JPS63114948A - Manufacture of aluminum alloy clad material having sacrificial layer - Google Patents

Manufacture of aluminum alloy clad material having sacrificial layer

Info

Publication number
JPS63114948A
JPS63114948A JP25967086A JP25967086A JPS63114948A JP S63114948 A JPS63114948 A JP S63114948A JP 25967086 A JP25967086 A JP 25967086A JP 25967086 A JP25967086 A JP 25967086A JP S63114948 A JPS63114948 A JP S63114948A
Authority
JP
Japan
Prior art keywords
alloy
rolling
hot rolling
sacrificial layer
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25967086A
Other languages
Japanese (ja)
Inventor
Kunihiko Kishino
邦彦 岸野
Katsutoshi Sasaki
佐々木 勝敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Aluminum Co Ltd
Original Assignee
Furukawa Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Aluminum Co Ltd filed Critical Furukawa Aluminum Co Ltd
Priority to JP25967086A priority Critical patent/JPS63114948A/en
Publication of JPS63114948A publication Critical patent/JPS63114948A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To obtain the titled Al alloy clad material showing satisfactory pitting corrosion resistance in any environment by soaking and hot rolling an Al alloy ingot contg. prescribed components, superposing the resulting cladding material on an Al (alloy) core material and subjecting the materials to hot rolling, cold rolling, process annealing and cold rolling. CONSTITUTION:An Al alloy ingot contg., by weight, 0.1-2.0% Zn, 0.01-0.05% Ti, 0.0001-0.001% B and 0.02-1.5% in total of 0.01-1.0% each of Fe and Si is soaked at 500-635 deg.C especially for 2-8hr and hot rolled or further cold rolled. The resulting cladding material is superposed on at least one side of an Al (alloy) core material. The materials are heated, integrated by hot rolling, cold rolled at 80-98% draft, process-annealed at 250-450 deg.C and cold rolled again to obtain a desired Al alloy clad material having a sacrificial layer.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は犠牲層を有するアルミニウム合金合せ材におい
て、耐孔食性を向上させた材料を犠牲層に使用するアル
ミニウム合金合せ材の製造方法に関するものでおる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing an aluminum alloy composite material having a sacrificial layer, in which a material with improved pitting corrosion resistance is used for the sacrificial layer. I'll go.

〔従来の技術〕[Conventional technology]

