JPS63114865A - Ultra-precise polishing abrasive material - Google Patents

Ultra-precise polishing abrasive material

Info

Publication number
JPS63114865A
JPS63114865A JP61256848A JP25684886A JPS63114865A JP S63114865 A JPS63114865 A JP S63114865A JP 61256848 A JP61256848 A JP 61256848A JP 25684886 A JP25684886 A JP 25684886A JP S63114865 A JPS63114865 A JP S63114865A
Authority
JP
Japan
Prior art keywords
silicon carbide
ultra
abrasive material
polishing
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61256848A
Other languages
Japanese (ja)
Inventor
Isao Terajima
功 寺島
Koichi Matsumoto
松本 孝一
Tatsuhiko Motomiya
本宮 達彦
Nobuaki Urasato
延明 浦里
Hiromi Osaki
浩美 大崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP61256848A priority Critical patent/JPS63114865A/en
Publication of JPS63114865A publication Critical patent/JPS63114865A/en
Pending legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To make it possible to rapidly obtain a polished surface with no scratches, by forming an ultra-precise polishing abrasive material from spherical ultramicro particle-like beta type polycrystal silicon carbide having an averaged particle size of 0.01 to 1 mum, which is the aggregate of heat-treated beta type silicon carbide. CONSTITUTION:An ultra-precise polishing abrasive material is formed of spherical ultramicro particle-like beta type polycrystal silicon carbide having an averaged particle size of 0.01 to 1 mum, which is the aggregate of heat-treated beta type silicon carbide. In this case, it is preferable that the crystallite normally has greater than about 50 angstroms. Such ultramicro particle-like beta type silicon carbide is obtained from organic silicon carbide in which at least one identicalsSiH bond exists in one molecule but no SiX (X is halogen atoms or oxygen atom) bond exists, such as a methyl hydrogen silane compound, which is subjected to a vapor phase cracking process at a temperature of about 750 deg. C, and is then heat-treated at the temperature of 1,000 to 2,000 deg. C. Thus, it is possible to rapidly obtain an excellent polished surface with no scratches.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は球状形状の超微粒子状炭化けい素よりなる超精
密研磨用研磨材に関し、更に詳述すれば被研磨物に対し
て優れた研磨面を与えると共に、研磨速度も大iい超精
密研磨用研磨材に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an abrasive material for ultra-precision polishing made of spherical ultrafine silicon carbide particles. The present invention relates to an abrasive material for ultra-precision polishing that provides high polishing speed and high polishing speed.

盗Jじlえ4 一般に、研磨加工に当り高度の加工品質の研應物を得る
には、加工条件として優れた面精度を持つと共に、加工
変質層が皆無となるような条件を見出すことが必要であ
り、これには研磨材の機械的作用を小さくするため、研
磨材、ポリシャ、研磨液、研磨機運動速度、圧力等の条
件を最適なものとする必要がある。例えば、精密加工面
を得るためには、研磨材を弾性的に保持するように、ポ
リシャにポリウレタン人工皮革のような軟質のものを使
用することが有効であるが、優れた加工品質の精密加工
品を得られる点で、研磨材の選択が最も重要である。
In general, in order to obtain a polished product with high processing quality during polishing, it is necessary to find processing conditions that have excellent surface accuracy and have no damaged layer. This requires optimizing conditions such as the abrasive material, polisher, polishing liquid, polisher movement speed, pressure, etc. in order to reduce the mechanical action of the abrasive material. For example, in order to obtain a precision-machined surface, it is effective to use a soft material such as polyurethane artificial leather for the polisher to elastically hold the abrasive material, but precision machining with excellent machining quality is effective. The selection of abrasive material is most important in terms of obtaining good quality.

