JPS63114576A - Opposed driving type ultrasonic motor - Google Patents

Opposed driving type ultrasonic motor

Info

Publication number
JPS63114576A
JPS63114576A JP61260396A JP26039686A JPS63114576A JP S63114576 A JPS63114576 A JP S63114576A JP 61260396 A JP61260396 A JP 61260396A JP 26039686 A JP26039686 A JP 26039686A JP S63114576 A JPS63114576 A JP S63114576A
Authority
JP
Japan
Prior art keywords
output end
vibration
movable body
driving
axial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61260396A
Other languages
Japanese (ja)
Inventor
Shoji Mishiro
三代 祥二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taga Electric Co Ltd
Original Assignee
Taga Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taga Electric Co Ltd filed Critical Taga Electric Co Ltd
Priority to JP61260396A priority Critical patent/JPS63114576A/en
Publication of JPS63114576A publication Critical patent/JPS63114576A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/001Driving devices, e.g. vibrators
    • H02N2/0045Driving devices, e.g. vibrators using longitudinal or radial modes combined with torsion or shear modes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/106Langevin motors

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To improve driving output and driving efficiency, by providing a pair of ultrasonic piezoelectric transducers equipped with output end faces elliptically vibrating in synchronization with both faces of a moving substance. CONSTITUTION:Electrode plates 11 and 13 of ultrasonic piezoelectric transducers 4 and 4' are connected together to form a common terminal. When alternating voltage is applied to an electrode plate 10 for axial driving to match the axial resonance frequency, output end faces 21 and 21' resonantly vibrate in an axial direction. On the other hand, if the alternating voltage applied to a torsional driving electrode plate 12 is matched with the torsional resonance frequency, then the output end faces 21 and 21' will perform torsional resonance vibration. The output end faces 21 and 21' driven in such vibrating pose are provided on both sides of a rotor disk 23 and are pressed so tightly that the rotor disk 23 is driven when the motor is synchronously driven with the respective ultrasonic piezoelectric transducers 4 and 4' axially in the same phase and torsionally in the counter phase.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、複合振動を発生して出力端面が楕円振動する
超音波振動子を用いた超音波モータに関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an ultrasonic motor using an ultrasonic vibrator that generates complex vibrations and whose output end face vibrates elliptically.

従来の技術 一般に、超音波モータの駆動用超音波振動子としては、
進行波形と定在波形とがあり、いずれも楕円などの複合
振動を出力端面に発生させてこの出力端面に圧着された
ロータなどの可動体を駆動するようにしているものであ
る。
Conventional technology Generally speaking, ultrasonic transducers for driving ultrasonic motors include:
There are traveling waveforms and standing waveforms, and both generate complex vibrations such as an ellipse on the output end face to drive a movable body such as a rotor that is crimped to the output end face.

これらの内、定在波形のものには、例えば特公昭59−
37672号公報に見られるような振動片型と特開昭6
1−52166号公報に見られるような片持梁状ねじり
変換子を備えたものがある。
Among these, those with standing waveforms include, for example,
Vibration piece type as seen in Publication No. 37672 and Japanese Patent Application Laid-open No. 6
There is one equipped with a cantilever-like torsion transducer as seen in Japanese Patent No. 1-52166.

前者は振動片とロータ接触部との摩耗が著しく、魔音の
発生も大きいという欠点を有するが、後者は振動片型に
比べて接合面積が大きく、振動片型の欠点を解決したも
のとして注目されている。
The former has the disadvantage of significant wear between the vibrating piece and the contact part of the rotor, and the generation of a large amount of noise, but the latter has a larger joint area than the vibrating piece type, and is attracting attention as a solution to the drawbacks of the vibrating piece type. has been done.

しかしながら、片持梁状ねじり変換子を利用する形式の
ものは、その出力端部における振動姿態はねじり変換子
の形状によって一律に決まってしまい、摩擦駆動に最適
な姿態への制御や回転方向を制御することは不可能であ
る。
However, in the case of a type that uses a cantilever-shaped torsion transducer, the vibration mode at the output end is uniformly determined by the shape of the torsion transducer, and it is difficult to control the optimum mode for frictional drive and to determine the direction of rotation. It is impossible to control.

このようなことから、軸方向振動とねじり方向振動、又
は軸方向振動と軸と直交する方向の振動とをそれぞれ個
別に駆動して複合振動を発生させることが考えられ、本
願出願人から既に特許出願されている。例えば、リニヤ
駆動もできる特願昭60−252526号、たわみ振動
と軸振動との組合せからなる特願昭60−266617
号、ねじり振動と軸振動とからなる特開昭61−819
22号公報記載のもの等がある。これらによれば、回転
数や負荷トルクあるいは回転方向などに応じて最適な楕
円形状などの振動姿態を電気的に制御して駆動すること
が可能になったものである。
For this reason, it is conceivable to generate compound vibrations by driving axial vibrations and torsional vibrations, or axial vibrations and vibrations perpendicular to the axis individually, and the applicant has already patented this idea. An application has been filed. For example, Japanese Patent Application No. 60-252526, which can also be driven linearly, and Japanese Patent Application No. 60-266617, which has a combination of flexural vibration and shaft vibration.
No. 61-819 consisting of torsional vibration and shaft vibration
Some examples include those described in Publication No. 22. According to these, it has become possible to electrically control and drive a vibration state such as an optimal elliptical shape depending on the rotation speed, load torque, rotation direction, etc.