従来Al合金製熱交換器等各種Al合金のろう付【づに
より組み立てられる部材のうち、冷却水及び大気と直接
接触し、耐食性を要求される部分においては、材料表面
を卑な電位とする犠牲陽極層を設けることにより、該部
分の腐食寿命を延長することが行なわれている。この陽
極層としては通常Znを約1%含むAf!−Zn系合金
が使用され、その陽極層の犠牲効果は陽極層と芯材との
腐食電位差に起因し、そのため陽極層の7−n含有量の
絶対値が犠牲効果を左右する最も大きな要因とされてき
た。そのため、犠牲陽極層を有する合せ材の製造におい
て、陽極層となるべき皮材の製造工程ではZn含有間に
最も注意が払われており、その微視的な金属組織は特に
注目されていなかった。ざらに陽極層の製造工程はJI
S7072(S i 十F e0.7 wt%、Cu0
.1wt%、MnO,1wt%、M2O,1wt%、Z
 nO,8〜1.3 wt%、残部Al)相当組成合金
の鋳塊を400〜500℃にて均熱処理しその後熱間圧
延により板材とし、これを芯材と合せて加熱後熱間圧延
により一体化した合せ材を95%程度の冷間圧延を施し
、しかる後中間焼鈍を施してから冷間圧延により所定の
板厚に仕上げていた。
Conventionally, among the parts assembled by brazing various Al alloys, such as Al alloy heat exchangers, in parts that come into direct contact with cooling water and the atmosphere and require corrosion resistance, it is necessary to sacrificially lower the material surface to a base potential. By providing an anode layer, the corrosion life of the part is extended. This anode layer usually contains about 1% Zn! -Zn-based alloys are used, and the sacrificial effect of the anode layer is due to the corrosion potential difference between the anode layer and the core material, and therefore the absolute value of the 7-n content in the anode layer is the most important factor that influences the sacrificial effect. It has been. Therefore, in the manufacturing process of the composite material with the sacrificial anode layer, most attention was paid to the Zn content in the manufacturing process of the skin material that was to become the anode layer, and no particular attention was paid to the microscopic metal structure. . The manufacturing process for the rough anode layer is JI.
S7072 (S i 10F e0.7 wt%, Cu0
.. 1wt%, MnO, 1wt%, M2O, 1wt%, Z
An ingot of an alloy with a composition equivalent to nO, 8 to 1.3 wt%, balance Al) is soaked at 400 to 500°C, then hot rolled to form a plate, which is heated together with a core material and then hot rolled. The integrated laminated material was subjected to about 95% cold rolling, then subjected to intermediate annealing, and then finished to a predetermined thickness by cold rolling.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記Al合金金せ材は通常の大気雰囲気及び水中におい
ては犠牲陽極層が芯材より優先的に腐食されるため部材
仝休は長期に亘って腐食による貫通孔を生ずることがな
くその機能を保つことができる。しかしながら特に塩素
イオンを比較的多く含む腐食環境にざらされた場合には
従来工程により製造された合せ材の中には陽4〜層の腐
食がその表面の一部に集中するため孔食に近い形態を生
ずるものが存在し問題となっていた。
The sacrificial anode layer of the above-mentioned Al alloy gold plate corrodes preferentially than the core material in normal atmospheric conditions and water, so the component maintains its function over a long period of time without forming through-holes due to corrosion. be able to. However, especially when exposed to a corrosive environment containing a relatively large amount of chlorine ions, some of the laminates manufactured using conventional processes will experience pitting corrosion because the corrosion of the positive 4 layer concentrates on a part of the surface. The existence of something that gives rise to form has become a problem.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者は孔食を生じたAl合金合せ材を詳細に検討し
た結果、孔食を防止するには以下のような点が有効でお
ることを見い出した。
As a result of a detailed study of Al alloy composite materials that have suffered pitting corrosion, the present inventors have found that the following points are effective in preventing pitting corrosion.

(1)犠牲陽極層即ち皮材材料中に少量のli及びBを
添加することにより結晶粒径等の金属組織を均質かつ等
方向にする。
(1) By adding a small amount of Li and B to the sacrificial anode layer, ie, the skin material, the metal structure such as crystal grain size is made homogeneous and uniform.

(2)皮材材料鋳塊の均熱温度を高温とすることにより
、材料中の析出物を成長させる。
(2) Precipitates in the material are grown by increasing the soaking temperature of the skin material ingot to a high temperature.

(3)上記皮材を用いた合せ材の製造過程においては最
終板厚に仕上げる前工程の中間焼鈍温度とその前工程の
冷間圧延率の組合せにより再結晶粒の粒度を均質にし、
かつその結晶方位をランダムなものとする。
(3) In the process of manufacturing laminated materials using the above-mentioned skin material, the grain size of the recrystallized grains is made uniform by a combination of the intermediate annealing temperature in the process before finishing the plate to the final thickness and the cold rolling rate in the process before that.
And the crystal orientation is random.