従来、光学ガラス、シリコンウェハなどの半導体基板、
磁気ディスク基板、磁気ヘッド、金型などの金属材料及
びプラスチック等を超精密研磨する場合、研磨材として
は通常炭化けい素、酸化アルミニウム、酸化ジルコニウ
ム、酸化セリウム、二酸化けい素等の微粉末が使用され
ており、これら微粉末としては、例えばアチソン法によ
る炭化けい素、電融アルミナ、仮焼アルミナ等を粉砕す
ることにより製造したものが用いられている。
Conventionally, optical glass, semiconductor substrates such as silicon wafers,
When performing ultra-precision polishing of metal materials and plastics such as magnetic disk substrates, magnetic heads, and molds, fine powders such as silicon carbide, aluminum oxide, zirconium oxide, cerium oxide, and silicon dioxide are usually used as the polishing material. These fine powders are manufactured by, for example, pulverizing silicon carbide, fused alumina, calcined alumina, etc. by the Acheson method.

口が解決しようとする1′へ しかしながら、上記のようなアチソン法の炭化けい素、
電融アルミナ、仮焼アルミナ等の粉砕物は、鋭角状、針
状、板状等の不均一な形状であり、このような形状の粒
子を研磨材として使用して超精密研磨を行なうと、被研
磨物の表面にスクラッチが生成し、良好な研磨面が得ら
れず、精度が劣るという問題を生じる。
However, silicon carbide of the Acheson method as described above,
Pulverized products such as fused alumina and calcined alumina have non-uniform shapes such as acute angles, needles, and plates, and when ultra-precision polishing is performed using particles with such shapes as an abrasive, Scratches are generated on the surface of the object to be polished, making it impossible to obtain a good polished surface, resulting in a problem of poor precision.

このため、精密でスクラッチのない優れた研磨面を与え
る超精密研磨用研磨材としては、粒子形状が球形のもの
、特に微細な粒子径を持つと共に、形状が球形であり、
かつ十分な硬度を有するもののが要望さねている。
For this reason, as an abrasive for ultra-precision polishing that provides an excellent polishing surface with no scratches, it is preferable to use one with a spherical particle shape, especially one with a fine particle diameter and a spherical shape.
There is a need for something that also has sufficient hardness.

本発明は、上記事情に鑑みなされたもので、研磨速度が
大きい上、スクラッチのない優れた研磨表面を与えるこ
とができる超精密研磨用研磨材を提供することを目的と
する。
The present invention was made in view of the above circumstances, and an object of the present invention is to provide an abrasive material for ultra-precision polishing that has a high polishing rate and can provide an excellent polished surface without scratches.

間 ヴを  するための手  び 本発明者らは、上記目的を達成するため種々検討を行な
った結果、熱処理したβ型炭化けい素の集合体であって
、平均粒径が0.01〜1声の球状形状の超微粒子状β
型多結晶炭化けい素を超精密研磨用研磨材として使用す
ると、被研磨物の表面にスクラッチを生成することなく
優れた研磨面を与え、かつ球状形状のため研磨圧力が被
研磨物に均一にかかり、研磨効果が著しく増加し、研磨
速度が非常に大きくなると共に、研磨工程中に超微粒子
の微細化が進み、高品質の加工物が得られることを知見
した。
As a result of various studies to achieve the above object, the inventors of the present invention have developed an aggregate of heat-treated β-type silicon carbide with an average particle size of 0.01 to 1. Ultrafine particle β with spherical shape of voice
When polycrystalline silicon carbide is used as an abrasive for ultra-precision polishing, it provides an excellent polishing surface without creating scratches on the surface of the object being polished, and its spherical shape allows the polishing pressure to be applied uniformly to the object being polished. It has been found that the polishing effect increases significantly, the polishing rate becomes extremely high, the ultrafine particles become finer during the polishing process, and a high-quality workpiece is obtained.

