of the mist droplets is controlled by the pressure of the carrier gas.

一方、超音波方式は励起酸素発生装置の底に設置した超
音波素子からの超音波が1反応溶液の液面付近で収束し
、そのエネルギーによって反応溶液の分子間結合を切断
することによって霧化するものである。従って1反応溶
液の深さには最適値があり、霧の発生量は素子のパワー
により、また霧粒子の直径は周波数により制御される。
On the other hand, in the ultrasonic method, the ultrasonic waves from the ultrasonic element installed at the bottom of the excited oxygen generator converge near the liquid surface of one reaction solution, and the energy breaks the intermolecular bonds of the reaction solution, resulting in atomization. It is something to do. Therefore, the depth of one reaction solution has an optimum value, the amount of mist generated is controlled by the power of the element, and the diameter of the mist particles is controlled by the frequency.

以上のようにして発生された励起酸素は、有機化学反応
などに応用されるものであるが、特に本発明の励起酸素
発生方法は化学励起ヨウ素レーザー (Chemica
lly Pumped Iodine La5er :
 CPIL)に有用なものである。
The excited oxygen generated as described above is applied to organic chemical reactions, etc., but the excited oxygen generation method of the present invention is particularly applicable to chemically excited iodine laser (Chemica
lly Pumped Iodine La5er:
CPIL).

CPILは、化学反応により発生した一重項励起酸素0
2(1Δ)からヨウ素原子へのエネルギー移乗によって
ヨウ素原子の遷移間に逆転分布を形成させ、レーザー動
作を行なう純粋な化学レーザーである。現在まで、この
CPILは連続動作時間が短すぎるという理由から実用
化には至っていないが1本発明になる励起酸素発生方法
は、長時間動作が可能であること、即ちユウ素原子への
エネルギー移乗を長期化することができるものであり、
CPILの実用化に道を開くものである。
CPIL is singlet excited oxygen generated by a chemical reaction.
It is a pure chemical laser that performs laser operation by forming an inverted distribution between transitions of iodine atoms by energy transfer from 2 (1Δ) to iodine atoms. To date, this CPIL has not been put into practical use because the continuous operation time is too short; however, the excited oxygen generation method of the present invention is capable of operating for a long time, that is, it transfers energy to urea atoms. It is possible to prolong the
This will pave the way for the practical application of CPIL.

〔発明の効果〕〔Effect of the invention〕

本発明になる励起酸素の発生方法は、アルカリ性過酸化
水素水溶液と塩素ガスとの反応が霧/気相接触反応であ
るため、反応効率が良く、液相中での発生励起酸素の失
活反応がおさえられる。また、反応油後の溶液を励起酸
素発生装置から取出し、効率的に反応後の溶液を連続再
生することができ、従って長時間動作が容易となる。さ
らに、霧粒子の径と数密度を制御することにより1反応
効率の増強と失活率の抑制を最適化することが可能とな
る。
The method for generating excited oxygen according to the present invention has high reaction efficiency because the reaction between the alkaline hydrogen peroxide aqueous solution and chlorine gas is a fog/gas phase contact reaction, and the generated excited oxygen is deactivated in the liquid phase. can be suppressed. Further, the solution after the reaction oil can be taken out from the excited oxygen generator and the solution after the reaction can be efficiently and continuously regenerated, thus facilitating long-term operation. Furthermore, by controlling the diameter and number density of the mist particles, it is possible to optimize the enhancement of the single reaction efficiency and the suppression of the deactivation rate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明において用いられる励起酸素発生装置を
示す、第2図、第3図は従来の励起酸素発生装置を示す
もので、第2図のものはバブラ一方式のものを、第3図
のものはウェット・カラム方式のものを示す。 1:アルカリ性過酸化水素水溶液供給口2:キャリアガ
ス供給口 3:塩素ガス供給口 4:塩素ガス噴出口 5:霧化器(アルカリ性過酸化水素水溶液噴出口) 6:励起酸素発生装置底部 7:溶液排出口 8:溶液分離装置 9:廃液取出し口 10:キャリアガスボンベ 11:塩素ガスボンベ
Fig. 1 shows an excited oxygen generator used in the present invention, Figs. 2 and 3 show conventional excited oxygen generators, and the one in Fig. 2 is a one-type bubbler type, and the one in Fig. The one in the figure shows the wet column method. 1: Alkaline hydrogen peroxide aqueous solution supply port 2: Carrier gas supply port 3: Chlorine gas supply port 4: Chlorine gas outlet 5: Atomizer (alkaline hydrogen peroxide aqueous solution outlet) 6: Excited oxygen generator bottom 7: Solution outlet 8: Solution separation device 9: Waste liquid outlet 10: Carrier gas cylinder 11: Chlorine gas cylinder