本発明は、以上の知見に基づき、更に検討の結果、いか
なる環境下においても孔食が発生しにくく、かつ孔食の
進行速度の遅い犠牲陽極層を有するAl合金合せ材の製
造方法を開発したもので、Z n0.1〜2.0wt%
(以下wt%を%と略記)、l’−i0.01〜0.0
5%、B O,0001〜0、01%を含み、更にFe
0101〜1.0%、Si0、01〜1.0%の範囲内
においてSiとFeを合計0.02〜1.5%含み、残
部AlからなるAl合金鋳塊を500〜635°Cで1
時間以上の均熱処理を施した後、熱間圧延又は熱間圧延
と冷間圧延を施して皮材とし、これをAl又はAl合金
からなる芯材の少なくとも片面に重ね合せ加熱後熱間圧
延により一体化し、その後80〜98%の冷間圧延を施
し、しかる後250〜450℃で中間焼鈍を施してから
冷間圧延を施すことを特徴としている。
Based on the above knowledge and as a result of further studies, the present invention has developed a method for producing an Al alloy composite material that is unlikely to cause pitting corrosion in any environment and has a sacrificial anode layer that slows the progress of pitting corrosion. Zn0.1-2.0wt%
(hereinafter wt% is abbreviated as %), l'-i0.01 to 0.0
5%, BO,0001~0,01%, and further Fe
An Al alloy ingot containing a total of 0.02 to 1.5% of Si and Fe in the range of 0.0101 to 1.0%, Si0.
After soaking for more than an hour, hot rolling or hot rolling and cold rolling is performed to obtain a skin material, which is superimposed on at least one side of a core material made of Al or Al alloy, heated and then hot rolled. It is characterized in that it is integrated, then subjected to 80 to 98% cold rolling, then subjected to intermediate annealing at 250 to 450°C, and then cold rolled.

〔作 用〕[For production]

本発明品において犠牲陽極層即ち皮材の組成を上記の如
く限定したのは、次の理由による。
The reason why the composition of the sacrificial anode layer, ie, the skin material, is limited as described above in the product of the present invention is as follows.

Znの添加は材料の電位を卑にし、皮材の犠牲陽極効果
を高めるためで、Zn含有量を0.1〜2.0%と限定
したのは、Znが0.1%未満では上記効果が少なく、
2.0%を超えると、上記効果が飽和するためである。
The reason for limiting the Zn content to 0.1 to 2.0% is because the addition of Zn makes the potential of the material base and enhances the sacrificial anode effect of the skin material.If Zn is less than 0.1%, the above effect will be reduced. There are few
This is because if it exceeds 2.0%, the above effect will be saturated.

Tiの添加は鋳造時に凝固核として作用し、鋳塊組織を
均一かつ微細にし、その後の圧延、熱処理後の組織も均
一とし耐食性を向上させるためで、Ti含有量を0. 
ooi〜0.05%と限定したのはl−iが0.001
%未満では上記効果が少なく、組織が不均一になり、こ
の不均一組織は鋳塊を均熱処理し、ざらに圧延、熱処理
した後の再結晶組織にも悪影響を与え材料の耐食性を低
下させる。また下iが0.05%を超えると上記効果が
飽和し、ざらにTiが凝集して粗大な金属間化合物を生
成する可能性が増大する。通常の皮材は厚さ20〜50
μmであり、この中に粗大な金属間化合物が存在するこ
とは好ましくない。Bの添加は、Tiと共存することに
より鋳塊組織を均一かつ微細にし、ざらに圧延後の金属
組織を均質にするためで、B含有量を0. oooi〜
0.01%と限定したのは、0.0001%未満では上
記効果が少なく 0. oi%を超えるとTiB2が粗
大化するためで必る。
The addition of Ti acts as solidification nuclei during casting, making the ingot structure uniform and fine, and making the structure uniform after subsequent rolling and heat treatment to improve corrosion resistance.
The limit to ooi~0.05% is when l-i is 0.001
If it is less than %, the above effect will be small and the structure will become non-uniform, and this non-uniform structure will also have an adverse effect on the recrystallized structure after soaking the ingot, rough rolling and heat treatment, reducing the corrosion resistance of the material. Moreover, when the lower i exceeds 0.05%, the above effect is saturated, and the possibility that Ti is roughly aggregated to form a coarse intermetallic compound increases. Normal leather material has a thickness of 20 to 50 mm.
μm, and it is not preferable for coarse intermetallic compounds to exist therein. The purpose of adding B is to make the ingot structure uniform and fine by coexisting with Ti, and to make the metal structure after rough rolling homogeneous. ooooi~
The reason why it is limited to 0.01% is because if it is less than 0.0001%, the above effect will be small. This is necessary because if it exceeds oi%, TiB2 becomes coarse.