即ち、本発明者らは球状形状で高純度の炭化けい素を粉
砕工程を経ることなく微粉状で取得する方法について種
々検討し、先にその分子中に少なくとも1個のSiH結
合を含むが、しかし5iX(ここにXはハロゲン原子又
は酸素原子を示す)を含まない有機けい素化合物を75
0”C以上で気相熱分解させれば、収率良く球状形状の
高純度の炭化けい素微粉末を粉砕工程などの後処理なし
に得ることができることを見出した(特公昭61−56
46号、特開昭60−46911号、特開昭60−’4
6912号)が、この方法で得られた微粉末の性状とそ
の製造条件などについての研究を更に進め、この微粉末
炭化けい素を電子顕微鏡で観測、測定したところ、従来
の製法による市販品と異なるほぼ完全な球状形状をもつ
ものであること、またβ−31C(1,1,1)回折に
よる暗視野像から個々の粒子が50Å以下のβ型炭化け
い素の結晶子の集合体であり、その平均粒径が0.01
〜1pであることを確認した。そして更に、この超微粒
子状炭化けい素を例えばAr。
That is, the present inventors have studied various ways to obtain spherical and highly pure silicon carbide in the form of fine powder without going through a pulverization process, and first, the molecule contains at least one SiH bond, However, 75
It has been discovered that by carrying out gas phase pyrolysis at temperatures above 0"C, it is possible to obtain spherical, highly pure fine silicon carbide powder in good yield without any post-treatment such as a pulverization process (Japanese Patent Publication No. 61-56
No. 46, JP-A-60-46911, JP-A-60-'4
No. 6912) conducted further research on the properties of the fine powder obtained by this method and its manufacturing conditions, and when observing and measuring this fine powder silicon carbide with an electron microscope, it was found that it was different from commercially available products made by conventional manufacturing methods. It has a different, almost perfectly spherical shape, and the dark-field image obtained by β-31C (1,1,1) diffraction shows that it is an aggregate of β-type silicon carbide crystallites with individual particles of less than 50 Å. , whose average particle size is 0.01
It was confirmed that it was ~1p. Furthermore, this ultrafine particulate silicon carbide is treated with, for example, Ar.

He、Ne、Xe等の不活性ガス雰囲気中及び/又はH
2,N2などの非酸化性ガス雰囲気中で1000〜20
00℃の温度で処理することにより、粒子の形状を球状
に保ったまま結晶子径を50Å以上に増大させることが
でき、この加熱処理を行った後でもこの集合体の平均粒
径は加熱処理前とほぼ同じで0.01〜1pであること
を確認すると共に、この球状形状の超微粒子状炭化けい
素粉床を研磨材として使用した場合、従来の研磨材に比
べて研磨速度が非常に大きく、上述したような優れた性
能を発揮することを知見し、従ってこの平均粒径が0.
01〜1声である球状の超微粒子β型多結晶炭化けい素
が超精密研磨用の研磨材として非常に有効であることを
見い出し、本発明をなすに至ったものである。
In an inert gas atmosphere such as He, Ne, Xe, etc. and/or H
2, 1000-20 in a non-oxidizing gas atmosphere such as N2
By processing at a temperature of 00°C, it is possible to increase the crystallite size to 50 Å or more while keeping the particle shape spherical, and even after this heat treatment, the average particle size of this aggregate remains the same as that of the heat treatment. In addition to confirming that it is approximately the same as before, 0.01 to 1 p, we also found that when this spherical ultrafine particle silicon carbide powder bed is used as an abrasive, the polishing speed is significantly higher than that of conventional abrasives. It has been found that the average particle diameter is 0.00000000000000000000000000000000000000000000000000000000000000000 is large.
The inventors have discovered that spherical ultrafine particle β-type polycrystalline silicon carbide, which has a pitch of 01 to 1, is very effective as an abrasive for ultraprecision polishing, and has thus arrived at the present invention.

以下、本発明につき更に詳しく説明する。The present invention will be explained in more detail below.