発明が解決しようとする問題点 前述のように軸方向とねじり方向、又は軸方向と軸と直
角方向との振動を個別に駆動することによりそれぞれの
振幅と相対位相を制御して多様な複合振動を得ることが
できるが、このような超音波振動子を用いて超音波モー
タを構成する場合には、出力トルクを大きく取ろうとす
ると、振動子の出力端面と可動体とを必然的に大きな加
圧力で圧接しなければならない。すなわち、モータとし
ての出力トルクは、振動子の出力端面と可動体との軸方
向圧着力に応じた接合面同志の摩擦係数に基づく摩擦力
に依存するものであり、それ以上にはなりえない。その
ため、大きな出力トルクを必要とする場合には、軸方向
の加圧力を大きくする。
Problems to be Solved by the Invention As mentioned above, by individually driving vibrations in the axial direction and torsional direction, or in the axial direction and in the perpendicular direction to the axis, the amplitude and relative phase of each can be controlled to generate various complex vibrations. However, when constructing an ultrasonic motor using such an ultrasonic vibrator, if you try to increase the output torque, you will inevitably have to apply a large amount of stress to the output end face of the vibrator and the movable body. It must be welded with pressure. In other words, the output torque of the motor depends on the frictional force based on the friction coefficient of the bonding surfaces that corresponds to the axial pressing force between the output end face of the vibrator and the movable body, and cannot exceed this value. . Therefore, when a large output torque is required, the axial pressing force is increased.

しかして、超音波モータは、低速度、大トルクの効果を
得ることができる点に特徴があるが、出力トルクを大き
くするために加圧力を増大させると、ロータなどの可動
体の弾性変形により、ついには接合面同志が振動の全周
期にわたって離れなくなり、可動体の移動速度がきわめ
て低下し、送り方向の駆動損失が増大して著しく駆動効
率が低下してしまうと云う問題がある。
Ultrasonic motors are characterized by the ability to achieve low speed and large torque effects, but when the pressurizing force is increased to increase the output torque, elastic deformation of movable bodies such as the rotor causes Eventually, the joint surfaces become unable to separate from each other over the entire period of vibration, causing a problem in that the moving speed of the movable body is extremely reduced, drive loss in the feeding direction increases, and drive efficiency is significantly reduced.

このような現象を第9図及び第10図に基づいて説明す
る。まず、第9図において、1は静止状態の可動体であ
り、2は静止状態の超音波振動子の出力端面である。そ
して、カーブAは出力端面2の軸方向における時間的変
位を表し、カーブBは可動体1と出力端面2との軸方向
圧着力Pの時間的変位を示す。また、カーブAに連続す
る一点鎖線は可動体1が存在しない状態における超音波
振動子の出力端面2の変位を示す。第10図は振動子出
力端面2の楕円の振動姿態と可動体1との接合状態を示
す。また、出力端面2の楕円振動が矢印の方向に回転し
ているときの送り方向を矢印3で示す。
Such a phenomenon will be explained based on FIGS. 9 and 10. First, in FIG. 9, 1 is a movable body in a stationary state, and 2 is an output end face of an ultrasonic transducer in a stationary state. Curve A represents the temporal displacement of the output end surface 2 in the axial direction, and curve B represents the temporal displacement of the axial pressing force P between the movable body 1 and the output end surface 2. Further, a dashed line continuous with the curve A indicates the displacement of the output end surface 2 of the ultrasonic transducer in a state where the movable body 1 is not present. FIG. 10 shows the elliptical vibration state of the vibrator output end face 2 and the joined state with the movable body 1. Further, an arrow 3 indicates the feeding direction when the elliptical vibration of the output end face 2 rotates in the direction of the arrow.

しかして、第9図(a)および第10図(a)に示す状
態は静止状態にて可動体1と出力端面2との接合面が離
れているものであり、超音波振動により出力端面2がカ
ーブAのように変位する。その結果、E、F間のCの期
間は可動体1と出力端面2との接合面が圧着され、圧着
力PがカーブBのように発生している。そして、F点で
両者は離れる。両者が接触しているCの期間での可動体
1の送り方向速度の変化は少ないので、略最大速度で駆
動されるが、圧着力Pが小さいために摩擦力が小さく、
出力トルクは僅かである。
However, in the state shown in FIGS. 9(a) and 10(a), the joint surface between the movable body 1 and the output end surface 2 is separated in a stationary state, and the output end surface 2 is separated by ultrasonic vibration. is displaced like curve A. As a result, during the period C between E and F, the joint surface between the movable body 1 and the output end surface 2 is pressed, and the pressing force P is generated as shown by curve B. Then, at point F, the two separate. Since there is little change in the speed of the movable body 1 in the feeding direction during the period C when both are in contact, the movable body 1 is driven at approximately the maximum speed, but since the pressing force P is small, the frictional force is small.
Output torque is small.

