JPS63114985A - Plasma device - Google Patents

Plasma device

Info

Publication number
JPS63114985A
JPS63114985A JP25978086A JP25978086A JPS63114985A JP S63114985 A JPS63114985 A JP S63114985A JP 25978086 A JP25978086 A JP 25978086A JP 25978086 A JP25978086 A JP 25978086A JP S63114985 A JPS63114985 A JP S63114985A
Authority
JP
Japan
Prior art keywords
plasma
gas
transport pipe
sample
mounting table
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25978086A
Other languages
Japanese (ja)
Other versions
JPH0723547B2 (en
Inventor
Seiichi Nakamura
誠一 中村
Satoru Nakayama
中山 了
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP61259780A priority Critical patent/JPH0723547B2/en
Publication of JPS63114985A publication Critical patent/JPS63114985A/en
Publication of JPH0723547B2 publication Critical patent/JPH0723547B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To enhance the efficiency of effective utilization of a gaseous raw material by providing a gas transport pipe along a plasma flow between a window for drawing out plasma and a placing base of a sample and surely introducing the gaseous raw material into the flow of plasma. CONSTITUTION:A gas transport pipe 6 is provided to the interval reaching a placing base 5 of a sample from a window 1d for drawing out plasma generat ed in a plasma formation chamber 1. The inner diameter of the upper end of the gas transport pipe 6 is set nearly equally to the diameter of the window 1d and the inner diameter of the lower end part thereof is set nearly equally to the diameter of the placing base 5 by expanding the inner diameter toward the lower end part. Plasma generated in the plasma formation chamber 1 is projected around the sample S put in a reaction chamber 3 through the window 1d by means of action of the magnetic field formed with an exciting coil 4. Process gas fed through a gas feed pipe 3g is directly introduced into a plasma flow through the gas transport pipe 6. Therefore chance of bringing the process gas into contact with the plasma flow is increased and thereby the process gas is not wasted.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は主に高集積半導体素子の製造のためのCVD(
Chemical Vapor Deposition
)装置、エツチング装置、スパッタリング装置等に用い
られるプラズマ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention is mainly directed to CVD (CVD) for manufacturing highly integrated semiconductor devices.
Chemical Vapor Deposition
), etching equipment, sputtering equipment, etc.

〔従来技術〕[Prior art]

電子サイクロトロン共鳴を利用したプラズマ装置は低ガ
ス圧で活性度の高いプラズマを生成出来、イオンエネル
ギの広範囲な選択が可能であり、また大きなイオン電流
がとれ、イオン流の指向性、均一性に優れるなどの利点
があり、高集積半導体素子の製造を行ううえで必要とさ
れる成膜、エノテング工程に欠かせないものとしてその
研究、開発が進められている。
Plasma equipment using electron cyclotron resonance can generate highly active plasma at low gas pressure, allows a wide range of ion energies to be selected, and has a large ion current, with excellent directionality and uniformity of ion flow. Because of these advantages, research and development are progressing on it as an indispensable part of the film formation and etching processes required to manufacture highly integrated semiconductor devices.

第3図はCVD装置として構成した従来の電子サイクロ
トロン共鳴を利用するプラズマ装置の縦断面図であり、
31はプラズマ生成室を示している。
FIG. 3 is a vertical cross-sectional view of a conventional plasma device using electron cyclotron resonance configured as a CVD device.
31 indicates a plasma generation chamber.

プラズマ生成室31は周囲壁を2重構造にして冷却水の
通流室31aを備え、また上部壁中央には石英ガラス板
31bにて封止したマイクロ波導入口31cを、更に下
部壁中央には前記マイクロ波導入口31cと対向する位
置に円形のプラズマ引出窓31dを夫々備えており、前
記マイクロ波導入口31cには他端を図示しないマイク
ロ波発振器に接続した導波管32の一端が接続され、ま
たプラズマ引出窓31dに臨ませて反応室33が配設さ
れ、更に周囲にはプラズマ生成室31及びこれに接続し
た導波管32の一端部にわたってこれらを囲繞する態様
でこれらと同心状に励磁コイル34を配設しである。
The plasma generation chamber 31 has a double structure around the surrounding wall and is equipped with a cooling water circulation chamber 31a, and a microwave inlet 31c sealed with a quartz glass plate 31b in the center of the upper wall, and a microwave inlet 31c sealed with a quartz glass plate 31b in the center of the lower wall. A circular plasma extraction window 31d is provided at a position facing the microwave inlet 31c, and one end of a waveguide 32 whose other end is connected to a microwave oscillator (not shown) is connected to the microwave inlet 31c. In addition, a reaction chamber 33 is arranged facing the plasma extraction window 31d, and is further surrounded by a plasma generation chamber 31 and one end of a waveguide 32 connected to the plasma generation chamber 31. A coil 34 is provided.