本発明の超精密研磨用研磨材は、熱処理したβ型炭化け
い素の集合体であって、平均粒径が0.01〜1μmで
あり、かつその形状が球形である超微粒子状β型多結晶
炭化けい素よりなるものであり、通常結晶子の大きさが
50人より大きいものが好適に用いられる。
The abrasive material for ultra-precision polishing of the present invention is an aggregate of heat-treated β-type silicon carbide, and has an average particle size of 0.01 to 1 μm and a spherical shape. It is made of crystalline silicon carbide, and those with a crystallite size larger than 50 are usually preferably used.

本発明の超微粒子状β型炭化けい素は、例えば分子中に
少なくとも1個のヨSiH結合を有し、5iX(Xはハ
ロゲン原子又は酸素原子を示す)結合を含まない有機け
い素化合物を750°C以上で気相熱分解させたものを
″熱処理することによって得ることができる。
The ultrafine particulate β-type silicon carbide of the present invention is, for example, an organosilicon compound having at least one ioSiH bond in the molecule and containing no 5iX (X represents a halogen atom or an oxygen atom) bond. It can be obtained by heat-treating the product subjected to gas-phase pyrolysis at temperatures above °C.

この場合、かかる有機けい素化合物としては、特に一般
式(CH,)a 5ibHe(但し、b=1〜3の整数
、2b+1≧a、a≧b、2b+1≧C2C≧1.a+
c=2b+2を示す)で示されるメチルハイドロジエン
シラン化合物が好適に用いられ、これらメチルハイドロ
ジエンシラン化合物の少なくとも1種を水素、窒素、ヘ
リウム、アルゴンなどのキャリヤーガスの存在下に30
体積%以下の濃度で750〜1600℃の反応帯域中に
おいて気相熱分解させることが好ましい。
In this case, the organic silicon compound has the general formula (CH,)a 5ibHe (where b=an integer of 1 to 3, 2b+1≧a, a≧b, 2b+1≧C2C≧1.a+
Methylhydrodiene silane compounds represented by c=2b+2) are preferably used, and at least one of these methylhydrodiene silane compounds is heated for 30 min in the presence of a carrier gas such as hydrogen, nitrogen, helium, or argon.
Preferably, the gas phase pyrolysis is carried out in a reaction zone at 750-1600° C. at a concentration of less than vol. %.

また、このようにして気相熱分解により得られた炭化け
い素を熱処理する場合、加熱処理温度は1000〜20
00℃とするのが好ましい。
In addition, when heat-treating silicon carbide obtained by vapor phase pyrolysis in this way, the heat treatment temperature is 1000-2000
The temperature is preferably 00°C.

1000℃より低温度では該炭化けい素の結晶子径の成
長は殆どなく、2000℃より高温では粒子の成長に伴
う形状の変化が起こる場合が生じる。
At temperatures lower than 1000° C., there is almost no growth in the crystallite size of the silicon carbide, and at temperatures higher than 2000° C., changes in shape may occur as the particles grow.

なお、この出発材料としてのメチルハイドロジエンシラ
ン化合物は精留によって予め容易に高純度化することが
できるので、得られる超微粒子状β型炭化けい素も非常
に高い純度で得ることができる。また、得られる炭化け
い素の結晶子の太きさ、球状形状、集合体粉末の平均粒
径は、メチルハイドロジエンシラン化合物の反応帯域中
での濃度、滞留時間、ガス線速、反応温度、キャリヤー
ガスの種類などの反応条件及び加熱処理における処理温
度、処理時間、雰囲気ガスの種類などの加熱処理条件を
選択することによって自由に調節することができるので
、目的に応じこれらの条件を任意に設定すればよい。
Note that since the methylhydrodienesilane compound as the starting material can be easily purified in advance by rectification, the resulting ultrafine particulate β-type silicon carbide can also be obtained with extremely high purity. In addition, the thickness and spherical shape of the silicon carbide crystallites obtained, the average particle size of the aggregate powder, the concentration of the methylhydrodienesilane compound in the reaction zone, the residence time, the gas linear velocity, the reaction temperature, These conditions can be freely adjusted by selecting the reaction conditions such as the type of carrier gas and the heat treatment conditions such as the treatment temperature, treatment time, and type of atmospheric gas in the heat treatment. Just set it.