第9図(b)および第10図(b)に示す状態は、静止
状態にて可動体1と出力端面2との接合面が接触してい
る状態であり、超音波振動の半周期は可動体1と出力端
面2との接合面が加圧状態にある。そのため、接合時の
圧着力Pは増加しているために出力トルクは増えるが、
接合期間C内での駆動方向瞬時速度が変化するために接
合面のスリップが生じ始めて駆動速度はやや低下する。
The state shown in FIG. 9(b) and FIG. 10(b) is a state in which the joint surface of the movable body 1 and the output end surface 2 is in contact with each other in a stationary state, and the half period of ultrasonic vibration is a state in which the joint surface of the movable body 1 and the output end surface 2 is in contact with each other. The joint surface between the body 1 and the output end surface 2 is under pressure. Therefore, since the crimp force P during welding increases, the output torque increases, but
Since the instantaneous speed in the driving direction changes within the joining period C, slipping of the joining surface begins to occur and the driving speed decreases slightly.

第9図(C)および第10図(C)に示す状態は、静止
状態にて可動体1と出力端面2とが、予圧力P′で加圧
されているものである。二の場合には、僅かな期間りだ
け両者が離れ、大部分の期間Cで接合されており、した
がって、圧着力Pも大きいので、出力トルクも急激に大
きくなる。しかしながら、接触期間C内での駆動方向の
振動速度の変化が大きく、瞬時速度はゼロおよび、マイ
ナスも存在するので、スリップによる損失が増大し、回
転数も一段と低下してしまう。
In the states shown in FIGS. 9(C) and 10(C), the movable body 1 and the output end surface 2 are pressurized with a preload force P' in a stationary state. In case 2, the two are separated for a short period of time and are joined for most of the period C, and therefore the pressing force P is also large, so the output torque also increases rapidly. However, since the vibration speed in the driving direction changes greatly within the contact period C, and the instantaneous speed can be zero or negative, loss due to slip increases and the rotational speed further decreases.

第9図(d)および第10図(d)に示す状態は、可動
体1と出力端面2とが振動状態における全ての周期にお
いて、接触状態にあるように、予圧力P° を設定した
ものである。この場合には、スリップによる損失が急激
に増加し、回転数は激減する。この状態で軸方向振幅を
増加してゆくと、両者の接合が離れる瞬間が生じて駆動
速度は上がってゆきスリップによる損失は減少して行く
。しかしながら、軸方向振幅を上げて行くとともに、可
動体lの異常共鳴によるビビリ現象が発生し易くなり、
これにより、不安定な接合状態となり、出ノJトルクは
減少してしまうものである。このように振動により発生
する圧着力により可動体1は逃げてしまい、接合面間に
充分な圧着力が得られないものである。
In the states shown in FIGS. 9(d) and 10(d), the preload force P° is set so that the movable body 1 and the output end face 2 are in contact during all cycles in the vibration state. It is. In this case, the loss due to slip increases rapidly and the number of revolutions decreases sharply. When the axial amplitude is increased in this state, a moment occurs when the two are separated, the driving speed increases, and the loss due to slip decreases. However, as the axial amplitude increases, chatter phenomenon due to abnormal resonance of the movable body l becomes more likely to occur.
This results in an unstable joint state, and the output J torque decreases. In this way, the movable body 1 escapes due to the pressure force generated by the vibration, and a sufficient pressure force cannot be obtained between the joint surfaces.

以上のような現象に基づく問題点を纏めると、次のよう
になる。
The problems based on the above phenomena can be summarized as follows.

1、加圧力を大きくしないと接合面の摩擦係数に係る出
力トルクが大きくとれない。
1. Unless the pressurizing force is increased, the output torque related to the friction coefficient of the joint surface cannot be increased.

2、加圧力が大きいと、接合時の速度差や逆方向駆動に
よるスリップにより駆動損失が増加するとともに駆動速
度が低下するので、離れる期間を作るために軸方向振幅
は相当量大きくする必要がある。
2. If the pressurizing force is large, the driving loss will increase due to the speed difference during joining and slip due to reverse driving, and the driving speed will decrease, so the axial amplitude needs to be increased by a considerable amount to create a separation period. .

3、軸方向振幅を大きくする程、出力トルクには無効な
軸方向駆動損失が増加して全体の効率を低下させる。又
、異常共鳴振動を発生して出力トルクを低下させる。
3. The larger the axial amplitude is, the more the axial drive loss, which is ineffective against the output torque, increases, reducing the overall efficiency. Moreover, abnormal resonance vibration is generated and the output torque is reduced.

このように互いに相反する条件が存在し、最適な駆動を
行うことができないものである。
In this way, mutually contradictory conditions exist, making it impossible to perform optimal driving.

問題点を解決するための手段 同期して楕円振動する出ノJ端面を備えた一対の超音波
振動子を設け、可動体の両面に前記超音波振動子の出力
端面を対向配置する。
Means for Solving the Problems A pair of ultrasonic transducers each having an output end face that vibrates elliptically in synchronization is provided, and the output end faces of the ultrasonic transducer are arranged opposite to each other on both sides of a movable body.

作用 可動体はその両側面から同期した超音波振動を受けるた
め、軸方向の超音波振動に対してハードとなり、接合時
には強力な圧着力が得られるとともに大きな加圧力をか
けても半周期以上の離反期間を確実に得ることができて
高い駆動効率で駆動される。
Because the working movable body receives synchronized ultrasonic vibrations from both sides, it becomes hard against ultrasonic vibrations in the axial direction, and strong crimp force can be obtained during welding, and even if a large pressure force is applied, it will not last more than half a cycle. It is possible to reliably obtain a separation period and drive with high drive efficiency.