反応室33内にはプラズマ引出窓31dに対向させて円
盤形の載置台38が配設され、その上には円板形をなす
ウェーハ等の試料37がそのまま、又は静電吸着等の手
段にて着脱可能に載置され、また反応室33の下部壁に
は図示しない排気装置に連なる排気口33aが開口され
ている。31g。
A disk-shaped mounting table 38 is disposed in the reaction chamber 33 so as to face the plasma extraction window 31d, and a disk-shaped sample 37 such as a wafer is placed thereon as is or by means such as electrostatic adsorption. The reaction chamber 33 is removably placed therein, and an exhaust port 33a connected to an exhaust device (not shown) is opened in the lower wall of the reaction chamber 33. 31g.

33gは原料ガスの供給管である。33g is a raw material gas supply pipe.

而してこのようなCVD装置にあっては、試料37を所
定温度に加熱維持しつつ所要の真空度に設定したプラズ
マ生成室315反応室33内に原料ガスを供給する一方
、励磁コイル34にて磁界を形成しつつプラズマ生成室
31内にマイクロ波を導入してプラズマを生成させ、こ
れを励磁コイル34にて形成されるプラズマ引出窓31
d前方の反応室33側に向かうに従い磁束密度が低下す
る発散磁界によって反応室33内の載置台38上の試料
37周辺に投射せしめ、試料37表面に成膜を行うよう
になっている(特開昭56−155535号)。
In such a CVD apparatus, while heating and maintaining the sample 37 at a predetermined temperature, the source gas is supplied into the plasma generation chamber 315 and the reaction chamber 33, which are set at a required degree of vacuum, while the excitation coil 34 is heated and maintained. A microwave is introduced into the plasma generation chamber 31 while forming a magnetic field to generate plasma, which is then passed through the plasma extraction window 31 formed by the exciting coil 34
d A diverging magnetic field whose magnetic flux density decreases toward the front reaction chamber 33 side is projected around the sample 37 on the mounting table 38 in the reaction chamber 33 to form a film on the surface of the sample 37 (specially (No. 155535, 1973).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで一般にこの種のプラズマ装置にあっては、例え
ば試料37表面にSiO膜を形成する場合、ガス供給管
31gから0□を、またガス供給管33gから5il1
4を夫々供給し、これらのガスを分解。
By the way, in general, in this type of plasma apparatus, when forming a SiO film on the surface of the sample 37, for example, 0□ is connected to the gas supply pipe 31g, and 5il1 is connected to the gas supply pipe 33g.
4 respectively and decompose these gases.

プラズマ化して成膜を行うようになっている。ところが
従来のプラズマ装置ではプラズマ生成室31で発生した
プラズマは円形のプラズマ引出窓31dを通じて反応室
33内に導かれ、漸次投射域を拡大されて′d、置台3
8上の試料37周辺に対しこれよりも広い円形の領域に
投射されることとなるが、このプラズマ投射域に比較し
て反応室33の面積が広いため、反応室33の壁面にお
けるガス供給管33gの開口部とイオン投射域との離隔
手法が大き(、ガス供給管33gから供給されるSiL
の殆どはイオン投射域を横切ることなく排気口33aを
経て排気され、成膜への寄与率、即ち利用効率が低く、
Singの成膜速度も遅いという問題があった。
The film is formed by turning it into plasma. However, in the conventional plasma apparatus, the plasma generated in the plasma generation chamber 31 is guided into the reaction chamber 33 through the circular plasma extraction window 31d, and the projection area is gradually expanded.
The plasma is projected onto a wider circular area around the sample 37 on 8, but since the area of the reaction chamber 33 is wider than this plasma projection area, the gas supply pipe on the wall of the reaction chamber 33 The separation method between the 33g opening and the ion projection area is large (SiL supplied from the gas supply pipe 33g).
Most of the ions are exhausted through the exhaust port 33a without crossing the ion projection area, and the contribution rate to film formation, that is, the utilization efficiency is low.
There was also a problem that the film formation rate of Sing was slow.