本発明の研磨材は、上述したように熱処理したβ型炭化
けい素の集合体であって、平均粒径が0.01〜IIi
!nであり、かつその形状が球形である超微粒子状β型
多結晶炭化けい素、特に結晶子の大きさが50人より大
きいもの、より好ましくは一般式(CH,)aSibH
c(ここに、b=1〜3゜2b+1≧a 、 a > 
b p 2 b + l≧c)4.a+c=2b+2を
示す)で示されるメチルハイドロジエンシラン化合物の
少なくとも1種を750〜1600℃の反応帯域中で気
相熱分解させ、得られたアモルファス状炭化けい素微粉
末を1000〜2000℃の温度で熱処理することによ
って得られる炭化けい素であって、その平均粒子径が0
.01〜ll1nであり、かつ球状形状である超微粒子
状β型炭化けい素よりなるものであるが、本発明の研磨
材は光学ガラス、シリコンウェハなどの半導体基板、磁
気ディスク基板、磁気ヘッド、金型などの金属材料及び
プラスチック等の超精密研磨に好適に用いられる。なお
、本発明の研磨材を用いた場合の研磨条件は従来普通に
採用されている精密研磨条件を採用し得、また研磨機械
等も公知の精密研磨機を使用でき、使用条件は特に制限
されるものではない。
The abrasive of the present invention is an aggregate of β-type silicon carbide that has been heat-treated as described above, and has an average particle size of 0.01 to IIi.
! n and whose shape is spherical, ultrafine particle β-type polycrystalline silicon carbide, especially one with a crystallite size larger than 50, more preferably the general formula (CH,)aSibH
c (here, b=1~3゜2b+1≧a, a>
b p 2 b + l≧c)4. a+c=2b+2) is vapor-phase pyrolyzed in a reaction zone at 750 to 1600°C, and the resulting amorphous silicon carbide fine powder is pyrolyzed at 1000 to 2000°C. Silicon carbide obtained by heat treatment at a temperature with an average particle size of 0
.. The abrasive material of the present invention can be used for optical glass, semiconductor substrates such as silicon wafers, magnetic disk substrates, magnetic heads, gold, etc. Suitable for ultra-precision polishing of metal materials such as molds and plastics. In addition, the polishing conditions when using the abrasive material of the present invention can be the precision polishing conditions commonly used in the past, and a known precision polishing machine can be used as the polishing machine, but the conditions of use are not particularly limited. It's not something you can do.

211υ碩胆 本発明に係る研磨材によればシリコンウェハ、ステンレ
ス鋼、金型鋼、鋳鉄、鉄鋼、銅、アルミニウム、真鍮等
の金属などの超精密研磨に使用した場合、被研磨物の表
面にスクラッチを生成することなく、優れた研m面を与
え、かつ球状形状のため研磨圧力が被研磨物に均一にか
かり、研磨効果が著しく増加し、研磨速度が大きくなる
と共に、研磨工程中に超微粒子の微細化が進み、高品質
の加工物が得られるものである。
According to the abrasive material according to the present invention, when it is used for ultra-precision polishing of metals such as silicon wafers, stainless steel, mold steel, cast iron, steel, copper, aluminum, and brass, it does not cause scratches on the surface of the polished object. The spherical shape allows the polishing pressure to be applied uniformly to the object to be polished, significantly increasing the polishing effect, increasing the polishing speed, and eliminating ultrafine particles during the polishing process. This progresses in the miniaturization of the materials and allows for the production of high-quality workpieces.

以下、実施例を挙げて本発明を更に具体的に説明するが
、本発明は下記の実施例に制限されるものではない。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to the following Examples.