実施例 本発明の第一の実施例を第1図乃至第4図に基づいて説
明する。本実施例は回転型超音波モータであり、同一の
形状で同一の振動特性を有する二個の超音波振動子4,
4′を有する。
Embodiment A first embodiment of the present invention will be explained based on FIGS. 1 to 4. This embodiment is a rotary type ultrasonic motor, and includes two ultrasonic vibrators 4, which have the same shape and the same vibration characteristics.
4'.

まず、超音波振動子4は円環状に形成された縦振動用電
歪素子6.7とねじり振動用電歪素子8゜9とを備え、
前記縦振動用電歪素子6.7はその厚さ方向に分極され
その両面に電極が設けられ、前記ねじり振動用電歪素子
8,9はその周方向に分極されその両面に電極が設けら
れ、それぞれ厚み方向の交番電界の印加により縦方向の
振動と周方向のすベリ振動、すなわち、ねじり振動を発
生する。
First, the ultrasonic vibrator 4 includes an annularly formed electrostrictive element 6.7 for longitudinal vibration and an electrostrictive element 8.9 for torsional vibration,
The electrostrictive elements 6, 7 for longitudinal vibration are polarized in the thickness direction and provided with electrodes on both sides, and the electrostrictive elements 8, 9 for torsional vibration are polarized in the circumferential direction and provided with electrodes on both sides. , respectively, generate longitudinal vibration and circumferential direction vibration, that is, torsional vibration, by applying an alternating electric field in the thickness direction.

前記縦振動用電歪素子6,7と前記ねじり振動用電歪素
子8.9は、電極板10,11,12゜13を間に入れ
て配列されており、これらの両面には中心孔14と酸ネ
ジ15の設けられた金属部材16及び環状金属部材17
が配設されて中空ボルト18とナツト19によって一体
に締着されている。なお、前記電歪素子6,7,8.9
と前記電極板10,11,12.13との内周と前記中
空ボルト18との間には、電気的絶縁を保つための絶縁
パイプ20が挿入されている。そして、前記詔音波振動
子4,4゛はその一端に出力端面21.21’  を有
する。
The longitudinal vibration electrostrictive elements 6, 7 and the torsional vibration electrostrictive elements 8.9 are arranged with electrode plates 10, 11, 12° 13 in between, and a center hole 14 is formed on both sides of the electrostrictive elements 6, 7 and torsional vibration electrostrictive elements 8.9. and a metal member 16 provided with an acid screw 15 and an annular metal member 17
are arranged and fastened together with a hollow bolt 18 and a nut 19. Note that the electrostrictive elements 6, 7, 8.9
An insulating pipe 20 is inserted between the inner periphery of the electrode plates 10, 11, 12, 13 and the hollow bolt 18 to maintain electrical insulation. Each of the sonic wave transducers 4, 4' has an output end face 21, 21' at one end thereof.

ついで、可動体としての円板状のロータディスク23が
設けられ、このロータディスク23の中心両面にはロー
タシャフト5,5′に固定されたツバ22,22°が接
合され、かつ、固定されている。そして、前記ロータシ
ャフト5,5′は前記中空ボルト18および中心孔14
に挿通され、前記超音波振動子4,4′が固定されるフ
レームXに設けられたベアリング24.24’ に保持
されるとともに内部ではソリッドスリーブベアリング2
5により保持されている。
Next, a disk-shaped rotor disk 23 is provided as a movable body, and flanges 22, 22° fixed to the rotor shafts 5, 5' are joined to both sides of the center of the rotor disk 23, and fixed thereto. There is. The rotor shafts 5, 5' are connected to the hollow bolt 18 and the center hole 14.
The ultrasonic transducers 4 and 4' are inserted into the frame X and held by bearings 24 and 24' provided on the frame
It is maintained by 5.

そして、前記ロータディスク23の両面には、前記出力
端面21,21’ が対向配置され、かつ、圧着されて
いる。
The output end faces 21, 21' are arranged opposite to each other on both sides of the rotor disk 23 and are crimped.

このような構成において、超音波振動子4,4′の電極
板11.13を接続して共通端子とし、軸駆動用電極板
10に交番電圧を印加してその軸方向共振周波数に合わ
せると、出力端面21,21’は軸方向に共振振動し、
また、ねじり駆動用電極板12に加える交番電圧をねじ
り方向共振周波数に合わせると出力端面21,21’ 
はねじり共振振動を行う。そのときのそれぞれの振動振
幅のねじり方向及び軸方向の分布状態は、第1図(b)
及び第1図(c)に示すように、ねじり振動は1波長、
軸振動は1/2波長でそれぞれ共振する。
In such a configuration, if the electrode plates 11 and 13 of the ultrasonic transducers 4 and 4' are connected as a common terminal and an alternating voltage is applied to the axial drive electrode plate 10 to match its axial resonance frequency, The output end faces 21, 21' vibrate resonantly in the axial direction,
Furthermore, if the alternating voltage applied to the torsional driving electrode plate 12 is matched to the torsional direction resonance frequency, the output end faces 21, 21'
performs torsional resonance vibration. At that time, the distribution state of each vibration amplitude in the torsional direction and axial direction is shown in Fig. 1 (b).
As shown in Figure 1(c), the torsional vibration has one wavelength,
The shaft vibration resonates at 1/2 wavelength.