本発明はかかる事情に鑑みてなされたものであって、そ
の目的とすることろは原料ガスの有効利用効率を大幅に
向上せしめ得るプラズマ装置を提供するにある。
The present invention has been made in view of the above circumstances, and its purpose is to provide a plasma device that can significantly improve the efficiency of effective utilization of raw material gas.

〔問題点を解決するための手段〕[Means for solving problems]

第1の本発明にあってはプラズマ生成室のプラズマ引出
窓と試料の載置台との間に、プラズマ流に沿うようガス
輸送管を配設する。また第2の本発明にあっては試料室
の周壁それ自体をプラズマ流に沿うよう形成する。
In the first aspect of the present invention, a gas transport pipe is disposed along the plasma flow between the plasma extraction window of the plasma generation chamber and the sample mounting table. In the second aspect of the present invention, the peripheral wall of the sample chamber itself is formed along the plasma flow.

〔作用〕[Effect]

本発明はこれによって、ガス供給管から供給される原料
ガスを確実にプラズマ流内に導入することが可能となる
This makes it possible in the present invention to reliably introduce the raw material gas supplied from the gas supply pipe into the plasma flow.

〔実施例〕〔Example〕

以下本発明をCVD装置として構成した実施例につき図
面に基づき具体的に説明する。第1図は本発明に係るプ
ラズマ装置(以下本発明装置という)の縦断面図であり
、図中1はプラズマ生成室、2は導波管、3は試料Sに
対し成膜を施す試料室たる反応室、4は励磁コイルを示
している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention configured as a CVD apparatus will be specifically described below with reference to the drawings. FIG. 1 is a longitudinal cross-sectional view of a plasma device according to the present invention (hereinafter referred to as the device of the present invention), in which 1 is a plasma generation chamber, 2 is a waveguide, and 3 is a sample chamber in which film formation is performed on a sample S. A barrel reaction chamber, 4 indicates an excitation coil.

プラズマ生成室1はステンレス鋼製であって、周囲壁を
二重構造として水冷ジャケラHaを備える中空円筒形に
形成され、上部壁中央には石英ガラス板ibで閉鎖され
たマイクロ波導入口1cを備え、また下部壁中央には前
記マイクロ波導入口1cと対向する位置にマイクロ波引
出窓1dを備えており、前記マイクロ波導入口ICには
導波管2の一端部が接続され、またプラズマ引出窓1d
にはこれに臨ませて反応室3が配設され、更に周囲には
プラズマ生成室1及びこれに連結された導波管2の一端
部にわたって励磁コイル4が周設せしめられている。
The plasma generation chamber 1 is made of stainless steel and is formed into a hollow cylindrical shape with a double-walled surrounding wall and a water-cooled jacket Ha, and a microwave inlet 1c closed with a quartz glass plate ib in the center of the upper wall. In addition, a microwave extraction window 1d is provided at the center of the lower wall at a position facing the microwave introduction port 1c, one end of the waveguide 2 is connected to the microwave introduction port IC, and a plasma extraction window 1d is provided.
A reaction chamber 3 is disposed facing this, and an excitation coil 4 is disposed around the plasma generation chamber 1 and one end of a waveguide 2 connected thereto.

1gはプラズマ生成室lに連結されたプラズマ維持用ガ
スの供給管1h、 liは夫々水冷ジャケット1aに連
結した冷却水の供給管、排出管を示している。
1g indicates a plasma maintenance gas supply pipe 1h connected to the plasma generation chamber 1, and li indicates a cooling water supply pipe and a discharge pipe connected to the water cooling jacket 1a, respectively.