〔実施例1〕 内径52mm、長さ1000m+のアルミナ製反応管を
横型反応炉内に設置し、その中心部の温度を1450℃
に保った。この反応管内にテトラメチルジシラン(H(
CH−)2 S iS l (CHa )z H)を4
体積%の濃度で含有する水素ガスを1200mM/分の
速さで4時間導入してテトラメチルジシランの気相熱分
解を行なったところ、茶褐色の炭化けい素微粉末27.
9g(収率82%)が得られた。
[Example 1] An alumina reaction tube with an inner diameter of 52 mm and a length of 1000 m+ was installed in a horizontal reactor, and the temperature at the center was set to 1450°C.
I kept it. Tetramethyldisilane (H(
CH-)2 SiS l (CHa)z H) 4
When hydrogen gas containing a concentration of 10% by volume was introduced at a rate of 1200mM/min for 4 hours to carry out vapor phase thermal decomposition of tetramethyldisilane, a brown silicon carbide fine powder of 27.
9 g (yield 82%) was obtained.

更に、得られた炭化けい素微粉末をアルミナ製ボート上
に移した後、内容積6000ciの箱型電気炉内に設置
し、内部を十分にArガスで置換し、Arガス雰囲気中
で炉内温度16oO℃、処理時間3時間において加熱処
理を行った。
Furthermore, the obtained silicon carbide fine powder was transferred onto an alumina boat, and then placed in a box-type electric furnace with an internal volume of 6000 ci, the interior was sufficiently replaced with Ar gas, and the furnace was heated in an Ar gas atmosphere. Heat treatment was performed at a temperature of 16oO<0>C for a treatment time of 3 hours.

得られた炭化けい素超微粒子のX線回折、電子線回折及
び透過型電子顕微鏡写真による観測結果から、この炭化
けい素微粉末は第1表に示す通り結晶子が50人より大
きいβ型炭化けい素の集合体で、その平均粒径が0.0
1〜1pの範囲にある球状形状の超微粒子状炭化けい素
であることが確認された。
From the observation results of the obtained silicon carbide ultrafine particles using X-ray diffraction, electron beam diffraction, and transmission electron microscopy, it was found that this silicon carbide fine powder has β-type carbonization with more than 50 crystallites, as shown in Table 1. An aggregate of silicon with an average particle size of 0.0
It was confirmed that the particles were ultrafine silicon carbide particles with a spherical shape in the range of 1 to 1p.

上記の超微粒子状炭化けい素を使用してシリコンウェハ
、ステンレスm(SUS  304)、金型鋼(18%
Niマルエージング鋼)に対する研磨特性を調べた。
Using the above ultrafine silicon carbide, silicon wafers, stainless steel (SUS 304), mold steel (18%
The polishing properties for Ni maraging steel (Ni maraging steel) were investigated.

被研磨物は予め5ic(GC:#600)、AQ、O。The object to be polished was 5ic (GC: #600), AQ, O.

(WA# 1200)、AM、03(WA#4000)
(7)順で予備研磨しておき、次いで円板回転式研磨機
を使用し、またポリシャに外径180nmのポリウレタ
ン人工皮革を用い、回転数50rpm、圧力55g/d
の条件においてpH7の水に10%濃度で研磨材(上記
超微粒子状炭化けい素)を懸濁して調製したスラリーを
5d/分の速度でかけ捨てに供給しつつ3時間研磨を行
なった。被研磨物に対する研磨特性の結果を第1表に示
す。
(WA# 1200), AM, 03 (WA# 4000)
(7) Preliminary polishing is performed in this order, and then a disc rotary polisher is used, and polyurethane artificial leather with an outer diameter of 180 nm is used as the polisher, rotation speed is 50 rpm, and pressure is 55 g/d.
Polishing was carried out for 3 hours under the following conditions, while a slurry prepared by suspending an abrasive material (the above-mentioned ultrafine particulate silicon carbide) at a concentration of 10% in water having a pH of 7 was fed at a rate of 5 d/min. Table 1 shows the results of the polishing properties for the objects to be polished.