S;およびFeの添加は鋳塊の均熱処理時、熱間圧延時
あるいは中間焼鈍時にそれらを析出させることにより耐
孔食性を向上させるためである。即ちSiおよびFeを
合金の製造工程中どの工程でどのようなサイズに析出さ
せるかにより、再結晶粒のサイズおよび方位が決定され
、これらをコントロールすることにより耐食性の優れた
材料が得られる。Fe0601〜1.0%、S i C
)、01〜1.0%の範囲内でFeとSiの含有伍の合
計を0.02〜1,5%と限定したのは、FeとS)の
それぞれが0,01%未満ではそれらの析出物による再
結晶粒のコントロールが困難となり、FeとSiのうち
どちらか一方が1.0%を超えるか、両者の合計が1.
5%を超えると不溶性の粗大な金属間化合物を生成する
可能性が増大し、この粗大な金属間化合物は再結晶粒の
コントロールに寄与せず、しかも耐孔食性を低下させ・
るためでおる。
The purpose of adding S; and Fe is to improve the pitting corrosion resistance by precipitating them during soaking, hot rolling, or intermediate annealing of the ingot. That is, the size and orientation of recrystallized grains are determined by the step and size in which Si and Fe are precipitated during the alloy manufacturing process, and by controlling these, a material with excellent corrosion resistance can be obtained. Fe0601~1.0%, SiC
), the total content of Fe and Si is limited to 0.02 to 1.5% within the range of 0.01 to 1.0%, because if each of Fe and S) is less than 0.01%, their It becomes difficult to control recrystallized grains due to precipitates, and either Fe or Si exceeds 1.0%, or the total of both exceeds 1.0%.
If it exceeds 5%, the possibility of forming insoluble coarse intermetallic compounds increases, and these coarse intermetallic compounds do not contribute to the control of recrystallized grains, and also reduce pitting corrosion resistance.
I'm here to help.

次に本発明材料の製造工程について説明する。Next, the manufacturing process of the material of the present invention will be explained.

上記Al合金鋳塊の均熱処理時には偏析相が拡散してマ
トリックス中に消滅すると同時に、鋳造時にマトリック
ス中に過飽和に固溶しているFe及びSlが析出してく
る。この時の温度及び時間により、その析出相のサイズ
が決定される。そこで本発明者は耐食性に最も有効な析
出相のサイズは0.1〜数μmであることを見い出した
。そして均熱処理温度を500〜635°Cと限定した
のは、500°C未満の温度では析出相が十分なサイズ
に成長することが困難であり、640℃を超えると溶融
の危険性が増大するためである。ざらに均熱処理時間を
1時間以上としたのは、1時間未満の加熱では析出が十
分に起らないためでおる。なお実操業上からは該時間は
2〜8時間が経済的であり、該温度は580〜620°
Cが望ましい。
During the soaking treatment of the Al alloy ingot, the segregated phase diffuses and disappears into the matrix, and at the same time, Fe and Sl, which are supersaturated in solid solution in the matrix during casting, precipitate. The size of the precipitated phase is determined by the temperature and time at this time. Therefore, the present inventor found that the size of the precipitated phase most effective for corrosion resistance is 0.1 to several μm. The reason why the soaking temperature was limited to 500-635°C is that at temperatures below 500°C, it is difficult for the precipitated phase to grow to a sufficient size, and when it exceeds 640°C, the risk of melting increases. It's for a reason. The reason why the soaking time is set to 1 hour or more is because precipitation does not occur sufficiently when heating for less than 1 hour. In addition, from the point of view of actual operation, the time is economical to be 2 to 8 hours, and the temperature is 580 to 620°.
C is preferable.