ここで、金属部材16のねじり振動のノードから出力端
面21にかけて成形された小径部2Gは、ねじり振動周
波数と軸振動周波数とを一致させるために設けたもので
、その周波数の差はできるだけ少なくすることが好まし
い。
Here, the small diameter portion 2G formed from the torsional vibration node of the metal member 16 to the output end face 21 is provided to match the torsional vibration frequency and the shaft vibration frequency, and the difference in frequency is minimized. It is preferable.

しかして、軸及びねじり駆動電圧の相対位相を90度と
して共振周波数の交番電圧を印加すると、出力端面21
,21’ は第2図に示すように軸振動とねじり振動の
複合振動姿態である楕円振動を行う。
Therefore, when an alternating voltage at the resonance frequency is applied with the relative phase of the axial and torsional drive voltages at 90 degrees, the output end face 21
, 21' perform elliptic vibration, which is a composite vibration mode of axial vibration and torsional vibration, as shown in FIG.

そこで、このような振動姿態で駆動される出力端面21
,21”は、第1図(a)に示すようにロータディスク
23の両面に配設されて圧着されているので、それぞれ
の超音波振動子4,4′の軸方向を同相、ねじり方向を
逆相で同期駆動すると、第3図のようにそれぞれの楕円
振動の頂点付近で同時にロータディスク23と接合して
圧着され、ついで、離れると云うサイクルを繰り返すの
で、ロータディスク23は図中の白抜き太矢印の方向に
駆動される。
Therefore, the output end face 21 driven in such a vibration state
, 21'' are arranged and crimped on both sides of the rotor disk 23 as shown in FIG. When driven synchronously with opposite phases, the rotor disk 23 repeats the cycle of simultaneously joining and crimping the rotor disk 23 near the apex of each elliptical vibration and then separating, as shown in FIG. It is driven in the direction of the bold arrow.

ここで、ロータディスク23と出力端面21゜21′と
の接合の動作状態を第4図に示す。振動変位A、A’ 
は説明のために誇張してその振幅を大きく表している。
Here, FIG. 4 shows the operating state of the connection between the rotor disk 23 and the output end face 21.degree. 21'. Vibration displacement A, A'
is exaggerated to represent its amplitude greatly for explanation.

しかして、静止時の出力端面21.21”の位置は、基
準線に、に’ で示すが、自由状態においては一点鎖線
に示すように正弦波振動する。しかしながら、ロータデ
ィスク23が存するので、Cの期間はロータディスク2
3に両方の出力端面21,21’ が同時に接合し、強
圧されて実線A、A“の如く頂点が欠けた姿態となる。
Therefore, the position of the output end face 21.21'' when it is at rest is indicated by ' on the reference line, but when it is free, it vibrates in a sinusoidal wave as shown by the dashed line.However, since the rotor disk 23 exists, Period C is rotor disk 2
3, both output end faces 21, 21' are joined at the same time and are strongly pressed, resulting in a state in which the apex is missing as shown by solid lines A and A''.

この点は、本発明の最も重要な点であるので、以下に詳
細に説明する。
Since this point is the most important point of the present invention, it will be explained in detail below.

まず、第9図(a)と対比して考えると、第9図(a)
においては、可動体1と接している期間Cでの振動変位
は、非接合時の振動波形よりつぶれてはいるものの、可
動体1側に変位している。これは可動体1が振動圧力に
押されて逃げているためであって、その反発力と釣り合
った位置の変位となる。したがって、圧着力Pは充分に
得られないので、摩擦力が少なく、回転トルクは僅かし
か得られない。
First, if we compare it with Fig. 9(a), Fig. 9(a)
In , the vibration displacement during the period C in which the movable body 1 is in contact with the movable body 1 is distorted from the vibration waveform when the movable body 1 is not joined, but is displaced toward the movable body 1 side. This is because the movable body 1 is pushed by the vibration pressure and escapes, and the displacement is in balance with the repulsive force. Therefore, since a sufficient pressing force P cannot be obtained, the frictional force is small and only a small amount of rotational torque can be obtained.

一方、第4図に示す状態においては、ロータディスク2
3は接合期間Cではその両面から同時に押されるので、
ロータディスク23の逃げ場がなくなり、強い圧着力P
が得られる。瞬時的な圧着力Pは第4図のカーブBのよ
うに強力なものが得られるために、それによる摩擦力も
大きく、したがって、強い回転方向の駆動力が得られる
。しかも、接合時の強力な圧着力とともに、それ以外の
期間は、ロータディスク23は完全、に自由であるため
に回転方向駆動を妨げる力は接合面に働かず、スリップ
による回転数の低下や摩耗がなくなり、接合面の長寿命
化と高い駆動効率が得られる。□また、接合時に圧着力
は、このように大きいにも拘らず、静的なプリストレス
は圧着力Pを時間で積分した値P′だけあれば充分なの
で、得られる回転トルクに対する静的プリストレスはか
なり少なくて良いものである。
On the other hand, in the state shown in FIG.
3 is pressed simultaneously from both sides during the bonding period C, so
There is no place for the rotor disk 23 to escape, and the strong pressing force P
is obtained. Since the instantaneous pressing force P is strong as shown by curve B in FIG. 4, the resulting frictional force is also large, and therefore a strong driving force in the rotational direction is obtained. Moreover, in addition to the strong pressure applied during joining, the rotor disk 23 is completely free during the rest of the time, so no force that impedes rotational drive is applied to the joining surfaces, leading to a decrease in rotational speed due to slipping and wear. This eliminates this problem, resulting in longer life of the joint surface and higher drive efficiency. □Also, even though the crimp force is large during welding, the static prestress requires only the value P', which is the integral of the crimp force P over time, so the static prestress for the rotational torque obtained is It is good that it is quite small.