第1表 第1表に示す結果から、実施例1の研磨材(超微粒子状
炭化けい素)を用いてシリコンウェハ、SUS  30
4.18%Niマルエージング鋼を研磨することにより
、これら被研磨物の研磨面にスクラッチの発生が無く、
優れた研磨表面が得られると共に、各被研磨物に対する
研磨速度も大きいことが知見された。
Table 1 From the results shown in Table 1, silicon wafers, SUS 30
By polishing 4.18%Ni maraging steel, there are no scratches on the polished surfaces of these polished objects.
It was found that not only an excellent polished surface was obtained, but also a high polishing rate for each object to be polished.

〔実施例2〜7〕 第2表に示した加熱処理条件以外は実施例1と同様な方
法で製造した超微粒子状炭化けい素を研磨材として使用
して実施例1と同様に各種被研磨物の研磨を行ない、第
2表に示す結果を得た。
[Examples 2 to 7] Various polished objects were prepared in the same manner as in Example 1 using ultrafine silicon carbide produced in the same manner as in Example 1 as the abrasive material except for the heat treatment conditions shown in Table 2. The object was polished and the results shown in Table 2 were obtained.

第2表に示す結果より5本発明の研磨材は、いずれを用
いても被研磨物の表面にスクラッチを発生させることな
く優れた研磨面が得られ、高い精度で被研磨物を研磨し
得ると共に、研磨速度も大きいことが知見された。
From the results shown in Table 2, the polishing materials of the present invention can provide an excellent polished surface without causing scratches on the surface of the object to be polished, and can polish the object with high precision no matter which one is used. It was also found that the polishing rate was also high.

〔比較例1〕 実施例1と同様な方法で合成した炭化けい素微粉末を加
熱処理を行わずに使用し、実施例1と同様にシリコンウ
ェハ、5US304及び18%Niマルエージング鋼等
の被研磨物の研磨を行ったところ、第3表に示す結果を
得た。
[Comparative Example 1] Silicon carbide fine powder synthesized in the same manner as in Example 1 was used without heat treatment, and in the same manner as in Example 1, it was applied to silicon wafers, 5US304, 18% Ni maraging steel, etc. When the polished product was polished, the results shown in Table 3 were obtained.

第3表 第3表に示す結果より、加熱処理を行わない結晶子径の
小さい超微粒子状炭化けい素粉末は、スクラッチのない
良好な研磨面を与えるが、研磨速度がやや劣ることが知
見された。
Table 3 From the results shown in Table 3, it was found that ultrafine silicon carbide powder with a small crystallite size without heat treatment provides a good polished surface without scratches, but the polishing rate is slightly inferior. Ta.

〔比較例2〜6〕 実施例1に示す超微粒子状炭化けい素に代えて第4表に
示す研磨材を使用し、実施例1と同様な方法でシリコン
ウェハ、SUS  304.18%Niマルエージング
鋼の研磨を行なった。結果を第4表に示す。
[Comparative Examples 2 to 6] Silicon wafers and SUS 304.18% Ni multilayers were prepared in the same manner as in Example 1, except that the abrasives shown in Table 4 were used in place of the ultrafine silicon carbide shown in Example 1. Polished aged steel. The results are shown in Table 4.

第4表に示す結果より、本発明以外の研磨材を用いて被
研磨物を研磨した場合、被研磨物の表面にスクラッチが
発生し、良質な研磨面が得られず、また研磨速度も遅く
、効率も悪いことが知見された。
From the results shown in Table 4, when an object to be polished is polished using an abrasive material other than the present invention, scratches occur on the surface of the object to be polished, a high-quality polished surface cannot be obtained, and the polishing speed is also slow. It was found that the efficiency was also poor.