Claims (1)

【特許請求の範囲】 1、アルカリ性過酸化水素水溶液と塩素ガスを反応させ
ることにより励起酸素を発生させるに際して、前記アル
カリ性過酸化水素水溶液を霧化器により霧状とした後、
塩素ガスと接触反応させることを特徴とする励起酸素の
発生方法。 2、霧化器がアトマイザー・ノズルを用いたものである
ことを特徴とする特許請求の範囲第1項記載の励起酸素
の発生方法。 3、霧化器が超音波素子を用いたものであることを特徴
とする特許請求の範囲第1項記載の励起酸素の発生方法
[Claims] 1. When generating excited oxygen by reacting an alkaline hydrogen peroxide aqueous solution with chlorine gas, after atomizing the alkaline hydrogen peroxide aqueous solution with an atomizer,
A method for generating excited oxygen characterized by a contact reaction with chlorine gas. 2. The method for generating excited oxygen according to claim 1, wherein the atomizer uses an atomizer nozzle. 3. The method for generating excited oxygen according to claim 1, wherein the atomizer uses an ultrasonic element.
JP15503586A 1986-07-03 1986-07-03 Generating method for activated oxygen Granted JPS6311532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15503586A JPS6311532A (en) 1986-07-03 1986-07-03 Generating method for activated oxygen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15503586A JPS6311532A (en) 1986-07-03 1986-07-03 Generating method for activated oxygen

Publications (2)

Publication Number Publication Date
JPS6311532A true JPS6311532A (en) 1988-01-19
JPH044241B2 JPH044241B2 (en) 1992-01-27

Family

ID=15597249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15503586A Granted JPS6311532A (en) 1986-07-03 1986-07-03 Generating method for activated oxygen

Country Status (1)

Country Link
JP (1) JPS6311532A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008149514A1 (en) * 2007-06-06 2010-08-19 三星ダイヤモンド工業株式会社 Chip holder for hand cutter and hand cutter with the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008149514A1 (en) * 2007-06-06 2010-08-19 三星ダイヤモンド工業株式会社 Chip holder for hand cutter and hand cutter with the same

Also Published As

Publication number Publication date
JPH044241B2 (en) 1992-01-27

Similar Documents

Publication Publication Date Title
US4668498A (en) Supersonic singlet delta oxygen aerosol generator
US7871063B2 (en) Two phase reactor
JP2007009917A (en) Hydrogen fuel feeder
KR102232920B1 (en) Exhaust gas treatment method, and exhaust gas treatment device
JP4449391B2 (en) Two-fluid nozzle
MY130748A (en) Process for producing chlorine dioxide
EP1892037A1 (en) Apparatus for reacting solution and reaction method
JP2014151206A (en) Homogenous plasma chemical reaction device
US20090011294A1 (en) Hydrogen generator and fuel cell system with the same
EP1059709A2 (en) Iodine source combining iodine monochloride and molecular iodine for chemical oxygen iodine laser (COIL)
US20040005256A1 (en) Crystallization system utilizing atomization
KR102309043B1 (en) A method and a device for oxidizing a solution for ammonia desulfurization
JPS6311532A (en) Generating method for activated oxygen
KR20010049458A (en) Process for generating recoverable sulfur containing compounds from a spent acid stream
JP2015016434A (en) Exhaust gas treatment method and exhaust gas treatment device
CN111558494A (en) Device and method for realizing liquid mist decomposition in atomization process
CN110665728A (en) Secondary atomizer for aerosol direct-writing printing and atomization method thereof
CN211678470U (en) A second grade atomizer for aerosol direct-write printing
JP4475739B2 (en) Chemically excited iodine laser system
JP3355019B2 (en) Excited oxygen generator
JPS63249389A (en) Chemical excitation iodine laser system
PE20010870A1 (en) METHOD TO REDUCE DENSITY BY MEANS OF A GAS GENERATING AGENT
JPH09215918A (en) Gas-liquid reactor
JP2004089866A (en) Method and apparatus for producing fine particle
JP2006160555A (en) Liquid column type excited oxygen generation unit