このようなことから、ロータディスク23の厚さは薄い
方が望ましい。なぜならば、両面から圧着されたとき、
厚さが厚いとその厚さ方向に弾性変形して中心に向って
僅かな逃げが生じ、同じ振動変位に対して瞬時圧着力は
減少してしまうからである。また、ロータディスク23
の材質は弾性変形しにくいもの程、良いことになる。
For this reason, it is desirable that the rotor disk 23 be thinner. This is because when crimped from both sides,
This is because if the thickness is large, elastic deformation occurs in the thickness direction, causing a slight relief toward the center, and the instantaneous pressing force decreases for the same vibration displacement. In addition, the rotor disk 23
The less the material is elastically deformed, the better.

なお、等しい特性の二個の超音波振動子4,4゛を用い
た超音波モータの最大出力トルクはそれぞれ振動子の許
容されるねじり方向最大出力の2倍以上が得られる。ま
た、ねじり駆動用電歪素子8゜9は、それぞれの振動子
の必要な回転出力に応じてその枚数を決めれば良い。
Note that the maximum output torque of the ultrasonic motor using two ultrasonic vibrators 4, 4' having the same characteristics can be obtained to be more than twice the maximum output in the torsional direction allowed by each vibrator. Further, the number of torsional drive electrostrictive elements 8.9 may be determined depending on the required rotational output of each vibrator.

つぎに、第5図乃至第8図に基づいて本発明の第二の実
施例を説明する。本実施例に於ける振動子30.30’
 は、本出願人が既に特許出願した特願昭60−252
526号において説明したものである。すなわち、厚み
方向に分極された円環状電歪素子31はその一面に絶縁
部32を残して電極33が設けられ、他面には全面電極
34が設けられて形成されている。前記電極33と同形
で端子部37.38をもつ電極板35.36を間にして
2個の電歪素子31をその分割電極面に対向させて積層
する。そして、その両面よりエクスポネンシャルステッ
プを持ち大径側中心にボルトの螺合孔を持つ金属部材3
9とリング状金属部材40とが積層されてボルト42に
より一体的に締着されている。
Next, a second embodiment of the present invention will be described based on FIGS. 5 to 8. Vibrator 30.30' in this example
is a patent application filed in 1986-252 by the present applicant.
No. 526. That is, the annular electrostrictive element 31 polarized in the thickness direction is formed with an electrode 33 provided on one surface leaving an insulating portion 32, and an entire surface electrode 34 provided on the other surface. Two electrostrictive elements 31 are stacked with electrode plates 35 and 36 having the same shape as the electrode 33 and having terminal portions 37 and 38 in between so as to face their divided electrode surfaces. A metal member 3 has an exponential step on both sides and a bolt threading hole in the center of the large diameter side.
9 and a ring-shaped metal member 40 are laminated and integrally fastened with bolts 42.

しかして、端子37.38を並列に接続して共通端子4
1に対して交番電圧を印加し、その周波数を軸方向共振
周波数に合わせると、通常知られている縦型振動子と同
様に軸方向に共振振動を行う。また、端子37.38に
互いに位相の反転した交番電圧を加えてその周波数をた
わみ共振周波数に合わせると、出力端部43は軸と直角
方向にたわみ共振振動を行う。
Therefore, by connecting terminals 37 and 38 in parallel, common terminal 4
When an alternating voltage is applied to the vibrator 1 and its frequency is matched to the axial resonant frequency, resonant vibration occurs in the axial direction like a commonly known vertical vibrator. Furthermore, when alternating voltages with opposite phases are applied to the terminals 37 and 38 to match the frequency to the flexural resonance frequency, the output end 43 causes flexural resonance vibration in a direction perpendicular to the axis.

ここで、金属部材39のエクスポネンシャルステップや
切欠き部44の形状によって軸方向とたわみ方向共振周
波数を合せておき、端子37,38に印加する交番電圧
の相対位相とそれぞれの振幅を制御することにより、出
力端面43の振動姿態は直線とその振動方向、楕円振動
とその楕円率や回転方向を自由にコントロールすること
ができるものである。
Here, the axial and flexural resonance frequencies are matched by the exponential step of the metal member 39 and the shape of the notch 44, and the relative phases and amplitudes of the alternating voltages applied to the terminals 37 and 38 are controlled. As a result, the vibration state of the output end face 43 can be freely controlled in terms of linear vibration and its vibration direction, and elliptical vibration and its ellipticity and rotation direction.