導波管2の他端部は図示しないマイクロ波発振器に接続
されており、ここで発せられたマイクロ波をマイクロ波
導入口1cからプラズマ生成室l内に導入するようにし
である。励磁コイル4は図示しない直流電源に接続され
ており、直流電流の通流によってプラズマ生成室l内に
マイクロ波の導入によりプラズマを生成し得るよう磁界
を形成すると共に、反応室3側に向けて磁束密度が低く
なる発散磁界を形成し、プラズマ生成室1内に生成され
たプラズマを反応室3内に導入せしめるようになってい
る。
The other end of the waveguide 2 is connected to a microwave oscillator (not shown), and the microwaves emitted here are introduced into the plasma generation chamber 1 through the microwave introduction port 1c. The excitation coil 4 is connected to a DC power source (not shown), and by passing a DC current, it forms a magnetic field so that plasma can be generated by introducing microwaves into the plasma generation chamber l, and also generates a magnetic field toward the reaction chamber 3 side. A diverging magnetic field with a low magnetic flux density is formed, and the plasma generated in the plasma generation chamber 1 is introduced into the reaction chamber 3.

反応室3は中空の円筒形に形成され、プラズマ引出窓1
dと対向する底壁に図示しない排気装置に連なる排気口
3aを開口してあり、また反応室3内には前記プラズマ
引出窓1dと対向する位置に試料の載置台5が配設され
ている。
The reaction chamber 3 is formed into a hollow cylindrical shape, and has a plasma extraction window 1.
An exhaust port 3a connected to an exhaust device (not shown) is opened in the bottom wall facing d, and a sample mounting table 5 is disposed in the reaction chamber 3 at a position facing the plasma extraction window 1d. .

そして本発明にあっては前記プラズマ引出窓1dから載
置台5に至る間にガス輸送管6が配設されている。この
ガス輸送管6は円筒形であって上端部の内径はプラズマ
引出窓1dの直径に略等しく設定し、ここから下端部に
向かうに従って内径を拡大し、下端部では内径が載置台
5の直径と略等しくなるよう設定されており、前記上端
部をプラズマ引出窓1dの反応室側の開口部にこれと同
心状に固定され、上端部は載置台5の上方にこれとの間
に所要の間隔を隔てて位置するよう延在されている。3
gはプロセスガスを供給するガス供給管であり、反応室
3の側壁及び前記ガス輸送管6の周壁を貫通して延在さ
せ、その先端をガス輸送管6の周壁内面に開口せしめで
ある。
In the present invention, a gas transport pipe 6 is disposed between the plasma extraction window 1d and the mounting table 5. This gas transport pipe 6 has a cylindrical shape, and the inner diameter at the upper end is set approximately equal to the diameter of the plasma extraction window 1d, and the inner diameter increases from there toward the lower end. The upper end is fixed concentrically to the opening of the plasma extraction window 1d on the reaction chamber side, and the upper end is placed above the mounting table 5 with a required distance between it and this. They are extended to be located at intervals. 3
A gas supply pipe g for supplying process gas extends through the side wall of the reaction chamber 3 and the peripheral wall of the gas transport pipe 6, and its tip is opened at the inner surface of the peripheral wall of the gas transport pipe 6.

而してこのような本発明装置にあっては反応室3の載置
台5上に試料Sを装着して所定温度に加熱維持しプラズ
マ生成室12反応室3内を所要の真空度に設定した後、
ガス供給管1g、3gを通じてプラズマ生成室l1反応
室3内に原料ガスを供給し、励磁コイル4に直流電流を
通流すると共に、導波管2を通じてマイクロ波を導入し
て電子サイクロトロン共鳴条件を成立させてプラズマを
発生せしめる。発生させたプラズマは励磁コイル4にて
形成される磁界の作用によりプラズマ引出窓1dを通じ
て反応室3内の試料S周辺に投射する。
Therefore, in the apparatus of the present invention, the sample S is mounted on the mounting table 5 of the reaction chamber 3, heated and maintained at a predetermined temperature, and the inside of the plasma generation chamber 12 and the reaction chamber 3 is set to the required degree of vacuum. rear,
Raw material gas is supplied into the plasma generation chamber l1 reaction chamber 3 through the gas supply pipes 1g and 3g, a direct current is passed through the excitation coil 4, and microwaves are introduced through the waveguide 2 to establish electron cyclotron resonance conditions. Establish it and generate plasma. The generated plasma is projected around the sample S in the reaction chamber 3 through the plasma extraction window 1d by the action of the magnetic field formed by the excitation coil 4.