次に上記鋳塊を熱間圧延又は熱間圧延と冷間圧延を施し
て皮材とし、これを芯材の片側に重ね合せまた必要に応
じてその反対側に低融点のA、l2−sr系板材をろう
材として重ね合せ加熱後熱間圧延により一体化して合せ
材とする。この合せ材を250〜450℃の温度で中間
焼鈍を施す、おるいは施さずに圧延率80〜98%の冷
間圧延を施した後250〜450℃の温度で中間焼鈍を
施し、その後冷間圧延により所定の板厚に仕上げる。
Next, the above-mentioned ingot is hot-rolled or hot-rolled and cold-rolled to make a skin material, and this is superimposed on one side of the core material, and if necessary, on the other side, low melting point A, l2-sr. The sheet materials are stacked together as a brazing material, heated, and then integrated by hot rolling to form a laminated material. This composite material is subjected to intermediate annealing at a temperature of 250 to 450°C, or cold rolled at a rolling rate of 80 to 98% without sieving, then intermediate annealed at a temperature of 250 to 450°C, and then cold rolled. The plate is finished to the specified thickness by inter-rolling.

本発明において、合せ材の製造の際中間焼鈍の温度等を
上記の如く規定したのは次の理由による。
In the present invention, the temperature, etc. of intermediate annealing during the production of the laminated material are specified as described above for the following reason.

先づ中間焼鈍は圧延により材料中に導入された歪により
側斜を再結晶させるためでおり、焼鈍温度を250〜4
50℃と限定したのは、温度が250°C未満では十分
に再結晶は起らず450℃を超えると組織的に不均一に
なる危険性が増大するためである。なお熱間圧延による
一体化後、冷間圧延の前に必要に応じて中間焼鈍を施す
ことが出来るが、該焼鈍の有無は冷間圧延率との相互作
用により最終製品の耐孔食性に若干の差を生ずる場合が
あるが実用上大きな差とはならない。
First, the intermediate annealing is to recrystallize the side slopes due to the strain introduced into the material by rolling, and the annealing temperature is set at 250-4.
The reason why the temperature is limited to 50°C is because recrystallization does not occur sufficiently when the temperature is less than 250°C, and when it exceeds 450°C, there is an increased risk that the structure will become non-uniform. After integration by hot rolling, intermediate annealing can be performed if necessary before cold rolling, but the presence or absence of this annealing may slightly affect the pitting corrosion resistance of the final product depending on the interaction with the cold rolling rate. However, it is not a big difference in practice.

ざらに冷間圧延はその債の中間焼鈍時の再結晶が均一な
粒度をもち、かつランダムな結晶方位を有する様にする
ためであり、圧延率を80〜98%と限定したのは、こ
の範囲外では再結晶方位がそろい易く、特にミラー指数
(100)面が板面に平行に向く様な結晶粒が多重に生
じ、最終製品において立方体状の孔食が生じ易く、耐食
性が劣るためでおる。
The purpose of rough cold rolling is to ensure that the recrystallization during intermediate annealing of the bond has a uniform grain size and random crystal orientation, and the reason why the rolling rate was limited to 80 to 98% was to Outside this range, the recrystallization orientation tends to be aligned, and in particular, multiple crystal grains with the Miller index (100) plane oriented parallel to the plate surface are generated, which tends to cause cubic pitting corrosion in the final product, resulting in poor corrosion resistance. is.