Claims (1)

【特許請求の範囲】 1、熱処理したβ型炭化けい素の集合体であって、平均
粒径が0.01〜1μmであり、かつその形状が球形で
ある超微粒子状β型多結晶炭化けい素よりなることを特
徴とする超精密研磨用研磨材。 2、超微粒子β型多結晶炭化けい素がメチルハイドロジ
エンシラン化合物の気相熱分解反応で得られた炭化けい
素を1000〜2000℃の温度で熱処理したものであ
る特許請求の範囲第1項記載の超精密研磨用研磨材。
[Scope of Claims] 1. Ultrafine particle β-type polycrystalline silicon carbide which is an aggregate of heat-treated β-type silicon carbide and has an average particle size of 0.01 to 1 μm and a spherical shape. An abrasive material for ultra-precision polishing that is characterized by being made of raw material. 2. Claim 1, wherein the ultrafine β-type polycrystalline silicon carbide is obtained by heat-treating silicon carbide obtained by a gas phase thermal decomposition reaction of a methylhydrodiene silane compound at a temperature of 1000 to 2000°C. Abrasive material for ultra-precision polishing as described.
JP61256848A 1986-10-30 1986-10-30 Ultra-precise polishing abrasive material Pending JPS63114865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61256848A JPS63114865A (en) 1986-10-30 1986-10-30 Ultra-precise polishing abrasive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61256848A JPS63114865A (en) 1986-10-30 1986-10-30 Ultra-precise polishing abrasive material

Publications (1)

Publication Number Publication Date
JPS63114865A true JPS63114865A (en) 1988-05-19

Family

ID=17298251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61256848A Pending JPS63114865A (en) 1986-10-30 1986-10-30 Ultra-precise polishing abrasive material

Country Status (1)

Country Link
JP (1) JPS63114865A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112012003990B4 (en) 2011-10-27 2021-07-08 Shin-Etsu Handotai Co., Ltd. Slurry and method of making a slurry

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112012003990B4 (en) 2011-10-27 2021-07-08 Shin-Etsu Handotai Co., Ltd. Slurry and method of making a slurry

Similar Documents

Publication Publication Date Title
JP3709200B2 (en) High-density fine refractory metal or solid solution (mixed metal) carbide ceramic
JP4230035B2 (en) Silicon carbide single crystal and method for producing the same
JP2005514314A (en) Method for producing α-alumina nanopowder
JPH0621360B2 (en) Diamond-coated sintered bond excellent in peel resistance and method for producing the same
JPS63114865A (en) Ultra-precise polishing abrasive material
JP3957432B2 (en) β-type silicon carbide powder-containing composition, its production method and use
JP2000026840A (en) Abrasive
JP7528681B2 (en) Method for polishing SiC polycrystalline substrate
JPS63114864A (en) Ultra-precise polishing abrasive material
JP4061374B2 (en) Method for producing ultrafine particle cBN sintered body
JP2002137967A (en) Silicon carbide member
JPH0788580B2 (en) Diamond coated cemented carbide and method for producing the same
JP3696807B2 (en) Sliding member and manufacturing method thereof
JP3220315B2 (en) Covering member
JP3857446B2 (en) SiC molded body
JP2013052488A (en) Polishing machine for polishing diamond material and method of polishing diamond material
JP2003034867A (en) TUBULAR SiC-COMPACT AND MANUFACTURING METHOD THEREFOR
JPS59169993A (en) Synthesis of diamond
JPH042662A (en) High-purity silicon carbide sintered material and production thereof
JP3735627B2 (en) Method for manufacturing reflector member
Behera et al. Characterization of Micro-Crystalline Diamond Tools Synthesized by HFCVD Process with Different Seeding Powders
JP2003068594A (en) SiC DUMMY WAFER AND ITS PRODUCING METHOD
JP2022075054A (en) Tabular compact manufacturing method
JP3592837B2 (en) Glass forming mold
JPS5917751B2 (en) Manufacturing method of silicon nitride abrasive grains