このような実施例にあっては、ガス供給管3gから供給
されるプロセスガスはプラズマ投射域に沿うよう配した
ガス輸送管6を通じて直接プラズマ流内に導かれること
となり、プラズマ流との接触機会が多くなって、プロセ
スガスに無駄を生じない。
In such an embodiment, the process gas supplied from the gas supply pipe 3g is guided directly into the plasma flow through the gas transport pipe 6 arranged along the plasma projection area, and there is no chance of contact with the plasma flow. There is no waste in the process gas.

第2図は本発明の他の実施例を示す模式的断面図であり
、第1図に示したガス輸送管を反応室の周壁それ自体に
て構成するようにしである。
FIG. 2 is a schematic sectional view showing another embodiment of the present invention, in which the gas transport pipe shown in FIG. 1 is constructed by the peripheral wall of the reaction chamber itself.

即ち、反応室13の周壁のうちプラズマ引出窓1dと載
置台5との間に対応する部分の周壁は上端部でその内径
がプラズマ引出窓1dの直径と略等しくなるよう設定し
、ここから下端側に向かうに従って、内壁が略プラズマ
流に沿うよう拡径し、下端部内径は載置台5の直径に略
等しくなるよう設定して輸送管部13bを形成すると共
に、この輸送管部13bに繋げてその下端部に載置台5
を配する円筒部13cを形成して構成されている。この
円筒部13cの下端中央部には排気口13aが開口され
、また輸送管部13bの中間部周壁にはプロセスガス供
給用のガス管13gが連結されている。
That is, the portion of the peripheral wall of the reaction chamber 13 that corresponds between the plasma extraction window 1d and the mounting table 5 is set so that its inner diameter at the upper end is approximately equal to the diameter of the plasma extraction window 1d, and from there the lower end The diameter of the inner wall expands toward the side so as to substantially follow the plasma flow, and the inner diameter of the lower end is set to be approximately equal to the diameter of the mounting table 5 to form the transport pipe section 13b, and is connected to the transport pipe section 13b. A mounting table 5 is placed on the lower end of the lever.
It is configured by forming a cylindrical portion 13c in which the An exhaust port 13a is opened at the center of the lower end of the cylindrical portion 13c, and a gas pipe 13g for supplying process gas is connected to the peripheral wall of the intermediate portion of the transport pipe portion 13b.

他の構成は前記第1図に示した実施例と略同様であり、
対応する部分には同じ符号を付して説明を省略する。
The other configurations are substantially the same as the embodiment shown in FIG. 1,
Corresponding parts are denoted by the same reference numerals and their explanation will be omitted.

次に本発明装置と従来装置とについての比較試験結果を
具体的な数値を挙げて説明する。
Next, the results of a comparative test between the device of the present invention and the conventional device will be explained using specific numerical values.

ガス供給管1g及び31gより0□を35 s c、c
 mの割合でプラズマ生成室l、31内に、またガス供
給管3g。
0□ from gas supply pipes 1g and 31g 35 s c, c
into the plasma generation chamber l, 31 at a ratio of m, and a gas supply pipe 3g.

13g、 33gより5iHaを28secmの割合で
反応室3゜13、33内に導入してガス圧力を1 、4
3 X 10− ”Torrに保持し、マイクロ波入力
を300 Wにして載置台5゜35上のSiウェーハ上
へSiO□を堆積したところ、従来装置(第3図)では
ガス利用効率8.5%、堆積速度1960人/分であっ
たが、本発明装置(第1図、第3図に示す各実施例)で
はガス利用効率11.5%1堆積速度2650人/分に
向上した。
5iHa was introduced from 13g and 33g into the reaction chamber 3°13, 33 at a rate of 28 sec, and the gas pressure was increased to 1,4
When SiO□ was deposited on a Si wafer on a 5°35 mounting table while maintaining the pressure at 3×10-” Torr and the microwave input was 300 W, the gas utilization efficiency was 8.5 with the conventional device (Fig. 3). %, and the deposition rate was 1,960 people/min, but in the apparatus of the present invention (each example shown in FIGS. 1 and 3), the gas utilization efficiency was improved to 11.5%, and the deposition rate was 2,650 people/min.