また、可動体としてのロータディスク45はシャフト4
6を中心として図示しない軸受により回転自在に設けら
れ、このロータディスク45の外周近くの両面より2個
の振動子30.30′の出力端面43を対向させて圧着
しているものである。
Further, the rotor disk 45 as a movable body is connected to the shaft 4.
The output end surfaces 43 of the two vibrators 30 and 30' are pressed against each other from both surfaces near the outer periphery of the rotor disk 45 so as to face each other.

このような振動子30,30” を同期させて第8図に
示すような方向に楕円振動させると、ロータディスク4
5は白抜き矢印の方向に回転駆動される。
When such vibrators 30, 30'' are synchronized and vibrated elliptically in the direction shown in FIG. 8, the rotor disk 4
5 is rotationally driven in the direction of the white arrow.

また、実施に当っては、ロータディスク45に代えて直
線状に長い帯板とすると直線方向に移動するリニア駆動
用として有効に駆動される。さらに、帯板を固定して対
となる振動子を可動させても良いものである。
Furthermore, in practice, if a long linear strip is used in place of the rotor disk 45, the rotor disk 45 can be effectively driven as a linear drive that moves in a straight direction. Furthermore, the band plate may be fixed and the paired vibrator may be moved.

なお、振動子としては制御可能な楕円振動をするもので
あれば、種々の動作原理に基づく振動子を有用に利用す
ることができるものである。
Note that as long as the vibrator has controllable elliptical vibration, vibrators based on various operating principles can be usefully used.

発明の効果 本発明は、上述のように可動体の両面に同期して楕円振
動する出力端面を備えた一対の悠音波振動子を配設する
ことにより、可動体の両面に同期した軸方向の超音波振
動の圧力を印加して強力な駆動方向摩擦力を得ることが
でき、また、半周期以上にわたる確実な離反期間が得ら
れるので、駆動出力が増大し、接合面のスリップによる
回転数の低下やねじり方向損失がなくなり、駆動効率を
高めることができ、また、スリップがないために接合面
の摩耗も著しく減少させることができて長寿命とするこ
とができるものである。
Effects of the Invention As described above, the present invention provides synchronized axial vibration on both sides of the movable body by disposing a pair of slow-sonic vibrators each having an output end surface that vibrates elliptically in synchronization with both sides of the movable body. By applying ultrasonic vibration pressure, a strong frictional force in the driving direction can be obtained, and a reliable separation period of more than half a cycle can be obtained, increasing the driving output and reducing the rotational speed due to slipping of the joint surface. There is no drop or loss in the torsional direction, increasing driving efficiency, and since there is no slipping, wear on the joint surfaces can be significantly reduced, resulting in a long life.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の第一の実施例を示す一部を切り
欠いた正面図、第1図(b)(C)振動振幅分布を示す
特性図、第2図は対になった超音波振動子の出力端面部
分を示す一部の斜視図、第3図はロータディスク部分の
出力端面の楕円振動の状態を示す部分断面図、第4図は
軸方向振動と軸方向圧着力との関係を示す特性図、第5
図は本発明の第二の実施例を示す斜視図、第6図は電歪
素子の斜視図、第7図は電極板の斜視図、第8図はロー
タディスクと出力端面との関係を示す一部の正面図、第
9図(a)(b)(c)(d)は従来の超音波モータに
おける軸方向振動と軸方向圧着力との関係を示す特性図
、第10図(a)(b)(c)(d)は可動体と楕円振
動をする出力端面との関係を示す特性図である。 4.4゛・・・超音波振動子、21.21’ ・・・出
力端面、23・・・ロータディスク(可動体)、30゜
30“・・・振動子(超音波振動子)、43・・・出力
端面、45・・・ロータディスク(可動体)出 願 人
   多賀電気株式会社 、%Z□□□ 13図 、3,60 −毛′7図 J、(ffi 図 ◇ )9図 (a)             (b)(c)   
          (cl)(C)        
    (d)手続補正書(自Jり 1、事件の表示 特願昭61−260396号 2、発明の名称 対向駆動型超音波モータ 3、補正をする者 事件との関係   特許出願人 4、代 理 人 〒107 「遊嵌状態で挿通され、」に補正する。
Fig. 1(a) is a partially cutaway front view showing the first embodiment of the present invention, Fig. 1(b) and (C) are characteristic diagrams showing the vibration amplitude distribution, and Fig. 2 shows a pair of FIG. 3 is a partial cross-sectional view showing the state of elliptical vibration of the output end surface of the rotor disk portion, and FIG. 4 is a partial perspective view showing the output end face of the ultrasonic vibrator. Characteristic diagram showing the relationship between
The figure is a perspective view showing a second embodiment of the present invention, FIG. 6 is a perspective view of an electrostrictive element, FIG. 7 is a perspective view of an electrode plate, and FIG. 8 is a relationship between a rotor disk and an output end surface. Partial front view, Figures 9(a), (b), (c), and (d) are characteristic diagrams showing the relationship between axial vibration and axial pressing force in a conventional ultrasonic motor, and Figure 10(a) (b), (c), and (d) are characteristic diagrams showing the relationship between the movable body and the output end face that vibrates elliptically. 4.4゛... Ultrasonic transducer, 21.21'... Output end face, 23... Rotor disk (movable body), 30° 30''... Vibrator (ultrasonic transducer), 43 ...Output end face, 45...Rotor disk (movable body) Applicant: Taga Electric Co., Ltd., %Z a) (b) (c)
(cl) (C)
(d) Procedural amendment (Private JRI 1, Indication of the case, Japanese Patent Application No. 61-260396 2, Title of the invention: Opposed drive type ultrasonic motor 3, Person making the amendment. Relationship with the case: Patent applicant 4, Attorney. Person〒107 Corrected to "inserted with loose fit."

