JPS63114613A - Manufacture of armature for flat type motor - Google Patents
Manufacture of armature for flat type motorInfo
- Publication number
- JPS63114613A JPS63114613A JP26046186A JP26046186A JPS63114613A JP S63114613 A JPS63114613 A JP S63114613A JP 26046186 A JP26046186 A JP 26046186A JP 26046186 A JP26046186 A JP 26046186A JP S63114613 A JPS63114613 A JP S63114613A
- Authority
- JP
- Japan
- Prior art keywords
- armature
- resin
- mold
- manufacturing
- housing part
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 229920005989 resin Polymers 0.000 claims abstract description 39
- 239000011347 resin Substances 0.000 claims abstract description 39
- 238000000465 moulding Methods 0.000 claims description 14
- 239000004734 Polyphenylene sulfide Substances 0.000 claims description 10
- 229920000069 polyphenylene sulfide Polymers 0.000 claims description 10
- 238000003860 storage Methods 0.000 claims description 10
- 229920005992 thermoplastic resin Polymers 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 7
- 239000000110 cooling liquid Substances 0.000 claims description 5
- 238000002347 injection Methods 0.000 abstract description 8
- 239000007924 injection Substances 0.000 abstract description 8
- 230000000717 retained effect Effects 0.000 abstract 2
- 230000002093 peripheral effect Effects 0.000 abstract 1
- 239000000463 material Substances 0.000 description 5
- 230000007547 defect Effects 0.000 description 4
- 239000003365 glass fiber Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/26—Moulds
- B29C45/27—Sprue channels ; Runner channels or runner nozzles
- B29C45/30—Flow control means disposed within the sprue channel, e.g. "torpedo" construction
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
- Manufacture Of Motors, Generators (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、熱可塑性樹脂にてアマチュアコイルにモール
ド層を形成した扁平型モータ用電機子の製造方法に関す
るものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing an armature for a flat type motor in which a mold layer is formed on an armature coil made of thermoplastic resin.
従来、この種の扁平型モータ用電機子は、例えば特開昭
57−52352号公報等に開示されるものが知られて
いる。Conventionally, this type of flat motor armature is known, for example, as disclosed in Japanese Unexamined Patent Publication No. 57-52352.
この扁平型モータ用電機子の製造方法としては、成形機
のノズルと金型のキャビティを繋ぐ樹脂流路内(ランナ
ー)に充填された樹脂と、キャビティ内に充填された樹
脂によって封止された電機子とを冷却固化してから、型
開きした後、電機子と共に金型外に排出するようにした
コールドランナーシステムがある。The manufacturing method for this flat type motor armature consists of a resin filled in the resin flow path (runner) connecting the nozzle of the molding machine and the cavity of the mold, and a mold sealed with the resin filled in the cavity. There is a cold runner system in which the armature and the armature are cooled and solidified, the mold is opened, and the armature is discharged from the mold together with the armature.
然し、この製造方法では、スプール、ランナー部の樹脂
損失とその処理、及びゲートの切断とその仕上げ等の後
処理工程を必要とする等の問題がある。However, this manufacturing method has problems such as the need for post-processing steps such as resin loss and treatment of the spool and runner parts, and cutting and finishing of the gate.
尚、最近、熱可塑性樹脂として、高強度で高流動性のポ
リフェニレンサルファイド樹脂(以下、PPSと称する
)を、この種の電機子に用いることが提案されているが
、このPPSは流動性が若干不足しているので、充填に
よる不良率が高い。Recently, as a thermoplastic resin, it has been proposed to use polyphenylene sulfide resin (hereinafter referred to as PPS), which has high strength and high fluidity, for this type of armature, but this PPS has slightly low fluidity. Since there is a shortage, the defective rate due to filling is high.
これに対し、超高流動性PPSでは、充填による不良率
は低いが、PPSの機械的強度が不足し、シャフト正大
時に一部にクラックが生じ、不合格品を発生するという
欠点がある。On the other hand, with ultra-high fluidity PPS, although the defect rate due to filling is low, the mechanical strength of PPS is insufficient, and cracks occur in part when the shaft is fully sized, resulting in rejected products.
本発明は係る従来の問題点を解決するために為されたも
ので、その目的は、熱可塑性樹脂の充填不良を起こすこ
とがない扁平型モータ用電機子の製造方法を提供するこ
とにある。The present invention has been made in order to solve the conventional problems, and its purpose is to provide a method for manufacturing an armature for a flat type motor that does not cause incomplete filling of thermoplastic resin.
本発明に係る扁平型モータ用電機子の製造方法は、成形
治具を用いて多数の単コイルを重畳的に環状成形し、コ
ンミテータと接続して成るアマチュアコイルを、金型キ
ャビティの外周部に樹脂流路層を設けたランナーレス式
金型の収納部内に挿−人し、このランナーレス式金型の
収納部に高強度で且つ超高流動性を有する熱可塑性樹脂
を超低圧下で射出し、アマチュアコイルに樹脂のモール
ド層を成形するように構成したものである。The method for manufacturing an armature for a flat motor according to the present invention involves forming a large number of single coils into an annular shape in a superimposed manner using a forming jig, and then attaching the armature coils formed by connecting them to a commutator to the outer periphery of a mold cavity. A thermoplastic resin with high strength and ultra-high fluidity is injected into the housing part of the runnerless mold under ultra-low pressure by inserting it into the housing part of a runnerless mold with a resin flow path layer. However, the armature coil is configured to have a resin mold layer formed thereon.
本発明に於ては、金型キャビティの外周部に樹脂流路層
を設けたから、ランナーレス式金型の収納部内に挿入し
たアマチュアコイルの外径寸法にばらつきを起こさせる
ことがなくなり、充填不良が起こらず、均一な樹脂モー
ルド層が得られる。In the present invention, since the resin flow path layer is provided on the outer periphery of the mold cavity, there is no possibility of variation in the outer diameter of the armature coil inserted into the storage part of the runnerless mold, thereby preventing filling defects. A uniform resin mold layer can be obtained.
以下、本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.
第1図は本発明に係る偏平型モータ用電機子を製造する
装置の一部を切り欠いて示す正面図、第2図はその要部
を示す横断面図、第3図は本実施例により成形された偏
平型モータ用電機子の平面図、第4図はその断面図であ
る。Fig. 1 is a partially cutaway front view showing an apparatus for manufacturing an armature for a flat type motor according to the present invention, Fig. 2 is a cross-sectional view showing the main part thereof, and Fig. 3 is a cross-sectional view showing the main part thereof. A plan view of the molded armature for a flat type motor, and FIG. 4 is a sectional view thereof.
図に於て、1は3本のスピアで、マニホールド5に固定
されている。各スピア1のケーシング2にはランナーブ
ツシュ23が設けである。そして、各スピア1の先端に
はチップヒーク3が設けである。マニホールド5から突
出するスピアlの他端部にはリード線4が取り出しであ
る。又、マニホールド5には、カートリッヂヒータ7を
挿入するだめのカートリッヂヒータ挿入孔6と、熱電対
9を挿入するための熱電対挿入孔8が形成されている。In the figure, 1 is three spears, which are fixed to a manifold 5. The casing 2 of each spear 1 is provided with a runner bushing 23. A tip heak 3 is provided at the tip of each spear 1. A lead wire 4 is taken out from the other end of the spear l protruding from the manifold 5. Further, the manifold 5 is formed with a cartridge heater insertion hole 6 into which a cartridge heater 7 is inserted, and a thermocouple insertion hole 8 into which a thermocouple 9 is inserted.
そして、3本のスピア1は、製品である樹脂モールドさ
れたアマチュアコイル30のボス部31に等間隔でゲー
ト32が形成されるように取り付けである。The three spears 1 are attached so that gates 32 are formed at equal intervals on the boss portion 31 of the resin-molded armature coil 30 as a product.
又、スピア1は、ランド部rAの固化している樹脂を溶
融させるためのチンブヒータ3と、スピア1廻り樹脂を
適温(350°C)に保持するためのボディヒータ(図
示せず)が二重構造に設置されており、夫々各別にスピ
アシステムコントローラによりコントロールされる。In addition, the spear 1 is equipped with a chimbu heater 3 for melting the solidified resin in the land rA, and a body heater (not shown) for maintaining the resin around the spear 1 at an appropriate temperature (350°C). They are installed in the structure, and each is controlled by a separate Spear System Controller.
スピア1のランナ一部IBは、スピア1とそのケーシン
グ2との間、マニホールド5内、スプールブツシュ21
及びローケートリング22とを結ぶ経路に形成される。The runner part IB of the spear 1 is located between the spear 1 and its casing 2, inside the manifold 5, and at the spool bush 21.
and the locate ring 22.
テンプヒータ3側では、固定側金型10が取り付けであ
る。この固定側金型10には、成形治具を用いて多数の
単コイルを重畳的に環状成形し、コンミテータと接続し
て成るアマチュアコイルを装着する収納部12を形成す
る凹部11がチップヒータ3と連結して設けである。又
、固定側金型10には、カートリッヂヒータ14を装着
するためのカートリッヂヒータ装着孔13と、冷却液を
通すための冷却液孔15が各別に形成されている。On the balance heater 3 side, the stationary mold 10 is attached. In this stationary mold 10, a concave portion 11 forming a housing portion 12 for mounting an armature coil formed by superimposing a large number of single coils into an annular shape using a molding jig and connecting to a commutator is provided. It is provided in conjunction with. Further, the stationary mold 10 is separately formed with a cartridge heater mounting hole 13 for mounting the cartridge heater 14 and a coolant hole 15 for passing the coolant.
この固定側金型10には、可動側金型16が組み付けら
れる。この可動側金型16には固定側金型10と同様に
、成形治具を用いて多数の単コイルを重畳的に環状成形
しコンミテータと接続して成るアマチュアコイルを装着
する収納部12を形成する凹部17が形成されている。A movable mold 16 is assembled to the fixed mold 10. Similar to the stationary mold 10, the movable mold 16 has a housing section 12 in which an armature coil formed by superimposing a large number of single coils into an annular shape using a molding jig and connecting them to a commutator is installed. A recess 17 is formed.
又、可動側金型16には、固定側金型10と同様に、カ
ートリッヂヒータ19を装着するためのカートリッヂヒ
ータ装着孔18と、冷却液を通すための冷却液孔21が
各別に形成されている。Further, in the movable mold 16, similarly to the fixed mold 10, a cartridge heater mounting hole 18 for mounting the cartridge heater 19 and a cooling liquid hole 21 for passing the cooling liquid are formed separately. has been done.
固定側金型10と可動側金型16とで形成する収納部1
2に於ける外周側には、樹脂流路層12Aが設けである
。Storage part 1 formed by fixed side mold 10 and movable side mold 16
A resin channel layer 12A is provided on the outer circumferential side of No. 2.
尚、固定側金型10と可動側金型16とは、公知の方法
によって型開きできるようにしである。The fixed mold 10 and the movable mold 16 are designed to be opened by a known method.
次に、上述の如く構成された装置を用いて本実施例を説
明する。Next, this embodiment will be explained using the apparatus configured as described above.
本装置では、第5図に示すように、常時溶融状態のラン
ナ一部IBによってff1iされた樹脂をゲートランド
部IAでキャビティ内の樹脂と共に冷却固化させる。製
品取出し後、次の射出開始前にチップヒータ3に通電し
て発熱させ、ランド部IA内の百化している樹脂を溶融
射出可能とする。In this apparatus, as shown in FIG. 5, the resin that has been ff1i by the runner part IB, which is always in a molten state, is cooled and solidified together with the resin in the cavity in the gate land part IA. After taking out the product and before starting the next injection, the chip heater 3 is energized to generate heat to melt and inject the resin in the land portion IA.
この繰返しを成形機のサイクルに同期させて全自動で成
形できるシステムである。This repeating process is synchronized with the cycle of the molding machine, allowing for fully automatic molding.
従って、先ず、常法に従って固定側金型10と可動側金
型16とで形成される収納部12に、成形治具を用いて
多数の単コイルを重畳的に環状成形しコンミテータと接
続して成るアマチュアコイルを装着する。Therefore, first, using a forming jig, a large number of single coils are superimposed and formed into an annular shape in the housing part 12 formed by the stationary side mold 10 and the movable side mold 16 according to a conventional method, and then connected to a commutator. Attach an amateur coil consisting of:
一方、マニホールド5内の樹脂温ば2系統に分割したカ
ートリッヂヒータ7で保温し、制御する(350℃)。On the other hand, the resin warmer in the manifold 5 is kept warm and controlled by the cartridge heater 7 divided into two systems (350° C.).
マニホールド5を通過した樹脂は、スピア1とそのケー
シング2の廻りを通過し、−時停滞する。この部の樹脂
はスピア1に内蔵されたヒータによって保温制御され、
ゲートランド部IAに向かって絶縁層を形成させる。ゲ
ートランド部IAは、金型10,16の冷却により射出
時以外は固化させておき、射出直前にチップヒータ3に
通電して発熱させて溶融し、収納部12に射出し、アマ
チュアに樹脂層を成形させる。この際に、収納部12に
はスピア1によって形成されるゲート、即ちランド部I
Aよりも外側に当たる部位に樹脂流路FJI 2Aを設
けであるから、収納部12内に射出された樹脂はアマチ
ュアに沿って流入して行く、アマチュアの外径寸法のバ
ラツキに拘らず充填される。又、この時の発熱のタイミ
ングと発熱時間は、1シヨツト毎自動で繰り返し、出力
は各ゲート毎個別に調整する。The resin that has passed through the manifold 5 passes around the spear 1 and its casing 2, and stagnates at -. The resin in this part is kept warm by the heater built into the spear 1.
An insulating layer is formed toward the gate land portion IA. The gate land portion IA is solidified by cooling the molds 10 and 16 except during injection, and immediately before injection, the chip heater 3 is energized to generate heat and melt, and is injected into the storage portion 12, and a resin layer is placed on the armature. to be formed. At this time, the storage portion 12 has a gate formed by the spear 1, that is, a land portion I.
Since the resin flow path FJI 2A is provided in the area outside A, the resin injected into the storage section 12 flows along the armature and is filled regardless of variations in the outer diameter of the armature. . Further, the heat generation timing and heat generation time at this time are automatically repeated for each shot, and the output is adjusted individually for each gate.
固定側及び可動側金型10.16は、130〜150°
Cに保持するが、急速に所定温度まで上界させるには、
カートリッヂヒータ孔13.18に挿入されたカートリ
ッヂヒータ14.19に通電して、加熱昇温させる。The fixed side and movable side molds 10.16 are 130 to 150°
To maintain the temperature at C but quickly raise it to a certain temperature,
The cartridge heater 14.19 inserted into the cartridge heater hole 13.18 is energized to raise the temperature.
又、連続成形を行なうと、350°Cに加温された樹脂
が射出されるので、固定側及び可動側金型10.16の
温度が次第に上昇する。これを通常の方式で冷却すると
、長時間を要し、成形サイクルが長くなるという不都合
が生じる。Furthermore, when continuous molding is performed, resin heated to 350° C. is injected, so the temperatures of the fixed and movable molds 10.16 gradually rise. If this is cooled in a conventional manner, it will take a long time and the molding cycle will be lengthened.
そこで、金型10.16を冷却するために冷却液孔15
.20に冷却液(100〜150°Cの油)を循環させ
、金型温度を130〜]、 50℃にコントロールする
。Therefore, in order to cool the mold 10.16, the cooling liquid hole 15
.. Cooling liquid (oil at 100-150°C) is circulated through 20, and the mold temperature is controlled at 130-50°C.
尚、スピア温度コントローラ(図示なし)で自動的に行
なうことにより、金型1晶度を常に130〜150℃の
範囲で一定温度にコントロールすることができ、一定品
質を有する電機子成形品を製造することができる。又、
各ゲート位置にスピア1をマニホールド5を介して夫々
配置したので、金型10に組込むスピア1.マニホール
ド5と、この出力や温度を設定制御0するコントローラ
及び中継ボックス(図は省略)を設けることができる。By automatically using a spear temperature controller (not shown), the crystallinity of the mold can be controlled at a constant temperature within the range of 130 to 150 degrees Celsius, making it possible to produce armature molded products with constant quality. can do. or,
Since the spear 1 was placed at each gate position through the manifold 5, the spear 1. A manifold 5, a controller for setting and controlling the output and temperature, and a relay box (not shown) can be provided.
本発明を実施するに際し、上記実施例の如くスピア1を
3本用いる3点ゲート方式にすると、1′日平型モータ
用電機子の樹脂モールド層を均等に成形することができ
る。When carrying out the present invention, if a three-point gate system using three spears 1 is used as in the above embodiment, the resin mold layer of the armature for a 1' Hibira type motor can be uniformly molded.
これを本発明者の実験に基づいて説明する。This will be explained based on the inventor's experiments.
3点ゲートの場合は、第6図の点線で示したように各ゲ
ート40間に3木のウェルド(合わせ口)41があるが
、材料を少ない■から少しづつ多くしていくと、第7図
のように均等な流動距離を示して完全に充填される。In the case of a three-point gate, there are three welds 41 between each gate 40, as shown by the dotted line in Figure 6, but if you gradually increase the amount of material from a small It is completely filled with an even flow distance as shown.
この実験からも明らかな如く、ゲートバランスが優れて
いる。ウェルド41が完全にシールされるので、欠陥が
なくなる。成形品にクランク、反り、変形がない。As is clear from this experiment, the gate balance is excellent. Since the weld 41 is completely sealed, there are no defects. There is no cranking, warping, or deformation in the molded product.
1点ゲートにすると、第8図に示すようにゲート40か
らウェルド41までの流動距離が長くなるので、材料の
流動時間に差が生じる。そのため、ウェルド41が完全
にシールされずにクランクが発生したり、強度が弱くな
る。矢印のような流動軌跡を示すので、ガラス繊維の配
向でウェルドの左右が充填され難くなり、第9図に示す
ように真円になり難い。その上、第10図に示すように
ウェルド軸42が変形する。When a one-point gate is used, the flow distance from the gate 40 to the weld 41 becomes longer as shown in FIG. 8, so a difference occurs in the flow time of the material. Therefore, the weld 41 is not completely sealed, causing cranking or weakening of the weld 41. Since it shows a flow trajectory like an arrow, it is difficult to fill the left and right sides of the weld due to the orientation of the glass fibers, and it is difficult to form a perfect circle as shown in FIG. Moreover, the weld shaft 42 is deformed as shown in FIG.
又、2点ゲートにすると、第11図に示すように1点ゲ
ート程ではないが、流動距離が長くなるので、ウェルド
41が完全にシールされず、クラックが発生したり、強
度が低下する。そして、矢印のような流動軌跡を示すの
で、ガラス繊維の配向でウェルド41の左右で、1点ゲ
ートと同様に変形する。又、真円を作り難い。Furthermore, if a two-point gate is used, as shown in FIG. 11, the flow distance becomes longer, although not as much as a one-point gate, so that the weld 41 is not completely sealed, resulting in cracks and reduced strength. Since it shows a flow trajectory like an arrow, it deforms on the left and right sides of the weld 41 depending on the orientation of the glass fibers in the same way as a one-point gate. Also, it is difficult to make a perfect circle.
従って、電機子の変形1反りをなくすと共に、電機子回
転時の面振れ、全形歪等をなくした成形を可能にするた
めには、3点ゲートでなければならない。Therefore, in order to eliminate deformation and warpage of the armature, as well as to enable molding that eliminates surface runout and overall shape distortion during rotation of the armature, a three-point gate is required.
又、本発明に於ては、熱可塑性樹脂としては、通常のP
PSよりも超流動性PPSが望ましい。In addition, in the present invention, as the thermoplastic resin, ordinary P
Superfluid PPS is preferable to PS.
この超流動性ppsは、機械的強度と流動性をバランス
させるため、ガラス繊維とシリカ等の無機物を充填して
作られている。その物性は第1表に示す通りである。This superfluid pps is made by filling glass fiber and inorganic substances such as silica in order to balance mechanical strength and fluidity. Its physical properties are shown in Table 1.
第1表
第1表中、材料Aとは、高強度及び超高流動性pps
<東し株式会社の商品名:NR−4)、材料Bとは超高
流動性PPS (米国、ライトレ社の商品名:R−9−
02)、材料Cとはエポキシ樹脂CEL−874Bを夫
々表す。Table 1 In Table 1, material A refers to high strength and ultra-high fluidity pps.
<Toshi Co., Ltd.'s product name: NR-4), material B is ultra-high fluidity PPS (Lightre Co., Ltd.'s product name: R-9-
02) and material C represent epoxy resin CEL-874B.
第1表から明らかな如く、高強度及び超高流動性PPS
は、超高流動性PPSと比較して機械的強度(曲げ及び
衝撃強さ)が2倍以上ある。尚、流動性は同等である。As is clear from Table 1, high strength and ultra-high fluidity PPS
has more than twice the mechanical strength (bending and impact strength) as ultra-high fluidity PPS. Note that the fluidity is the same.
次に、高強度及び超高流動性PP5(東し株式会社の商
品名:NR−4)を用いて、マニホールドの温度350
℃、ノズル温度350℃、シリンダの温度350℃13
50°C,34,0℃、金型温度150℃(固定側12
0℃、可動側150℃でオイル循環)、射出圧力200
kg/cII!、成形時間(射出/冷却)12秒/40
秒、成形サイクル60秒という条件で成形したところ、
得られた製品の平面度は0.005mm以下、抵抗変化
率3%以下、200°C耐熱後の平面度は0.3 mm
以下であった。Next, using high-strength and ultra-high fluidity PP5 (trade name: NR-4 of Toshi Co., Ltd.), the temperature of the manifold was 350°C.
℃, nozzle temperature 350℃, cylinder temperature 350℃13
50°C, 34,0°C, mold temperature 150°C (fixed side 12
0℃, oil circulation at movable side 150℃), injection pressure 200
kg/cII! , molding time (injection/cooling) 12 seconds/40
When molded under conditions of 60 seconds and a molding cycle of 60 seconds,
The flatness of the obtained product is 0.005 mm or less, the resistance change rate is 3% or less, and the flatness after heat resistance at 200°C is 0.3 mm.
It was below.
以上のように本発明によれば、成形治具を用いて多数の
単コイルを重畳的に環状成形し、コンミテークと接続し
て成るアマチュアコイルを、金型キャビティの外周部に
樹脂流路層を設けたランナ−レス式金型の収納部内に挿
入し、このランナーレス式金型の収納部に高強度で且つ
超高流!fiJj性を有する熱可塑性樹脂を超低圧下で
射出し、アマチュアコイルに樹脂のモールド層を成形す
るものであるから、充填不良を起こす虞がなく、射出圧
によるコイルの変形1反り等がなく、電機子回転時の面
振れ、全形歪等もコールドランナー式に比較して極めて
小さく、優れている。スプルー、ランナ一部の樹脂損失
が全くない。ゲート部から切断されて自動取出しが可能
であるので、ゲートの切断、仕上げが不要であるので、
省力化ができる。As described above, according to the present invention, a large number of single coils are superimposed and annularly formed using a molding jig, and an armature coil formed by connecting a commitake is formed by forming a resin flow channel layer on the outer periphery of a mold cavity. Insert it into the storage area of the runner-less mold, and put it in the storage area of the runner-less mold with high strength and ultra-high flow! Since thermoplastic resin with fiJj properties is injected under ultra-low pressure and a resin mold layer is molded onto the armature coil, there is no risk of filling defects, and there is no coil deformation or warping due to injection pressure. Surface runout and overall distortion during armature rotation are extremely small and superior compared to the cold runner type. There is no resin loss at all on the sprue and runners. Since it can be cut from the gate and taken out automatically, there is no need to cut or finish the gate.
It can save labor.
そのため、全体として省資源、省力化が達成されるので
、低コストの電機子成形品を提供することができる等の
利点がある。Therefore, resource and labor savings can be achieved as a whole, so there are advantages such as being able to provide a low-cost armature molded product.
【図面の簡単な説明】
第1図は本発明に係る偏平型モータ用電機子を製造する
装置の一部を切り欠いて示す正面図、第2図はその要部
を示す横断面図、第3図は本実施例により成形された偏
平型モータ用電機子の平面図、第4図はその断面図、第
5図は本発明に用いるスピアのチップヒータの温度特性
を示す図、第6図乃至第11図は本発明に於ける3点ゲ
ートと他のゲートとの対比を示す説明図である。
1・・・スピア、IA・・・ランド部、IB・・・ラン
ナ一部、2・・・スピアケーシング、3・・・チップヒ
ータ、5・・・マニホールド、10・・・固定側金型、
12・・・収納部、12A・・・樹脂流路層、16・・
・可動側金型、30・・・アマチュアコイル、32・・
・ゲート。
第2図
第4図
第5図
時間(sec)[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a partially cutaway front view of an apparatus for manufacturing an armature for a flat type motor according to the present invention, FIG. Figure 3 is a plan view of the armature for a flat type motor molded according to this example, Figure 4 is its cross-sectional view, Figure 5 is a diagram showing the temperature characteristics of the tip heater of the spear used in the present invention, and Figure 6. 11 to 11 are explanatory diagrams showing a comparison between the three-point gate and other gates in the present invention. DESCRIPTION OF SYMBOLS 1... Spear, IA... Land part, IB... Part of runner, 2... Spear casing, 3... Chip heater, 5... Manifold, 10... Fixed side mold,
12... Storage section, 12A... Resin channel layer, 16...
・Movable side mold, 30...Amateur coil, 32...
·Gate. Figure 2 Figure 4 Figure 5 Time (sec)
Claims (6)
成形し、コンミテータと接続して成るアマチュアコイル
を、金型キャビティの外周部に樹脂流路層を設けたラン
ナーレス式金型の収納部内に挿入し、このランナーレス
式金型の収納部に高強度で且つ超高流動性を有する熱可
塑性樹脂を超低圧下で射出し、アマチュアコイルに樹脂
のモールド層を成形することを特徴とする扁平型モータ
用電機子の製造方法。(1) A runnerless mold in which a large number of single coils are superimposed into an annular shape using a molding jig, and an armature coil formed by connecting a commutator is provided with a resin channel layer on the outer periphery of the mold cavity. A thermoplastic resin with high strength and ultra-high fluidity is injected into the storage part of the runnerless mold under ultra-low pressure to form a resin mold layer on the armature coil. A method for manufacturing an armature for a flat motor.
、3箇所に配置したスピアによって射出することを特徴
とする特許請求の範囲第1項記載の扁平型モータ用電機
子の製造方法。(2) A method for manufacturing an armature for a flat type motor according to claim 1, characterized in that a thermoplastic resin having high strength and ultra-high fluidity is injected using spears arranged at three locations. .
介して配置し、温度コントローラにより夫々個別に温度
コントロールができるように構成されていることを特徴
とする特許請求の範囲第2項記載の扁平型モータ用電機
子の製造方法。(3) The spear is a flat type according to claim 2, wherein each spear body is arranged through a manifold, and each spear body is arranged so that the temperature can be individually controlled by a temperature controller. A method of manufacturing an armature for a motor.
急速に所定温度まで上昇させ、成形作業中に金型内に冷
却液を通して金型を所定温度に保持するようにしたこと
を特徴とする特許請求の範囲第1項記載の偏平型モータ
用電機子の製造方法。(4) A patent characterized in that the mold is rapidly raised to a predetermined temperature by a cartridge heater before the start of molding, and the mold is maintained at a predetermined temperature by passing a cooling liquid into the mold during the molding operation. A method of manufacturing an armature for a flat type motor according to claim 1.
外周及びゲートの反対側のキャビティに樹脂流路層を配
置したことを特徴とする特許請求の範囲第1項記載の扁
平型モータ用電機子の製造方法。(5) The armature for a flat type motor according to claim 1, characterized in that a resin channel layer is arranged on the outer periphery of the armature coil storage part of the runnerless mold and in the cavity on the opposite side of the gate. manufacturing method.
あることを特徴とする特許請求の範囲第1項記載の扁平
型モータ用電機子の製造方法。(6) The method for manufacturing an armature for a flat motor according to claim 1, wherein the thermoplastic resin is polyphenylene sulfide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26046186A JPS63114613A (en) | 1986-10-31 | 1986-10-31 | Manufacture of armature for flat type motor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26046186A JPS63114613A (en) | 1986-10-31 | 1986-10-31 | Manufacture of armature for flat type motor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63114613A true JPS63114613A (en) | 1988-05-19 |
JPH0349735B2 JPH0349735B2 (en) | 1991-07-30 |
Family
ID=17348269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26046186A Granted JPS63114613A (en) | 1986-10-31 | 1986-10-31 | Manufacture of armature for flat type motor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63114613A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5634258A (en) * | 1994-11-07 | 1997-06-03 | Mitsuba Electric Mfg. Co., Ltd. | Method for forming coils of motor rotors |
-
1986
- 1986-10-31 JP JP26046186A patent/JPS63114613A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5634258A (en) * | 1994-11-07 | 1997-06-03 | Mitsuba Electric Mfg. Co., Ltd. | Method for forming coils of motor rotors |
Also Published As
Publication number | Publication date |
---|---|
JPH0349735B2 (en) | 1991-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1389517A1 (en) | Shut-off nozzle with heating unit and cooling unit for hot runner systems of injection molding machines, and method of controlling the same | |
CA2000162C (en) | Method for injection moulding blanks and gate system | |
JPH0144140B2 (en) | ||
JPS63236615A (en) | Method and apparatus for runnerless injection molding of synthetic resin by means of intermittent cooling | |
US20220410453A1 (en) | System of manufacturing injection molded article and metal mold | |
JPS62117716A (en) | Mold and temperature controlling thereof | |
KR20060130291A (en) | Method for heating injection molding and molding apparatus thereof | |
JPS63114613A (en) | Manufacture of armature for flat type motor | |
US7841854B2 (en) | Temperature adjustment mechanism for injection molding machine | |
JPS63114612A (en) | Runnerless injection molding equipment of armature for flat type motor | |
JP7213722B2 (en) | TEMPERATURE CONTROLLER INJECTIVE MOLD FOR INJECTION MOLD, MOLD, AND INJECTION MOLDING METHOD | |
CN111251565A (en) | Process applied to side glue feeding injection molding production of plastic mold of contact lens | |
JP2002530222A (en) | Mold temperature control method for injection molding | |
JPH0421574B2 (en) | ||
US20210069952A1 (en) | Method for producing an optical lens and optical lens produced by said method | |
JPH052926U (en) | Gate structure in hot-molding for injection molding | |
JP2000271980A (en) | Hot runner and valve gate mold, and method for preventing solidifying of resin on periphery of gate hole in using the hot runner and valve gate mold | |
JPH1076555A (en) | Method for injection molding of plastic molded article with partly thin part and mold used for injection molding | |
JPS6096427A (en) | Injection molding method | |
JPH05254858A (en) | Forming method | |
JPS6262720A (en) | Injection mold | |
JP3169310B2 (en) | Mold | |
JPS5842107Y2 (en) | injection mold | |
JPH01215524A (en) | Injection molding device | |
KR100230925B1 (en) | Manufacturing method for automobile cylinder head |