このような本発明の実施例にあっては、反応室の容積が
格段にコンパクト化され、装置全体の小型化が図れる外
、有効利用効率も大きくなって原料ガスの一層の節減が
図れる効果がある。
In such embodiments of the present invention, the volume of the reaction chamber is significantly reduced, making it possible to reduce the size of the entire apparatus, as well as increasing the effective utilization efficiency and further reducing raw material gas. be.

なお、上述の各実施例は本発明装置をCVO装置に適用
した構成を示したが、何らこれに限るものではなく、例
えばエツチング装置、スパッタリング装置等にも適用し
得ることは勿論である。
Although each of the embodiments described above shows a configuration in which the apparatus of the present invention is applied to a CVO apparatus, the present invention is not limited to this in any way, and it goes without saying that the apparatus can also be applied to, for example, an etching apparatus, a sputtering apparatus, and the like.

〔効果〕〔effect〕

以上の如く本発明にあってはプラズマ引出窓と試料の載
置台との間にプラズマ流に沿うようプラズマ引出窓から
裁置台に向かうに従い断面積が拡大されたガス輸送管又
は輸送管部を具備するから、供給される原料ガスの無駄
な排出が少なく有効利用効率が高くそれだけ成膜、エツ
チング等のプロセス加工能率も向上する。またこのよう
なガス輸送管を反応室それ自体の周壁にて兼用する構成
とすれば試料室が極めてコンパクトとなり、原料ガスの
一層の節減が図れるなど本発明は優れた効果を奏するも
のである。
As described above, the present invention includes a gas transport pipe or a transport pipe portion whose cross-sectional area increases from the plasma draw-out window toward the processing table along the plasma flow between the plasma draw-out window and the sample mounting table. Therefore, wasteful discharge of the supplied raw material gas is reduced, the effective utilization efficiency is high, and process processing efficiency such as film formation and etching is improved accordingly. Further, if such a gas transport pipe is configured to be used also on the peripheral wall of the reaction chamber itself, the sample chamber becomes extremely compact, and the present invention has excellent effects such as further saving of raw material gas.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す模式的縦断面図、   
−第2図は本発明の他の実施例を示す模式的縦断面図、
第3図は従来装置の模式的縦断面図である。 1・・・プラズマ生成室 1d・・・プラズマ引出窓1
g・・・ガス供給管 2・・・導波管 3,13・・・
反応室3g、 13g・・・ガス供給管 4・・・励磁
コイル 6・・・輸送管 13b・・・ガス輸送管部 
S・・・試料時 許 出願人  住友金属工業株式会社
代理人 弁理士  河  野  登  夫第 I E 第 z 図
FIG. 1 is a schematic vertical cross-sectional view showing an embodiment of the present invention;
- FIG. 2 is a schematic vertical sectional view showing another embodiment of the present invention;
FIG. 3 is a schematic vertical sectional view of a conventional device. 1... Plasma generation chamber 1d... Plasma drawer window 1
g...Gas supply pipe 2...Waveguide 3, 13...
Reaction chambers 3g, 13g...Gas supply pipe 4...Excitation coil 6...Transportation pipe 13b...Gas transport pipe section
S...Sample time Applicant Sumitomo Metal Industries Co., Ltd. Agent Patent attorney Noboru Kono No. I E No. z Figure

Claims (1)