又所定の板厚まで仕上げられた合せ材はその使用部分に
応じて成形加工あるいは電縫等により管に加工し、さら
に成形加工等により最終製品形状(熱交換器等の部品形
状)に加工され、その後ろう付加熱(約800’C)さ
れて最終製品となる。ここでろう付加熱前に組織中に存
在する結晶方位等の不均一さはろう付加熱により助長さ
れることが確L2されている。
In addition, the laminated material finished to a predetermined thickness is processed into a tube by forming or electric resistance stitching depending on the part to be used, and then processed into the final product shape (part shape of a heat exchanger, etc.) by forming, etc. , and then subjected to brazing heat (approximately 800'C) to form the final product. Here, it is confirmed L2 that the non-uniformity of crystal orientation, etc. that exists in the structure before the brazing heat is promoted by the brazing heat.

〔実施例〕〔Example〕

次に本発明を実施1シリにより詳オ■1に説明する。 Next, the present invention will be explained in detail based on the first example.

第1表に示v8種類の組成の合金を半連続鋳造法により
製造し、70X200 x400 mmの大きざの鋳塊
として芯材は5本、他は各1本を/、Nた。これらを先
づ片面5mずつ両面を面間し、a〜f合金はそれぞれ第
2表に示す条件で均熱処理し、芯材は580℃で4時間
、ろう材は500℃で2時間の均熱処理を施した。
Alloys having eight different compositions shown in Table 1 were produced by a semi-continuous casting method, and five core materials and one each of the other materials were used as ingots measuring 70 x 200 x 400 mm. These were first soaked on both sides with a distance of 5 m on each side, and alloys a to f were soaked under the conditions shown in Table 2. The core material was soaked at 580°C for 4 hours, and the brazing material was soaked at 500°C for 2 hours. was applied.

その後a〜f及びろう材は500°Cで熱間圧延を施し
厚さ7.5mmの板材に仕上げ、これらを60X200
 x200 rrmの芯材鋳塊の片側に皮材、反対側に
ろう材をクラツド率10%で重ね合せ、これを500 
’Cに加熱後熱間圧延を施して板厚6#の合せ材とした
Thereafter, a to f and the brazing metal were hot rolled at 500°C to form a plate with a thickness of 7.5 mm, and these were made into a 60x200
A core material ingot of x200 rrm is overlaid with skin material on one side and brazing material on the other side with a crud ratio of 10%, and this is
'C was heated and then hot-rolled to form a laminate with a plate thickness of 6#.

これら合せ材を第2表に示す工程にてl)、 21mと
0.42mの板材とし、供試材とした。この供試側をろ
う付加熱条件としてN2雰囲気中にて600°Cで10
分間の加熱をし、至温まで冷却した後腐食試験を行なっ
た。
These laminated materials were made into plates of 21 m and 0.42 m in the process shown in Table 2, and used as test materials. This test side was brazed at 600°C in a N2 atmosphere for 10
After heating for a few minutes and cooling to the lowest temperature, a corrosion test was conducted.

腐食試験条件は水通水に銅イオンを10ppm添7]0
した液を80℃に保持して、上記供試材を8時間浸漬し
、その後大気中で至温にて16時間放置することを1ザ
イクルとして、それぞれの供試材について2000サイ
クルの試験を行なった。
Corrosion test conditions were 10 ppm of copper ions added to flowing water7]0
Each test material was tested for 2,000 cycles, with one cycle consisting of holding the solution at 80°C, immersing the above test material for 8 hours, and then leaving it in the air at the lowest temperature for 16 hours. Ta.

試験終了俊、供試材の材料表面に生じたピットの深さ等
から供試材それぞれを次の3段階にランク分りし評価し
た。
Upon completion of the test, each sample material was ranked into the following three levels and evaluated based on the depth of the pits formed on the surface of the sample material.

ランクA:ごく浅いピットが皮材にのみ生じている。Rank A: Very shallow pits occur only in the skin material.

ランクB:浅いピットが皮材に多数生じているが、芯材
への孔食はない。
Rank B: Many shallow pits occur in the skin material, but there is no pitting corrosion in the core material.

ランクC:芯材内部までおよぶ深いピットが生じており
、腐食による皮材の消 費も大ぎい。
Rank C: There are deep pits that reach inside the core material, and the consumption of the skin material is large due to corrosion.

腐食試験の評価結果を第2表に併記する。The evaluation results of the corrosion test are also listed in Table 2.

第1表および第2表から明らかなように本発明法による
合せ材(N0.1〜N0.5)は耐食性に優れているこ
とが判る。一方、合金組成が本発明の規定を外れる比較
用皮材を使用した合せ材(N0. 6〜N0.8>の耐
食性は本発明法による合゛V材より劣り、ざらに本発明
材用皮材を使用した合せ材で必っでもその加工条件が本
発明の規定を外れる合せ材(N0. 9〜N(110)
の耐食性は著しく劣っていることが判る。
As is clear from Tables 1 and 2, it can be seen that the laminated materials (N0.1 to No.5) produced by the method of the present invention have excellent corrosion resistance. On the other hand, the corrosion resistance of composite materials (N0.6 to N0.8) using comparative skin materials whose alloy compositions deviate from the specifications of the present invention is inferior to that of composite V materials made by the method of the present invention, and is generally not as good as that of the composite skin materials of the present invention. (N0.9 to N(110)
It can be seen that the corrosion resistance is significantly inferior.

なお、本実施例においてろう付加熱はN2雰囲気中で行
なったが、本合せ材は特にろう付条件を規制するもので
はなく例えば真空中あるいはフラックスの有無等いかな
るろうイ」によっても所定の性能が得られるものでおる
。また芯材については皮材より電位が高いものであれば
、その最終目的に応じてどのような合金でも逗択可能で
ある。ざらに犠牲陽極層皮材の反対側のろう材について
も必要に応じてクラッドするおるいはクラッドせずに使
用できる。
In this example, the brazing heat was carried out in an N2 atmosphere, but the brazing conditions of this composite material are not particularly restricted, and the specified performance can be achieved even under any brazing conditions, such as in a vacuum or with or without flux. I'll take what I can get. Further, as for the core material, any alloy can be selected depending on the final purpose as long as it has a higher potential than the skin material. The brazing filler metal on the opposite side of the sacrificial anode layer skin material can also be used with or without cladding, if necessary.

〔発明の効果〕〔Effect of the invention〕

本発明による1に牲陽極層を有するアルミニウム合金合
せ材はいかなる環境下にあっても良好な耐孔食性を有し
ており、したがって本合せ材を使用した製品は長期に回
る腐食寿命をもつもので必る。
The aluminum alloy composite material having a sacrificial anode layer according to the present invention has good pitting corrosion resistance under any environment, and therefore products using this composite material have a long corrosion life. It is necessary.

Claims (2)

【特許請求の範囲】[Claims] (1) Zn0.1〜2.0wt%、Ti0.001〜
0.05wt%、B0.0001〜0.01wt%を含
み、更にFe0.01〜1.0wt%、Si0.01〜
1.0wt%の範囲内においてSiとFeを合計0.0
2〜1.5wt%含み、残部AlからなるAl合金鋳塊
を500〜635℃で1時間以上の均熱処理を施した後
、熱間圧延又は熱間圧延と冷間圧延を施して皮材とし、
これをAl又はAl合金からなる芯材の少なくとも片面
に重ね合せ、加熱後熱間圧延により一体化し、その後8
0〜98%の冷間圧延を施し、しかる後250〜450
℃で中間焼鈍を施してから冷間圧延を施すことを特徴と
する犠牲層を有するアルミニウム合金合せ材の製造方法
(1) Zn0.1~2.0wt%, Ti0.001~
0.05wt%, B0.0001~0.01wt%, further Fe0.01~1.0wt%, Si0.01~
A total of 0.0 of Si and Fe within the range of 1.0 wt%
After subjecting an Al alloy ingot containing 2 to 1.5 wt% and the remainder Al to soaking treatment at 500 to 635°C for 1 hour or more, hot rolling or hot rolling and cold rolling is performed to form a skin material. ,
This was superimposed on at least one side of a core material made of Al or Al alloy, heated and then integrated by hot rolling, and then 8
0~98% cold rolling, then 250~450%
A method for producing an aluminum alloy composite material having a sacrificial layer, the method comprising performing intermediate annealing at °C and then cold rolling.
(2) 熱間圧延により一体化した後、250〜450
℃で中間焼鈍をしてから、80〜98%の冷間圧延を行
なう特許請求範囲第1項記載の犠牲層を有するアルミニ
ウム合金合せ材の製造方法。
(2) After being integrated by hot rolling, 250 to 450
A method for producing an aluminum alloy composite material having a sacrificial layer according to claim 1, which comprises performing intermediate annealing at .degree. C. and then cold rolling by 80 to 98%.
JP25967086A 1986-10-31 1986-10-31 Manufacture of aluminum alloy clad material having sacrificial layer Pending JPS63114948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25967086A JPS63114948A (en) 1986-10-31 1986-10-31 Manufacture of aluminum alloy clad material having sacrificial layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25967086A JPS63114948A (en) 1986-10-31 1986-10-31 Manufacture of aluminum alloy clad material having sacrificial layer

Publications (1)

Publication Number Publication Date
JPS63114948A true JPS63114948A (en) 1988-05-19

Family

ID=17337268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25967086A Pending JPS63114948A (en) 1986-10-31 1986-10-31 Manufacture of aluminum alloy clad material having sacrificial layer

Country Status (1)

Country Link
JP (1) JPS63114948A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6214135B1 (en) * 1996-02-08 2001-04-10 Showa Aluminum Corporation Entry board for drilling small holes, a method of making the same and a method for drilling small holes through a printed circuit board by using said entry board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6214135B1 (en) * 1996-02-08 2001-04-10 Showa Aluminum Corporation Entry board for drilling small holes, a method of making the same and a method for drilling small holes through a printed circuit board by using said entry board

Similar Documents

Publication Publication Date Title
JP4954369B2 (en) Method for producing aluminum-magnesium-lithium alloy product
JPH0625388B2 (en) High strength, high conductivity copper base alloy
NO336134B1 (en) Process for producing AlMn tapes or thin sheets.
JP5105389B2 (en) Aluminum alloy manufacturing method
JP4911657B2 (en) High conductivity aluminum fin alloy
JPWO2020085486A1 (en) Aluminum alloy brazing sheet and its manufacturing method
US4799973A (en) Process for treating copper-nickel alloys for use in brazed assemblies and product
JP2003520295A5 (en)
US3297497A (en) Copper base alloy
JPS60258454A (en) Manufacture of aluminum alloy rigid plate for molding
JPH01195263A (en) Manufacture of al-alloy fin material for heat exchanger
JPS61119660A (en) Manufacture of copper alloy having high strength and electric conductivity
JP3333600B2 (en) High strength Al alloy fin material and method of manufacturing the same
JP3049137B2 (en) High strength copper alloy excellent in bending workability and method for producing the same
JPS63114948A (en) Manufacture of aluminum alloy clad material having sacrificial layer
US3366477A (en) Copper base alloys
JP2010270386A (en) Aluminum alloy fin material for heat exchanger
JPS6050867B2 (en) Manufacturing method of brazeable aluminum alloy
JP3274175B2 (en) Copper base alloy for heat exchanger and method for producing the same
JPH058087A (en) Production of high-strength aluminum brazing sheet
JPS61163232A (en) High strength al-mg-si alloy and its manufacture
JP3977978B2 (en) Aluminum alloy for heat exchangers with excellent corrosion resistance
JP3243479B2 (en) Copper base alloy for heat exchanger
JPS63293147A (en) Production of iron-copper-chromium alloy strip for high-strength lead frame
JPH038569A (en) Production of heat exchanger made of aluminum