Claims (1)

【特許請求の範囲】 1、同期して楕円振動する出力端面を備えた一対の超音
波振動子を設け、可動体の両面に前記超音波振動子の出
力端面を対向配置したことを特徴とする対向駆動型超音
波モータ。 2、可動体を円板状ロータとしたことを特徴とする特許
請求の範囲第1項記載の対向駆動型超音波モータ。 3、超音波振動子は、ねじり方向駆動用電歪素子と軸方
向駆動用電歪素子とを備え、軸中心部に可動体と一体の
ロータシャフトが通る貫通孔を有することを特徴とする
特許請求の範囲第1項記載の対向駆動型超音波モータ。 4、可動体を帯状の細長板としたことを特徴とする特許
請求の範囲第1項記載の対向駆動型超音波モータ。 5、細長板を固定して超音波振動子を移動するようにし
たことを特徴とする特許請求の範囲第4項記載の対向駆
動型超音波モータ。
[Claims] 1. A pair of ultrasonic transducers each having an output end surface that synchronously vibrates in an elliptical manner is provided, and the output end surfaces of the ultrasonic transducer are arranged opposite to each other on both surfaces of a movable body. Opposing drive type ultrasonic motor. 2. The opposed drive type ultrasonic motor according to claim 1, wherein the movable body is a disc-shaped rotor. 3. A patent characterized in that the ultrasonic vibrator is equipped with an electrostrictive element for driving in a torsional direction and an electrostrictive element for driving in an axial direction, and has a through hole in the center of the axis through which a rotor shaft integrated with a movable body passes. A counter-drive type ultrasonic motor according to claim 1. 4. A counter-drive type ultrasonic motor according to claim 1, wherein the movable body is a strip-shaped elongated plate. 5. The opposed drive type ultrasonic motor according to claim 4, characterized in that the elongated plate is fixed and the ultrasonic vibrator is moved.
JP61260396A 1986-10-31 1986-10-31 Opposed driving type ultrasonic motor Pending JPS63114576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61260396A JPS63114576A (en) 1986-10-31 1986-10-31 Opposed driving type ultrasonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61260396A JPS63114576A (en) 1986-10-31 1986-10-31 Opposed driving type ultrasonic motor

Publications (1)

Publication Number Publication Date
JPS63114576A true JPS63114576A (en) 1988-05-19

Family

ID=17347338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61260396A Pending JPS63114576A (en) 1986-10-31 1986-10-31 Opposed driving type ultrasonic motor

Country Status (1)

Country Link
JP (1) JPS63114576A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015079736A1 (en) * 2013-11-27 2015-06-04 株式会社村田製作所 Drive device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5893478A (en) * 1981-11-30 1983-06-03 Nissan Motor Co Ltd Supersonic motor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5893478A (en) * 1981-11-30 1983-06-03 Nissan Motor Co Ltd Supersonic motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015079736A1 (en) * 2013-11-27 2015-06-04 株式会社村田製作所 Drive device
JPWO2015079736A1 (en) * 2013-11-27 2017-03-16 株式会社村田製作所 Drive device
US10291154B2 (en) 2013-11-27 2019-05-14 Murata Manufacturing Co., Ltd. Driving device

Similar Documents

Publication Publication Date Title
US4812697A (en) Ultrasonic vibrator and a method of controllingly driving same
JPS62247870A (en) Method of controlling drive of ultrasonic vibrator
JP3823340B2 (en) Vibration motor
JPS62239875A (en) Drive control method for ultrasonic vibrator
JPS63114576A (en) Opposed driving type ultrasonic motor
JPH0345986B2 (en)
JPH0514512B2 (en)
JP3122882B2 (en) Ultrasonic motor
JPS63124784A (en) Control method for drive of ultrasonic motor
JPS62238101A (en) Ultrasonic piezoelectric transducer and its driving control method
JP3122881B2 (en) Ultrasonic motor
JPH011486A (en) ultrasonic motor
JP3297211B2 (en) Ultrasonic motor
JPS62135279A (en) Ultrasonic motor
JP3168430B2 (en) Ultrasonic motor
JP2816851B2 (en) Piezoelectric torsional displacement element, piezoelectric expansion / contraction displacement element, and piezoelectric composite displacement element
JPS63110980A (en) Driving of ultrasonic motor
JPH0744856B2 (en) Ultrasonic motor
JPS6344970A (en) Ultrasonic vibrator and drive control method thereof
JPH08163879A (en) Ultrasonic oscillator and ultrasonic motor
JPS62247871A (en) Ultrasonic vibrator
JPH02168870A (en) Ultrasonic wave motor and its driving method
JPS62155782A (en) Ultrasonic vibrator and drive control method thereof
JPS6292779A (en) Ultrasonic motor driven by both-phase elliptical vibrator
JPS63124780A (en) Polyphase drive type ultrasonic motor