【特許請求の範囲】 1、電子サイクロトロン共鳴を利用してプラズマを発生
させるプラズマ生成室のプラズマ引出窓に面して載置台
を備える試料室を設けたプラズマ装置において、前記プ
ラズま引出窓と試料室内の載置台とにわたってプラズマ
流に沿うよう設置され、プラズマ引出窓から載置台に向
かうに従い断面積が拡大されたガス輸送管を具備するこ
とを特徴とするプラズマ装置。 2、前記ガス輸送管はその周壁にガス導入口が開口され
ている特許請求の範囲第1項記載のプラズマ装置。 3、電子サイクロトロン共鳴を利用してプラズマを発生
させるプラズマ生成室のプラズマ引出窓に面して載置台
を備える試料室を設けたプラズマ装置において、前記試
料室の周壁は前記プラズマ引出窓と載置台との間でプラ
ズマ流に沿うようプラズマ引出窓から載置台に向けて断
面積が拡大されるよう形成された輸送管部を具備するこ
とを特徴とするプラズマ装置。 4、前記試料室の周壁にはガス導入口が開口されている
特許請求の範囲第3項記載のプラズマ装置。
[Claims] 1. In a plasma apparatus provided with a sample chamber equipped with a mounting table facing a plasma extraction window of a plasma generation chamber that generates plasma using electron cyclotron resonance, the plasma extraction window and the sample A plasma device characterized by comprising a gas transport pipe that is installed along a plasma flow across a mounting table in a room, and whose cross-sectional area increases as it goes from a plasma extraction window toward the mounting table. 2. The plasma device according to claim 1, wherein the gas transport pipe has a gas inlet opening in its peripheral wall. 3. In a plasma apparatus having a sample chamber equipped with a mounting table facing the plasma extraction window of a plasma generation chamber that generates plasma using electron cyclotron resonance, the peripheral wall of the sample chamber is connected to the plasma extraction window and the mounting table. What is claimed is: 1. A plasma device comprising: a transport pipe portion formed such that its cross-sectional area increases along the plasma flow from the plasma extraction window toward the mounting table. 4. The plasma apparatus according to claim 3, wherein a gas inlet is opened in the peripheral wall of the sample chamber.
JP61259780A 1986-10-30 1986-10-30 Plasma equipment Expired - Fee Related JPH0723547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61259780A JPH0723547B2 (en) 1986-10-30 1986-10-30 Plasma equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61259780A JPH0723547B2 (en) 1986-10-30 1986-10-30 Plasma equipment

Publications (2)

Publication Number Publication Date
JPS63114985A true JPS63114985A (en) 1988-05-19
JPH0723547B2 JPH0723547B2 (en) 1995-03-15

Family

ID=17338871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61259780A Expired - Fee Related JPH0723547B2 (en) 1986-10-30 1986-10-30 Plasma equipment

Country Status (1)

Country Link
JP (1) JPH0723547B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0407169A2 (en) * 1989-07-04 1991-01-09 Fujitsu Limited Electron cyclotron resonance (ECR) plasma etching process and ECR plasma etching apparatus
JPH0519353U (en) * 1991-08-22 1993-03-09 住友金属工業株式会社 Plasma equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56112477A (en) * 1980-02-06 1981-09-04 Ulvac Corp Microwave plasma treating apparatus
JPS59143074A (en) * 1983-02-04 1984-08-16 Fujitsu Ltd Microwave treating device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56112477A (en) * 1980-02-06 1981-09-04 Ulvac Corp Microwave plasma treating apparatus
JPS59143074A (en) * 1983-02-04 1984-08-16 Fujitsu Ltd Microwave treating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0407169A2 (en) * 1989-07-04 1991-01-09 Fujitsu Limited Electron cyclotron resonance (ECR) plasma etching process and ECR plasma etching apparatus
JPH0519353U (en) * 1991-08-22 1993-03-09 住友金属工業株式会社 Plasma equipment

Also Published As

Publication number Publication date
JPH0723547B2 (en) 1995-03-15

Similar Documents

Publication Publication Date Title
US8262848B2 (en) Plasma processing apparatus and method
JP2003033647A (en) Plasma treatment device
JPS63114985A (en) Plasma device
JPH05129095A (en) Plasma treatment device
JPH02228476A (en) Plasma processing device
JPS6235265B2 (en)
JPH11195500A (en) Surface treatment device
JPH05326453A (en) Microwave plasma treatment equipment
JPH07335633A (en) Plasma treating device
JPH04318175A (en) Bias ecr plasma cvd device
JPH07283203A (en) Surface treatment device
JP2969651B2 (en) ECR plasma CVD equipment
JPS62276822A (en) Plasma device
JPH05347282A (en) Ashing device and method
JPH05267244A (en) Method and apparatus for plasma treatment
JPS62221116A (en) Plasma treating apparatus
JPH0570956A (en) Microwave absorption plasma treating device having magnetic field
JPS63133617A (en) Plasma processing device
JPH06151092A (en) Microwave plasma treatment device
JPS62151574A (en) Plasma apparatus
JPH0897195A (en) Thin film forming apparatus and cleaning method therefor
JPH01187919A (en) Plasma device
JPH06291087A (en) Manufacture and manufacturing equipment of semiconductor integrated circuit device
JPH0286129A (en) Plasma apparatus
JPH0677147A (en) Plasma reaction device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees